organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of N-[(4-eth­­oxy­phen­yl)carbamo­thio­yl]cyclo­hexa­ne­carboxamide

aDepartment of Physics, Presidency College (Autonomous), Chennai 600 005, India, and bDepartment of Chemistry, National Institute of Technology, Trichy 620 015, India
*Correspondence e-mail: aspandian59@gmail.com

Edited by J. Jasinsk, Keene State College, USA (Received 14 June 2015; accepted 26 September 2015; online 7 October 2015)

The asymmetric unit of the title compound, C16H22N2O2S, contains two crystallographically independent mol­ecules (A and B). In mol­ecule A, the cyclo­hexane ring is disordered over two orientations [occupancy ratio 0.841 (10):0.159 (10)]. In each mol­ecule, the central carbonyl thio­urea unit is nearly planar (r.m.s. deviations for all non-H atoms of 0.034 Å in mol­ecule A and 0.094 Å in mol­ecule B). In both mol­ecules, the cyclo­hexane ring adopts a chair conformation. The mean plane of the cyclo­hexane ring makes dihedral angles of 35.8 (4) (mol­ecule A) and 20.7 (3)° (mol­ecule B) with that of the benzene ring. Each mol­ecule features an intra­molecular N—H⋯O hydrogen bond, which closes an S(6) ring motif. In the crystal, mol­ecules are linked via pairs of weak N—H⋯S inter­actions, forming inversion dimers with an R22(8) ring motif for both mol­ecules. The crystal structure also features weak C—H⋯π ring inter­actions.

1. Related literature

For the biological and anti­corrosion properties of thio­urea derivatives, see: Hu et al. (2011[Hu, J.-H., Luo, Z.-Y., Ding, C.-F. & Song, X.-L. (2011). Acta Cryst. E67, o376.]); Sun et al. (2006[Sun, C., Huang, H., Feng, M., Shi, X., Zhang, X. & Zhou, P. (2006). Bioorg. Med. Chem. Lett. 16, 162-166.]); Shen et al. (2006[Shen, C. B., Wang, S. G., Yang, H. Y., Long, K. & Wang, F. H. (2006). Corros. Sci. 48, 1655-1665.]). For related structure see: Vimala et al. (2015[Vimala, G., Haribabu, J., Aishwarya, S., Karvembu, R. & SubbiahPandi, A. (2015). Acta Cryst. E71, o508-o509.]); Gangadharan et al. (2015[Gangadharan, R., Haribabu, J., Karvembu, R. & Sethusankar, K. (2015). Acta Cryst. E71, 305-308.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C16H22N2O2S

  • Mr = 306.41

  • Triclinic [P \overline 1]

  • a = 10.2273 (7) Å

  • b = 12.0946 (7) Å

  • c = 15.2099 (10) Å

  • α = 70.792 (3)°

  • β = 89.100 (3)°

  • γ = 69.737 (3)°

  • V = 1656.42 (19) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.20 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.20 mm

2.2. Data collection

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.942, Tmax = 0.961

  • 35699 measured reflections

  • 5827 independent reflections

  • 3444 reflections with I > 2σ(I)

  • Rint = 0.049

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.060

  • wR(F2) = 0.205

  • S = 1.10

  • 5827 reflections

  • 503 parameters

  • 97 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C3A–C8A ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C2B—H2D⋯O2Bi 0.97 2.57 3.264 (10) 128
N1B—H3⋯O2B 0.86 (2) 1.91 (3) 2.641 (4) 142 (4)
N1A—H1⋯O2A 0.87 (2) 1.90 (3) 2.628 (4) 140 (4)
N2B—H4⋯S1Aii 0.84 (2) 2.68 (2) 3.469 (3) 157 (3)
N2A—H2⋯S1Biii 0.85 (2) 2.73 (3) 3.430 (3) 140 (3)
C12′—H12CCg1iv 0.90 2.49 (2) 3.42 (1) 159
Symmetry codes: (i) -x-1, -y+2, -z; (ii) x, y, z-1; (iii) x, y, z+1; (iv) -x+1, -y+1, -z+2.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The design and synthesis of thioureas are of considerable interest because of their use in agriculture, medicine and analytical chemistry (Hu et al., 2011). Thiourea derivatives are driven by their potential as biological active compounds (Sun et al., 2006) and in material applications such as with their anti corrosion prperties (Shen et al., 2006). In view of their biological importance, the crystal structure of the title compound, C16H22N2O2S, (I), has been determined herein.

The title compound, (I), contains two crystallographically independent molecules (A and B) in the asymmetric unit (Fig1.). In molecule A, the cyclohexane ring is disordered over two positions [occupancy ratio 0.533 (2): 0.467 (2)]. In each molecule, the central carbonyl thiourea unit is nearly planar (r.m.s. deviations for all non-H atoms of -0.034 Å for C6A and -0.094 Å for C6B. For molecule A, the cyclohexane ring (C11A—C16A) adopts a chairconformation [puckering parameters, q = 0.627 (1) Å, θ = 6.8°, φ = 279 (2)°], while for molecule B, the cyclohexane ring (C11B—C16B) also adopts a chair conformation [puckering, q = 0.546 (6) Å, θ = 179.3°, φ = 219 (2)°;]. The mean plane of the cyclohexane ring makes a dihedral angle of 35.8 (4)° (C3A—C8A) and 20.7 (3)° (C3B—C8B) with that of the benzene ring. Each molecule features an intramolecular N—H···O hydrogen bond (Table 1), which closes an S(6) ring motif. In the crystal, the molecules are linked via pairs of N—H···S weak intermolecular interactions, forming inversion dimers with an R22(8) ring motif (Bernstein et al. 1995) for both molecules (Fig. 2). The crystal structure is further stabilized by a weak C—H···π ring interactions (Table 1).

