organic compounds
Crystal and molecular structure of aflatrem
aDepartment of Chemistry, Higher Teacher Training College, University of Yaoundé 1, PO Box 47, Yaoundé, Cameroon, bDepartment of Organic Chemistry, University of Yaoundé 1, PO Box 812, Yaoundé, Cameroon, cDepartment of Inorganic Chemistry, University of Yaoundé 1, PO Box 812, Yaoundé, Cameroon, and dDepartment of Chemistry, University of Bielefeld, PO Box 100131, 33501 Bielefeld, Germany
*Correspondence e-mail: lentabruno@yahoo.fr
The 32H39NO4, confirms the of the seven chiral centres in the molecule. The molecule has a 1,1-dimethylprop-2-enyl substituent on the indole nucleus and this nucleus shares one edge with the five-membered ring which is, in turn, connected to a sequence of three edge-shared fused rings. The skeleton is completed by the 7,7-trimethyl-6,8-dioxabicyclo[3.2.1]oct-3-en-2-one group connected to the terminal cyclohexene ring. The two cyclohexane rings adopt chair and half-chair conformations, while in the dioxabicyclo[3.2.1]oct-3-en-2-one unit, the six-membered ring has a half-chair conformation. The indole system of the molecule exhibits a tilt of 2.02 (1)° between its two rings. In the crystal, O—H⋯O hydrogen bonds connect molecules into chains along [010]. Weak N—H⋯π interactions connect these chains, forming sheets parallel to (10-1).
of the title compound, CKeywords: crystal structure; aflatrem; indole-diterpenoid; fungal endophytes; Aspergillus species; N—H⋯Cg (indole); hydrogen bonding.
CCDC reference: 1430332
1. Related literature
For background to indole ); Munday-Finch et al. (1996); Gallagher et al. (1980a,b); Lenta et al. (2007); Phongpaichit et al. (2007). For studies of Aspergillus sp, see: Nicholson et al. (2009); Duran et al. (2006). For the pharmacological basis of the behavioural effects of this molecule, see: Tinao-Wooldridge et al. (1995). For the isolation of fungal endophytes from the stem of Symphonia globulifera, see: Petrini et al. (1992); Amin et al. (2014). For geometric details of indole compounds, see: Krishna et al. (1999). For experiments on the title compound, see: Sun et al. (2014). For information on the Cambridge Structural Database (CSD), see: Groom & Allen (2014).
from endophytes, see: Strobel & Daisy (20032. Experimental
2.1. Crystal data
|
|
Data collection: CrysAlis PRO (Agilent, 2013); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).
Supporting information
CCDC reference: 1430332
https://doi.org/10.1107/S2056989015019040/lh5789sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989015019040/lh5789Isup2.hkl
The isolation of fungal endophytes from the stem of Symphonia globulifera was carried out aat the University of Yaoundé 1 (Cameroon) and was based on the method described by Petrini et al. (1992). One of the fungi was identified to Aspergillus sp. according to the method described by Amin et al. (2014) and cultured in solid medium prepared from 1 kg of rice distributed in the glass flask (total capacity of 2.5 L) at a rate of 200 g of rice in 200 ml of distilled water. After one month of incubation at 301K in the same laboratory, the culture medium was extracted with EtOAc and the extract concentrated on a rotary evaporator under vacuum at a temperature of 313K to yield 20.1 g of extract. This extract was subjected to
(CC) over silica gel (0.023–0.20 mesh, Merck) and eluted with a gradient system of petroleum ether /ethyl acetate to afford aflatrem (7.5 mg). The colourless crystals obtained were sent to the Laboratory of Inorganic and Structural Chemistry at Bielefeld University (Germany) for X-ray diffraction measurements.H atoms were placed in calculated positions with C–H = 0.93-0.98Å, N—H = 0.86Å and O—H = 0.82Å. They were included in calculated positions with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(Cmethyl,O).