Related literature top

For the biological and anticorrosion properties of thiourea derivatives, see: Hu et al. (2011); Sun et al. (2006); Shen et al. (2006). For related structure see: Vimala et al. (2015); Gangadharan et al. (2015).

Experimental top

A mixture of 6-chlorol-3-formylchromone (1 mmol), cyanoacetylindole (1 mmol) and ammonium acetate (1 mmol) in DMF and a catalytic amount of SnCl2.2H2O (0.020 mol %) was added and refluxed for about 3 hrs. After completition of the reaction, the solvent was removed under reduced pressure and the residue was purified by column chromatography on silica gel (3:97% ethylacetate and petether) to afford a pure product. The purified compound was recrystalized from ethanol by using the slow evaporation method. The yield of the isolated product was 92%, giving block-like crystals suitable for X ray diffraction.

Refinement top

All H atoms were fixed geometrically and allowed to ride on their parent C atoms, with C—H distances fixed in the range 0.93–0.97 Å with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for all other H atoms.

Structure description top

The design and synthesis of thioureas are of considerable interest because of their use in agriculture, medicine and analytical chemistry (Hu et al., 2011). Thiourea derivatives are driven by their potential as biological active compounds (Sun et al., 2006) and in material applications such as with their anti corrosion prperties (Shen et al., 2006). In view of their biological importance, the crystal structure of the title compound, C16H22N2O2S, (I), has been determined herein.

The title compound, (I), contains two crystallographically independent molecules (A and B) in the asymmetric unit (Fig1.). In molecule A, the cyclohexane ring is disordered over two positions [occupancy ratio 0.533 (2): 0.467 (2)]. In each molecule, the central carbonyl thiourea unit is nearly planar (r.m.s. deviations for all non-H atoms of -0.034 Å for C6A and -0.094 Å for C6B. For molecule A, the cyclohexane ring (C11A—C16A) adopts a chairconformation [puckering parameters, q = 0.627 (1) Å, θ = 6.8°, φ = 279 (2)°], while for molecule B, the cyclohexane ring (C11B—C16B) also adopts a chair conformation [puckering, q = 0.546 (6) Å, θ = 179.3°, φ = 219 (2)°;]. The mean plane of the cyclohexane ring makes a dihedral angle of 35.8 (4)° (C3A—C8A) and 20.7 (3)° (C3B—C8B) with that of the benzene ring. Each molecule features an intramolecular N—H···O hydrogen bond (Table 1), which closes an S(6) ring motif. In the crystal, the molecules are linked via pairs of N—H···S weak intermolecular interactions, forming inversion dimers with an R22(8) ring motif (Bernstein et al. 1995) for both molecules (Fig. 2). The crystal structure is further stabilized by a weak C—H···π ring interactions (Table 1).

For the biological and anticorrosion properties of thiourea derivatives, see: Hu et al. (2011); Sun et al. (2006); Shen et al. (2006). For related structure see: Vimala et al. (2015); Gangadharan et al. (2015).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: APEX2 and SAINT (Bruker, 2008); data reduction: SAINT and XPREP (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the major component of the title compound, with displacement ellipsoids drawn at 30% probability level.
[Figure 2] Fig. 2. A view of the packing of (I) along the a axis, showing N—H···O intramolecular hydrogen bonds and molecules linked by weak N—H···S intermolecular interactions along the b axis.
N-[(4-Ethoxyphenyl)carbamothioyl]cyclohexanecarboxamide top
Crystal data top
C16H22N2O2SZ = 4
Mr = 306.41F(000) = 656
Triclinic, P1Dx = 1.229 Mg m3
a = 10.2273 (7) ÅMo Kα radiation, λ = 0.71073 Å
b = 12.0946 (7) ÅCell parameters from 3444 reflections
c = 15.2099 (10) Åθ = 2.3–25.0°
α = 70.792 (3)°µ = 0.20 mm1
β = 89.100 (3)°T = 293 K
γ = 69.737 (3)°Block, colourless
V = 1656.42 (19) Å30.30 × 0.20 × 0.20 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
5827 independent reflections
Radiation source: fine-focus sealed tube3444 reflections with I > 2σ(I)
Detector resolution: 8.33 pixels mm-1Rint = 0.049
ω and φ scanθmax = 25.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1212
Tmin = 0.942, Tmax = 0.961k = 1414
35699 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060Hydrogen site location: mixed
wR(F2) = 0.205H atoms treated by a mixture of independent and constrained refinement
S = 1.10 w = 1/[σ2(Fo2) + (0.0708P)2 + 1.8566P]
where P = (Fo2 + 2Fc2)/3
5827 reflections(Δ/σ)max = 0.008
503 parametersΔρmax = 0.38 e Å3
97 restraintsΔρmin = 0.31 e Å3
Crystal data top
C16H22N2O2Sγ = 69.737 (3)°
Mr = 306.41V = 1656.42 (19) Å3
Triclinic, P1Z = 4
a = 10.2273 (7) ÅMo Kα radiation
b = 12.0946 (7) ŵ = 0.20 mm1
c = 15.2099 (10) ÅT = 293 K
α = 70.792 (3)°0.30 × 0.20 × 0.20 mm
β = 89.100 (3)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
5827 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
3444 reflections with I > 2σ(I)
Tmin = 0.942, Tmax = 0.961Rint = 0.049
35699 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.06097 restraints
wR(F2) = 0.205H atoms treated by a mixture of independent and constrained refinement
S = 1.10Δρmax = 0.38 e Å3
5827 reflectionsΔρmin = 0.31 e Å3
503 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C3A0.6065 (5)0.4664 (5)0.6568 (3)0.0699 (12)
C4A0.6435 (5)0.3687 (4)0.7381 (3)0.0724 (12)
H4A0.72000.29650.74330.087*
C5A0.5696 (4)0.3749 (4)0.8131 (3)0.0641 (11)
H5A0.59610.30650.86870.077*
C6A0.4571 (4)0.4806 (4)0.8074 (3)0.0538 (9)
C7A0.4174 (5)0.5790 (4)0.7246 (3)0.0747 (13)
H7A0.33980.65050.71910.090*
C8A0.4926 (5)0.5725 (5)0.6489 (3)0.0802 (14)
H8A0.46610.64000.59270.096*
C9A0.3402 (4)0.5683 (3)0.9253 (2)0.0513 (9)
C10A0.2564 (4)0.4308 (4)1.0544 (3)0.0568 (10)
C11A0.1943 (6)0.4272 (7)1.1454 (4)0.0594 (14)0.841 (10)
H11A0.19170.50131.15950.071*0.841 (10)
C12A0.2760 (7)0.3116 (8)1.2256 (4)0.091 (2)0.841 (10)
H12A0.37160.30791.23310.109*0.841 (10)
H12B0.27880.23791.21200.109*0.841 (10)
C13A0.2113 (7)0.3106 (9)1.3156 (4)0.102 (2)0.841 (10)
H13A0.26320.23281.36550.122*0.841 (10)
H13B0.21690.37961.33270.122*0.841 (10)
C14A0.0626 (13)0.3229 (14)1.3048 (7)0.101 (3)0.841 (10)
H14A0.02240.32361.36290.121*0.841 (10)
H14B0.05750.25131.29160.121*0.841 (10)
C15A0.0204 (7)0.4420 (9)1.2265 (4)0.111 (3)0.841 (10)
H15A0.01600.51461.23860.134*0.841 (10)
H15B0.11790.45021.22040.134*0.841 (10)