The search of compounds from plant endophytes has been the subject of research interest (Strobel & Daisy 2003). They produce a plethora of substances with potential applications in agriculture, medicine, pharmaceutical and for industry (Petrini et al. 1992; Strobel & Daisy, 2003; Phongpaichit et al., 2007). We are interested in the isolation and the structural study of compounds produced by endophytes from Cameroonian medicinal plants with pharmacological properties (Lenta et al., 2007) and one of the compounds that we have isolated from the fungal endophyte of the stem of Symphonia globulifera was aflatrem. Some authors have identified the biosynthetic genes of this molecule in Aspergilius sp (Nicholson et al., 2009; Duran et al., 2006). We report herein the study of its molecular and crystal structure.
Aflatrem crystallizes in the non-centrosymmetric α X-radiation with the being refined to 0.09 (14) and this configuration is in agreement with the previous assignment reported by Sun et al. (2014).
P21 and its consists of a single molecule as shown in Figure 1. As known in the literature, the molecule has a 1,l-dimethyl-2-propenyl substituent on the indole nucleus at position C18 and this nucleus shares one edge with the 5-membered ring (A) belonging to a group of three fused rings like an anthracene system (see Fig.1). The two others rings (6-membered, B and C) also share one edge with the 7, 7-trimethyl-6,8- dioxabicyclo[3.2.1]oct-3-en-2-one group. All the bond distances observed in the compounds are in agreement with the bonds distance of the Cambridge Structural Database (CSD, Groom & Allen, 2014). In the indole ring system, a small tilt of 2.02 (1)° is observed between the 6 and 5-membered rings. This value as well as the values of the bond angles is near the values always obtained in the indole based compounds (Krishna et al., 1999). The ring A (C1/C16/C15/C14/C2) adopts a dihedral angle of 3.12 (1)° with the 5-membered ring of indole system. With the exception of the C1–C2–C14 angle (96.9 (1)°),the values of the bond angles in this ring are in the range between 100 and 112° and they are in good agreement with the ideal conformation for which the angle is 107°. The lower value observed could be favored by the chair conformation of the B ring which shares one edge (C2 and C14) with ring A. This conformation is close to the ideal chair conformation since the bond angles range from 107 to 113° compared to an ideal value of 109°. The ring C assumes a half-chair conformation. The bicyclo[3.2.1]oct-3-en-2-one system is composed by a 6-membered ring named D (C6/C10/C9/C8/C7/O1) sharing one edge (C6 –C7) with a 5-membered ring called E (O1/C7/C6/O2/C25). The carbon atoms of ring D lie in the same plane and the O1 atom is located at 0.80 (1) Å from this plane. This atom is also located at 0.656 (1) Å from the plane which contains the carbon atoms of ring E and the dihedral angle between the two planes is 69.07 (1)°. The methyl and hydroxyl groups linked to the fused ring give the of 1S,3R,6S,7S,11R,12S,13S determined by Cu KThe crystal packing of the aflatrem molecules is illustrated in Figs. 2 and 3. In the crystal, molecules are connected along the b axis via O—H···O hydrogen bonds. In addition, weak N—H···π(indole) interactions connect these chains forming planes parallel to (10-1). This N—H···π(indole) interaction is typical of indole-based molecules as reported by Krishna et al. (1999).