C16A0.0492 (7)0.4315 (11)1.1333 (5)0.127 (4)0.841 (10)
H16A0.04980.35601.12350.153*0.841 (10)
H16B0.00370.50351.07940.153*0.841 (10)
C11'0.157 (3)0.446 (5)1.1254 (18)0.0594 (14)0.159 (10)
H11'0.14600.53341.11460.071*0.159 (10)
C12'0.249 (3)0.394 (4)1.2150 (19)0.080 (9)0.159 (10)
H12C0.31130.43971.21240.096*0.159 (10)
H12D0.30510.30611.22820.096*0.159 (10)
C13'0.148 (4)0.410 (4)1.291 (3)0.095 (10)0.159 (10)
H13C0.20410.38421.35030.114*0.159 (10)
H13D0.09200.49851.27480.114*0.159 (10)
C14'0.049 (6)0.337 (5)1.306 (3)0.072 (9)0.159 (10)
H14C0.10250.24791.33390.087*0.159 (10)
H14D0.01740.36171.34850.087*0.159 (10)
C15'0.029 (3)0.363 (2)1.213 (2)0.070 (7)0.159 (10)
H15C0.00330.28851.19650.084*0.159 (10)
H15D0.12970.39581.21510.084*0.159 (10)
C16'0.020 (3)0.461 (2)1.147 (2)0.056 (5)0.159 (10)
H16C0.03630.48921.08780.068*0.159 (10)
H16D0.01000.53141.16950.068*0.159 (10)
C3B0.4223 (6)0.9039 (7)0.1897 (4)0.0888 (16)
C4B0.3314 (6)0.7967 (5)0.1788 (3)0.0853 (15)
H4B0.32510.71870.22090.102*
C5B0.2503 (5)0.8033 (4)0.1071 (3)0.0706 (12)
H5B0.18930.72990.10000.085*
C6B0.2580 (4)0.9180 (4)0.0450 (3)0.0543 (9)
C7B0.3527 (4)1.0252 (4)0.0530 (3)0.0680 (11)
H7B0.36111.10290.00960.082*
C8B0.4358 (5)1.0185 (5)0.1255 (4)0.0831 (14)
H8B0.50071.09150.13070.100*
C9B0.0343 (4)0.8755 (3)0.0218 (2)0.0530 (9)
C10B0.0317 (5)0.9956 (4)0.1891 (3)0.0596 (10)
C11B0.0708 (4)1.0160 (4)0.2589 (3)0.0645 (11)
H11B0.16210.99080.22380.077*
C12B0.0870 (6)0.9341 (4)0.3166 (3)0.0835 (14)
H12E0.00360.95360.34880.100*
H12F0.11950.84700.27570.100*
C13B0.1893 (7)0.9515 (6)0.3879 (4)0.118 (2)
H13E0.28260.92210.35590.142*
H13F0.19140.90170.42700.142*
C14B0.1479 (7)1.0875 (6)0.4484 (4)0.111 (2)
H14E0.21931.09710.48990.133*
H14F0.06051.11320.48680.133*
C15B0.1305 (7)1.1697 (5)0.3922 (4)0.1058 (19)
H15E0.09681.25660.43370.127*
H15F0.22101.15180.36070.127*
C16B0.0288 (6)1.1527 (4)0.3196 (3)0.0879 (15)
H16E0.02791.20230.28060.106*
H16F0.06511.18230.35080.106*
N1A0.3837 (3)0.4788 (3)0.8879 (2)0.0570 (8)
N2A0.2747 (3)0.5405 (3)1.0059 (2)0.0529 (8)
N1B0.1730 (3)0.9287 (3)0.0299 (2)0.0571 (8)
N2B0.0275 (4)0.9065 (3)0.1033 (2)0.0576 (9)
O2A0.2912 (3)0.3411 (3)1.0280 (2)0.0735 (8)
O2B0.1578 (3)1.0514 (3)0.20668 (19)0.0787 (9)
S1A0.36072 (12)0.70593 (10)0.88640 (8)0.0664 (3)
S1B0.06988 (12)0.78100 (10)0.07648 (7)0.0643 (3)
C1A0.7842 (10)0.5119 (10)0.4461 (6)0.102 (3)0.867 (13)
H1A0.87100.50650.47360.153*0.867 (13)
H1B0.76220.57240.38380.153*0.867 (13)
H1C0.79280.43130.44390.153*0.867 (13)
C2A0.6698 (8)0.5516 (6)0.5040 (4)0.087 (2)0.867 (13)
H2A0.67230.62390.51740.104*0.867 (13)
H2B0.57900.57410.47070.104*0.867 (13)
O1A0.6919 (7)0.4496 (5)0.5875 (3)0.089 (2)0.867 (13)
C1A'0.800 (13)0.453 (7)0.457 (6)0.24 (7)0.133 (13)
H1'10.88980.39050.45950.354*0.133 (13)
H1'20.73270.44990.41610.354*0.133 (13)
H1'30.80710.53480.43510.354*0.133 (13)
C2A'0.754 (4)0.429 (5)0.554 (4)0.12 (2)0.133 (13)
H2'10.75140.34480.57580.141*0.133 (13)
H2'20.82560.42940.59470.141*0.133 (13)
O1A'0.625 (3)0.512 (4)0.5633 (14)0.113 (19)0.133 (13)
C1B0.608 (2)0.913 (3)0.3917 (12)0.162 (10)0.705 (13)
H1D0.64180.84790.39110.243*0.705 (13)
H1E0.68110.97660.40700.243*0.705 (13)
H1F0.52820.87740.43770.243*0.705 (13)
C2B0.5672 (9)0.9695 (9)0.2959 (8)0.096 (3)0.705 (13)
H2D0.64941.01890.25050.115*0.705 (13)
H2E0.51591.02280.29810.115*0.705 (13)
O1B0.4816 (6)0.8658 (7)0.2729 (5)0.094 (2)0.705 (13)
O1B'0.5264 (13)0.9542 (12)0.2458 (8)0.077 (5)0.295 (13)
C1B'0.622 (3)0.897 (6)0.391 (2)0.094 (12)0.295 (13)
H1G0.71270.89340.38210.141*0.295 (13)
H1H0.63120.98230.38090.141*0.295 (13)
H1I0.58030.84550.45420.141*0.295 (13)
C2B'0.530 (2)0.8499 (16)0.3233 (12)0.076 (6)0.295 (13)
H2F0.43550.79890.35420.091*0.295 (13)
H2G0.56610.79820.30150.091*0.295 (13)
H30.208 (4)0.983 (3)0.0843 (17)0.064 (12)*
H10.373 (4)0.409 (2)0.920 (3)0.069 (13)*
H40.115 (2)0.868 (3)0.094 (2)0.052 (11)*
H20.259 (7)0.612 (3)1.011 (4)0.18 (3)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C3A0.073 (3)0.086 (3)0.056 (3)0.026 (3)0.024 (2)0.036 (2)
C4A0.069 (3)0.072 (3)0.065 (3)0.008 (2)0.021 (2)0.028 (2)
C5A0.072 (3)0.057 (2)0.057 (2)0.016 (2)0.017 (2)0.019 (2)
C6A0.060 (2)0.059 (2)0.043 (2)0.0187 (19)0.0148 (18)0.0212 (18)
C7A0.076 (3)0.071 (3)0.055 (3)0.002 (2)0.012 (2)0.020 (2)
C8A0.107 (4)0.083 (3)0.040 (2)0.029 (3)0.015 (2)0.013 (2)
C9A0.048 (2)0.054 (2)0.044 (2)0.0123 (17)0.0081 (17)0.0143 (17)
C10A0.062 (2)0.053 (2)0.051 (2)0.0176 (19)0.0136 (19)0.0161 (19)
C11A0.070 (3)0.053 (3)0.044 (3)0.015 (3)0.017 (2)0.011 (3)
C12A0.078 (3)0.099 (4)0.058 (3)0.018 (3)0.013 (2)0.005 (3)
C13A0.099 (4)0.122 (6)0.054 (3)0.036 (4)0.016 (3)0.003 (3)
C14A0.105 (5)0.134 (7)0.057 (4)0.051 (4)0.029 (3)0.019 (3)
C15A0.076 (4)0.164 (7)0.063 (3)0.033 (4)0.033 (3)0.012 (3)
C16A0.064 (4)0.242 (10)0.049 (3)0.045 (4)0.019 (3)0.029 (4)
C11'0.070 (3)0.053 (3)0.044 (3)0.015 (3)0.017 (2)0.011 (3)
C12'0.084 (9)0.10 (2)0.045 (5)0.045 (9)0.011 (5)0.000 (7)
C13'0.124 (14)0.13 (2)0.074 (10)0.095 (16)0.046 (10)0.039 (12)
C14'0.073 (15)0.063 (18)0.087 (12)0.038 (14)0.032 (9)0.020 (9)
C15'0.068 (12)0.044 (11)0.093 (12)0.014 (9)0.024 (8)0.024 (9)
C16'0.070 (5)0.037 (9)0.071 (12)0.014 (5)0.024 (5)0.036 (8)
C3B0.083 (3)0.147 (5)0.078 (3)0.071 (4)0.045 (3)0.062 (4)
C4B0.097 (4)0.106 (4)0.070 (3)0.061 (3)0.033 (3)0.027 (3)
C5B0.082 (3)0.070 (3)0.067 (3)0.035 (2)0.021 (2)0.026 (2)
C6B0.059 (2)0.061 (2)0.047 (2)0.0248 (19)0.0162 (18)0.0217 (19)
C7B0.062 (3)0.071 (3)0.074 (3)0.021 (2)0.018 (2)0.032 (2)
C8B0.061 (3)0.107 (4)0.105 (4)0.030 (3)0.032 (3)0.067 (3)
C9B0.066 (3)0.046 (2)0.045 (2)0.0159 (18)0.0125 (18)0.0172 (17)
C10B0.066 (3)0.057 (2)0.043 (2)0.012 (2)0.0104 (19)0.0114 (18)
C11B0.065 (3)0.070 (3)0.042 (2)0.014 (2)0.0096 (19)0.0082 (19)
C12B0.102 (4)0.074 (3)0.071 (3)0.031 (3)0.030 (3)0.024 (3)
C13B0.166 (6)0.111 (4)0.080 (4)0.051 (4)0.069 (4)0.038 (3)
C14B0.143 (5)0.117 (5)0.058 (3)0.045 (4)0.038 (3)0.014 (3)
C15B0.129 (5)0.094 (4)0.087 (4)0.057 (4)0.037 (4)0.006 (3)
C16B0.118 (4)0.076 (3)0.072 (3)0.043 (3)0.027 (3)0.020 (3)
N1A0.065 (2)0.053 (2)0.0495 (19)0.0166 (17)0.0179 (16)0.0186 (16)
N2A0.0588 (19)0.0508 (19)0.0436 (17)0.0186 (15)0.0152 (15)0.0112 (15)
N1B0.056 (2)0.062 (2)0.0442 (19)0.0158 (17)0.0111 (16)0.0128 (16)
N2B0.057 (2)0.0558 (19)0.0431 (18)0.0065 (16)0.0137 (16)0.0110 (15)
O2A0.102 (2)0.0593 (17)0.0655 (18)0.0327 (16)0.0270 (17)0.0270 (15)
O2B0.069 (2)0.090 (2)0.0521 (17)0.0147 (17)0.0034 (15)0.0073 (15)
S1A0.0728 (7)0.0585 (6)0.0632 (7)0.0220 (5)0.0257 (5)0.0177 (5)
S1B0.0715 (7)0.0613 (6)0.0449 (6)0.0107 (5)0.0108 (5)0.0137 (5)
C1A0.116 (6)0.122 (8)0.074 (4)0.049 (5)0.048 (4)0.038 (5)
C2A0.105 (5)0.108 (5)0.055 (4)0.043 (4)0.026 (4)0.033 (3)
O1A0.089 (6)0.097 (4)0.063 (3)0.015 (4)0.035 (3)0.028 (3)
C1A'0.37 (14)0.12 (7)0.25 (10)0.10 (7)0.26 (10)0.10 (7)
C2A'0.07 (3)0.13 (5)0.18 (7)0.02 (3)0.02 (3)0.09 (5)
O1A'0.045 (19)0.21 (5)0.08 (3)0.02 (2)0.023 (16)0.07 (3)
C1B0.198 (18)0.169 (17)0.119 (15)0.052 (15)0.111 (12)0.069 (13)
C2B0.073 (5)0.119 (8)0.111 (8)0.030 (5)0.037 (5)0.064 (7)
O1B0.096 (4)0.102 (5)0.099 (6)0.044 (4)0.051 (4)0.049 (5)
O1B'0.082 (9)0.060 (8)0.080 (9)0.018 (7)0.049 (7)0.024 (7)