For background to indole
from endophytes, see: Strobel & Daisy (2003); Munday-Finch et al. (1996); Gallagher et al. (1980a,b); Lenta et al. (2007); Phongpaichit et al. (2007). For studies of Aspergillus sp, see: Nicholson et al. (2009); Duran et al. (2006). For the pharmacological basis of the behavioural effects of this molecule, see: Tinao-Wooldridge et al. (1995). For the isolation of fungal endophytes from the stem of Symphonia globulifera, see: Petrini et al. (1992); Amin et al. (2014). For geometric details of indole compounds, see: Krishna et al. (1999). For experiments on the title compound, see: Sun et al. (2014). For information on the Cambridge Structural Database (CSD), see: Groom & Allen (2014).Data collection: CrysAlis PRO (Agilent, 2013); cell
CrysAlis PRO (Agilent, 2013); data reduction: CrysAlis PRO (Agilent, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).C32H39NO4 | F(000) = 540 |
Mr = 501.64 | Dx = 1.289 Mg m−3 |
Monoclinic, P21 | Cu Kα radiation, λ = 1.5418 Å |
a = 12.8022 (5) Å | Cell parameters from 6775 reflections |
b = 6.4019 (2) Å | θ = 4.8–66.4° |
c = 15.9557 (6) Å | µ = 0.66 mm−1 |
β = 98.821 (4)° | T = 100 K |
V = 1292.24 (9) Å3 | Plate, colourless |
Z = 2 | 0.18 × 0.14 × 0.02 mm |
Agilent SuperNova Dual Source diffractometer with an Atlas detector | 4585 independent reflections |
Radiation source: SuperNova (Cu) X-ray Source | 4078 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.050 |
Detector resolution: 5.3114 pixels mm-1 | θmax = 66.9°, θmin = 2.8° |
ω scans | h = −15→15 |
Absorption correction: gaussian (CrysAlis PRO; Agilent, 2013) | k = −7→7 |
Tmin = 0.899, Tmax = 1.000 | l = −18→18 |
19981 measured reflections |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.056 | w = 1/[σ2(Fo2) + (0.0948P)2 + 0.4383P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.150 | (Δ/σ)max < 0.001 |
S = 1.06 | Δρmax = 0.35 e Å−3 |
4585 reflections | Δρmin = −0.23 e Å−3 |
341 parameters | Absolute structure: Flack x determined using 1671 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons & Flack, 2004) |
1 restraint | Absolute structure parameter: 0.09 (14) |
Primary atom site location: structure-invariant direct methods |
C32H39NO4 | V = 1292.24 (9) Å3 |
Mr = 501.64 | Z = 2 |
Monoclinic, P21 | Cu Kα radiation |
a = 12.8022 (5) Å | µ = 0.66 mm−1 |
b = 6.4019 (2) Å | T = 100 K |
c = 15.9557 (6) Å | 0.18 × 0.14 × 0.02 mm |
β = 98.821 (4)° |
Agilent SuperNova Dual Source diffractometer with an Atlas detector | 4585 independent reflections |
Absorption correction: gaussian (CrysAlis PRO; Agilent, 2013) | 4078 reflections with I > 2σ(I) |
Tmin = 0.899, Tmax = 1.000 | Rint = 0.050 |
19981 measured reflections |
R[F2 > 2σ(F2)] = 0.056 | H-atom parameters constrained |
wR(F2) = 0.150 | Δρmax = 0.35 e Å−3 |
S = 1.06 | Δρmin = −0.23 e Å−3 |
4585 reflections | Absolute structure: Flack x determined using 1671 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons & Flack, 2004) |
341 parameters | Absolute structure parameter: 0.09 (14) |
1 restraint |
Experimental. Numerical absorption correction based on gaussian integration over a multifaceted crystal model |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.77480 (17) | 0.1640 (3) | 1.04104 (13) | 0.0330 (5) | |
O2 | 0.64687 (16) | 0.3772 (3) | 0.97693 (13) | 0.0307 (5) | |
O3 | 0.88440 (18) | 0.5994 (4) | 1.15707 (14) | 0.0414 (6) | |
O4 | 0.91050 (17) | 0.2056 (3) | 0.85758 (13) | 0.0316 (5) | |
H4 | 0.9698 | 0.2203 | 0.8449 | 0.047* | |
N1 | 0.61755 (19) | 0.3716 (4) | 0.58123 (15) | 0.0267 (5) | |
H1 | 0.5782 | 0.2885 | 0.6050 | 0.032* | |
C1 | 0.7110 (2) | 0.4610 (4) | 0.61906 (19) | 0.0260 (6) | |
C2 | 0.7906 (2) | 0.4099 (4