C1B'0.046 (12)0.14 (3)0.07 (2)0.018 (15)0.013 (12)0.027 (18)
C2B'0.065 (12)0.089 (14)0.069 (12)0.032 (10)0.020 (9)0.019 (10)
Geometric parameters (Å, º) top
C3A—C4A1.346 (6)C5B—H5B0.9300
C3A—C8A1.373 (6)C6B—C7B1.366 (5)
C3A—O1A1.381 (6)C6B—N1B1.421 (5)
C3A—O1A'1.383 (19)C7B—C8B1.379 (6)
C4A—C5A1.366 (5)C7B—H7B0.9300
C4A—H4A0.9300C8B—H8B0.9300
C5A—C6A1.370 (5)C9B—N1B1.328 (5)
C5A—H5A0.9300C9B—N2B1.382 (5)
C6A—C7A1.364 (5)C9B—S1B1.661 (4)
C6A—N1A1.423 (5)C10B—O2B1.217 (5)
C7A—C8A1.384 (6)C10B—N2B1.371 (5)
C7A—H7A0.9300C10B—C11B1.502 (5)
C8A—H8A0.9300C11B—C12B1.494 (6)
C9A—N1A1.326 (5)C11B—C16B1.512 (6)
C9A—N2A1.387 (4)C11B—H11B0.9800
C9A—S1A1.659 (4)C12B—C13B1.510 (6)
C10A—O2A1.216 (4)C12B—H12E0.9700
C10A—N2A1.366 (5)C12B—H12F0.9700
C10A—C11'1.482 (17)C13B—C14B1.505 (7)
C10A—C11A1.508 (6)C13B—H13E0.9700
C11A—C16A1.479 (8)C13B—H13F0.9700
C11A—C12A1.497 (7)C14B—C15B1.479 (8)
C11A—H11A0.9800C14B—H14E0.9700
C12A—C13A1.510 (7)C14B—H14F0.9700
C12A—H12A0.9700C15B—C16B1.519 (7)
C12A—H12B0.9700C15B—H15E0.9700
C13A—C14A1.482 (11)C15B—H15F0.9700
C13A—H13A0.9700C16B—H16E0.9700
C13A—H13B0.9700C16B—H16F0.9700
C14A—C15A1.506 (12)N1A—H10.871 (19)
C14A—H14A0.9700N2A—H20.85 (2)
C14A—H14B0.9700N1B—H30.855 (19)
C15A—C16A1.599 (9)N2B—H40.841 (18)
C15A—H15A0.9700C1A—C2A1.493 (9)
C15A—H15B0.9700C1A—H1A0.9600
C16A—H16A0.9700C1A—H1B0.9600
C16A—H16B0.9700C1A—H1C0.9600
C11'—C16'1.402 (18)C2A—O1A1.404 (7)
C11'—C12'1.485 (19)C2A—H2A0.9700
C11'—H11'0.9800C2A—H2B0.9700
C12'—C13'1.555 (19)C1A'—C2A'1.49 (2)
C12'—H12C0.9700C1A'—H1'10.9600
C12'—H12D0.9700C1A'—H1'20.9600
C13'—C14'1.53 (2)C1A'—H1'30.9600
C13'—H13C0.9700C2A'—O1A'1.40 (2)
C13'—H13D0.9700C2A'—H2'10.9700
C14'—C15'1.51 (2)C2A'—H2'20.9700
C14'—H14C0.9700C1B—C2B1.515 (17)
C14'—H14D0.9700C1B—H1D0.9600
C15'—C16'1.505 (19)C1B—H1E0.9600
C15'—H15C0.9700C1B—H1F0.9600
C15'—H15D0.9700C2B—O1B1.408 (9)
C16'—H16C0.9700C2B—H2D0.9700
C16'—H16D0.9700C2B—H2E0.9700
C3B—C4B1.369 (7)O1B'—C2B'1.426 (15)
C3B—C8B1.370 (7)C1B'—C2B'1.51 (2)
C3B—O1B1.403 (7)C1B'—H1G0.9600
C3B—O1B'1.448 (12)C1B'—H1H0.9600
C4B—C5B1.358 (6)C1B'—H1I0.9600
C4B—H4B0.9300C2B'—H2F0.9700
C5B—C6B1.373 (5)C2B'—H2G0.9700
C4A—C3A—C8A119.7 (4)C5B—C6B—N1B121.8 (4)
C4A—C3A—O1A114.8 (4)C6B—C7B—C8B120.2 (4)
C8A—C3A—O1A125.5 (5)C6B—C7B—H7B119.9
C4A—C3A—O1A'147.5 (17)C8B—C7B—H7B119.9
C8A—C3A—O1A'92.4 (16)C3B—C8B—C7B119.7 (5)
C3A—C4A—C5A120.5 (4)C3B—C8B—H8B120.2
C3A—C4A—H4A119.7C7B—C8B—H8B120.2
C5A—C4A—H4A119.7N1B—C9B—N2B115.7 (3)
C4A—C5A—C6A120.9 (4)N1B—C9B—S1B126.3 (3)
C4A—C5A—H5A119.6N2B—C9B—S1B117.9 (3)
C6A—C5A—H5A119.6O2B—C10B—N2B121.7 (4)
C7A—C6A—C5A118.8 (4)O2B—C10B—C11B123.5 (3)
C7A—C6A—N1A123.6 (3)N2B—C10B—C11B114.7 (4)
C5A—C6A—N1A117.5 (3)C12B—C11B—C10B110.1 (4)
C6A—C7A—C8A120.1 (4)C12B—C11B—C16B111.5 (4)
C6A—C7A—H7A119.9C10B—C11B—C16B111.7 (4)
C8A—C7A—H7A119.9C12B—C11B—H11B107.8
C3A—C8A—C7A119.9 (4)C10B—C11B—H11B107.8
C3A—C8A—H8A120.1C16B—C11B—H11B107.8
C7A—C8A—H8A120.1C11B—C12B—C13B112.0 (4)
N1A—C9A—N2A115.5 (3)C11B—C12B—H12E109.2
N1A—C9A—S1A126.3 (3)C13B—C12B—H12E109.2
N2A—C9A—S1A118.2 (3)C11B—C12B—H12F109.2
O2A—C10A—N2A122.9 (4)C13B—C12B—H12F109.2
O2A—C10A—C11'123 (2)H12E—C12B—H12F107.9
N2A—C10A—C11'112 (2)C14B—C13B—C12B110.8 (5)
O2A—C10A—C11A122.2 (4)C14B—C13B—H13E109.5
N2A—C10A—C11A114.9 (4)C12B—C13B—H13E109.5
C16A—C11A—C12A109.2 (6)C14B—C13B—H13F109.5
C16A—C11A—C10A108.1 (5)C12B—C13B—H13F109.5
C12A—C11A—C10A112.5 (5)H13E—C13B—H13F108.1
C16A—C11A—H11A109.0C15B—C14B—C13B112.1 (5)
C12A—C11A—H11A109.0C15B—C14B—H14E109.2
C10A—C11A—H11A109.0C13B—C14B—H14E109.2
C11A—C12A—C13A111.3 (5)C15B—C14B—H14F109.2
C11A—C12A—H12A109.4C13B—C14B—H14F109.2
C13A—C12A—H12A109.4H14E—C14B—H14F107.9
C11A—C12A—H12B109.4C14B—C15B—C16B112.7 (5)
C13A—C12A—H12B109.4C14B—C15B—H15E109.1
H12A—C12A—H12B108.0C16B—C15B—H15E109.1
C14A—C13A—C12A110.6 (7)C14B—C15B—H15F109.1
C14A—C13A—H13A109.5C16B—C15B—H15F109.1
C12A—C13A—H13A109.5H15E—C15B—H15F107.8
C14A—C13A—H13B109.5C11B—C16B—C15B110.6 (4)
C12A—C13A—H13B109.5C11B—C16B—H16E109.5
H13A—C13A—H13B108.1C15B—C16B—H16E109.5
C13A—C14A—C15A110.8 (7)C11B—C16B—H16F109.5
C13A—C14A—H14A109.5C15B—C16B—H16F109.5
C15A—C14A—H14A109.5H16E—C16B—H16F108.1
C13A—C14A—H14B109.5C9A—N1A—C6A127.3 (3)
C15A—C14A—H14B109.5C9A—N1A—H1115 (3)
H14A—C14A—H14B108.1C6A—N1A—H1118 (3)
C14A—C15A—C16A106.3 (10)C10A—N2A—C9A128.4 (3)
C14A—C15A—H15A110.5C10A—N2A—H2138 (3)
C16A—C15A—H15A110.5C9A—N2A—H293 (2)
C14A—C15A—H15B110.5C9B—N1B—C6B125.7 (3)
C16A—C15A—H15B110.5C9B—N1B—H3113 (3)
H15A—C15A—H15B108.7C6B—N1B—H3120 (3)
C11A—C16A—C15A107.4 (7)C10B—N2B—C9B129.1 (3)
C11A—C16A—H16A110.2C10B—N2B—H4119 (3)
C15A—C16A—H16A110.2C9B—N2B—H4112 (3)
C11A—C16A—H16B110.2C2A—C1A—H1A109.5
C15A—C16A—H16B110.2C2A—C1A—H1B109.5
H16A—C16A—H16B108.5H1A—C1A—H1B109.5
C16'—C11'—C10A146 (3)C2A—C1A—H1C109.5
C16'—C11'—C12'108 (2)H1A—C1A—H1C109.5
C10A—C11'—C12'104.1 (17)H1B—C1A—H1C109.5
C16'—C11'—H11'94.8O1A—C2A—C1A107.2 (7)
C10A—C11'—H11'94.8O1A—C2A—H2A110.3
C12'—C11'—H11'94.8C1A—C2A—H2A110.3
C11'—C12'—C13'106 (2)O1A—C2A—H2B110.3
C11'—C12'—H12C110.6C1A—C2A—H2B110.3
C13'—C12'—H12C110.6H2A—C2A—H2B108.5
C11'—C12'—H12D110.6C3A—O1A—C2A118.4 (6)
C13'—C12'—H12D110.6C2A'—C1A'—H1'1109.5
H12C—C12'—H12D108.8C2A'—C1A'—H1'2109.5
C14'—C13'—C12'116 (4)H1'1—C1A'—H1'2109.5
C14'—C13'—H13C108.3C2A'—C1A'—H1'3109.5
C12'—C13'—H13C108.3H1'1—C1A'—H1'3109.5
C14'—C13'—H13D108.3H1'2—C1A'—H1'3109.5
C12'—C13'—H13D108.3O1A'—C2A'—C1A'117 (5)
H13C—C13'—H13D107.4O1A'—C2A'—H2'1108.1
C15'—C14'—C13'110 (3)C1A'—C2A'—H2'1108.0
C15'—C14'—H14C109.6O1A'—C2A'—H2'2108.0
C13'—C14'—H14C109.6C1A'—C2A'—H2'2108.1
C15'—C14'—H14D109.6H2'1—C2A'—H2'2107.3
C13'—C14'—H14D109.6C3A—O1A'—C2A'105 (4)
H14C—C14'—H14D108.1C2B—C1B—H1D109.5
C16'—C15'—C14'102 (3)C2B—C1B—H1E109.5
C16'—C15'—H15C111.4H1D—C1B—H1E109.5
C14'—C15'—H15C111.4C2B—C1B—H1F109.5
C16'—C15'—H15D111.4H1D—C1B—H1F109.5
C14'—C15'—H15D111.4H1E—C1B—H1F109.5
H15C—C15'—H15D109.2O1B—C2B—C1B104.7 (14)
C11'—C16'—C15'127 (3)O1B—C2B—H2D110.8
C11'—C16'—H16C105.6C1B—C2B—H2D110.8
C15'—C16'—H16C105.6O1B—C2B—H2E110.8
C11'—C16'—H16D105.6C1B—C2B—H2E110.8
C15'—C16'—H16D105.5H2D—C2B—H2E108.9
H16C—C16'—H16D106.1C3B—O1B—C2B111.4 (8)
C4B—C3B—C8B119.7 (4)C2B'—O1B'—C3B106.7 (14)
C4B—C3B—O1B106.5 (6)C2B'—C1B'—H1G109.5
C8B—C3B—O1B133.8 (6)C2B'—C1B'—H1H109.5
C4B—C3B—O1B'145.2 (7)H1G—C1B'—H1H109.5
C8B—C3B—O1B'95.1 (6)C2B'—C1B'—H1I109.5
C5B—C4B—C3B120.5 (5)H1G—C1B'—H1I109.5
C5B—C4B—H4B119.7H1H—C1B'—H1I109.5
C3B—C4B—H4B119.7O1B'—C2B'—C1B'109 (3)
C4B—C5B—C6B120.2 (4)O1B'—C2B'—H2F109.8
C4B—C5B—H5B119.9C1B'—C2B'—H2F109.8
C6B—C5B—H5B119.9O1B'—C2B'—H2G109.8
C7B—C6B—C5B119.6 (4)C1B'—C2B'—H2G109.8
C7B—C6B—N1B118.5 (4)H2F—C2B'—H2G108.3
C8A—C3A—C4A—C5A0.7 (7)O1B—C3B—C8B—C7B174.8 (6)
O1A—C3A—C4A—C5A178.3 (5)O1B'—C3B—C8B—C7B178.5 (7)
O1A'—C3A—C4A—C5A171 (4)C6B—C7B—C8B—C3B0.5 (7)
C3A—C4A—C5A—C6A0.4 (7)O2B—C10B—C11B—C12B86.4 (5)
C4A—C5A—C6A—C7A1.6 (7)N2B—C10B—C11B—C12B92.4 (5)
C4A—C5A—C6A—N1A178.7 (4)O2B—C10B—C11B—C16B38.1 (6)
C5A—C6A—C7A—C8A1.7 (7)N2B—C10B—C11B—C16B143.2 (4)
N1A—C6A—C7A—C8A178.6 (4)C10B—C11B—C12B—C13B180.0 (4)
C4A—C3A—C8A—C7A0.6 (8)C16B—C11B—C12B—C13B55.4 (6)
O1A—C3A—C8A—C7A178.2 (5)C11B—C12B—C13B—C14B54.8 (7)
O1A'—C3A—C8A—C7A175 (2)C12B—C13B—C14B—C15B54.1 (8)
C6A—C7A—C8A—C3A0.6 (8)C13B—C14B—C15B—C16B54.3 (7)
O2A—C10A—C11A—C16A73.2 (7)C12B—C11B—C16B—C15B53.8 (6)
N2A—C10A—C11A—C16A108.9 (7)C10B—C11B—C16B—C15B177.5 (4)
O2A—C10A—C11A—C12A47.5 (8)C14B—C15B—C16B—C11B53.7 (7)
N2A—C10A—C11A—C12A130.4 (6)N2A—C9A—N1A—C6A178.0 (3)
C16A—C11A—C12A—C13A59.9 (9)S1A—C9A—N1A—C6A0.3 (6)
C10A—C11A—C12A—C13A180.0 (6)C7A—C6A—N1A—C9A47.9 (6)
C11A—C12A—C13A—C14A56.1 (10)C5A—C6A—N1A—C9A135.1 (4)
C12A—C13A—C14A—C15A58.2 (13)O2A—C10A—N2A—C9A4.3 (7)
C13A—C14A—C15A—C16A61.0 (13)C11'—C10A—N2A—C9A168.6 (14)
C12A—C11A—C16A—C15A63.0 (11)C11A—C10A—N2A—C9A173.6 (4)
C10A—C11A—C16A—C15A174.2 (8)N1A—C9A—N2A—C10A4.1 (6)
C14A—C15A—C16A—C11A63.5 (11)S1A—C9A—N2A—C10A174.4 (3)
O2A—C10A—C11'—C16'63 (7)N2B—C9B—N1B—C6B175.4 (3)
N2A—C10A—C11'—C16'101 (7)S1B—C9B—N1B—C6B2.4 (6)
O2A—C10A—C11'—C12'95 (3)C7B—C6B—N1B—C9B128.5 (4)
N2A—C10A—C11'—C12'101 (3)C5B—C6B—N1B—C9B53.5 (6)
C16'—C11'—C12'—C13'14 (5)O2B—C10B—N2B—C9B9.1 (7)
C10A—C11'—C12'—C13'179 (3)C11B—C10B—N2B—C9B172.1 (4)
C11'—C12'—C13'—C14'63 (5)N1B—C9B—N2B—C10B8.7 (6)
C12'—C13'—C14'—C15'52 (6)S1B—C9B—N2B—C10B169.2 (3)
C13'—C14'—C15'—C16'4 (5)C4A—C3A—O1A—C2A173.4 (6)
C10A—C11'—C16'—C15'105 (7)C8A—C3A—O1A—C2A5.5 (10)
C12'—C11'—C16'—C15'52 (6)C1A—C2A—O1A—C3A174.4 (6)
C14'—C15'—C16'—C11'63 (5)C4A—C3A—O1A'—C2A'19 (7)
C8B—C3B—C4B—C5B2.8 (8)C8A—C3A—O1A'—C2A'170 (4)
O1B—C3B—C4B—C5B175.7 (5)C1A'—C2A'—O1A'—C3A178 (6)
O1B'—C3B—C4B—C5B179.8 (12)C4B—C3B—O1B—C2B174.2 (6)
C3B—C4B—C5B—C6B0.5 (7)C8B—C3B—O1B—C2B4.0 (10)
C4B—C5B—C6B—C7B3.2 (7)C1B—C2B—O1B—C3B173.5 (11)
C4B—C5B—C6B—N1B178.8 (4)C4B—C3B—O1B'—C2B'5 (2)
C5B—C6B—C7B—C8B2.7 (7)C8B—C3B—O1B'—C2B'177.8 (11)
N1B—C6B—C7B—C8B179.2 (4)C3B—O1B'—C2B'—C1B'172.4 (19)
C4B—C3B—C8B—C7B3.2 (8)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C3A–C8A ring.
D—H···AD—HH···AD···AD—H···A
C2B—H2D···O2Bi0.972.573.264 (10)128
N1B—H3···O2B0.86 (2)1.91 (3)2.641 (4)142 (4)
N1A—H1···O2A0.87 (2)1.90 (3)2.628 (4)140 (4)
N2B—H4···S1Aii0.84 (2)2.68 (2)3.469 (3)157 (3)
N2A—H2···S1Biii0.85 (2)2.73 (3)3.430 (3)140 (3)
C12—H12C···Cg1iv0.902.49 (2)3.42 (1)159
Symmetry codes: (i) x1, y+2, z; (ii) x, y, z1; (iii) x, y, z+1; (iv) x+1, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C3A–C8A ring.
D—H···AD—HH···AD···AD—H···A
C2B—H2D···O2Bi0.972.573.264 (10)128.2
N1B—H3···O2B0.855 (19)1.91 (3)2.641 (4)142 (4)
N1A—H1···O2A0.871 (19)1.90 (3)2.628 (4)140 (4)
N2B—H4···S1Aii0.841 (18)2.68 (2)3.469 (3)157 (3)
N2A—H2···S1Biii0.85 (2)2.73 (3)3.430 (3)140 (3)
C12'—H12C···Cg1iv0.902.49 (2)3.42 (1)159
Symmetry codes: (i) x1, y+2, z; (ii) x, y, z1; (iii) x, y, z+1; (iv) x+1, y+1, z+2.
 

Acknowledgements

The authors thank Dr Babu Varghese, SAIF, IIT, Chennai, India, for the data collection.

References

First citationBruker (2004). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGangadharan, R., Haribabu, J., Karvembu, R. & Sethusankar, K. (2015). Acta Cryst. E71, 305–308.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHu, J.-H., Luo, Z.-Y., Ding, C.-F. & Song, X.-L. (2011). Acta Cryst. E67, o376.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShen, C. B., Wang, S. G., Yang, H. Y., Long, K. & Wang, F. H. (2006). Corros. Sci. 48, 1655–1665.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, C., Huang, H., Feng, M., Shi, X., Zhang, X. & Zhou, P. (2006). Bioorg. Med. Chem. Lett. 16, 162–166.  Web of Science CrossRef PubMed CAS Google Scholar
First citationVimala, G., Haribabu, J., Aishwarya, S., Karvembu, R. & SubbiahPandi, A. (2015). Acta Cryst. E71, o508–o509.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds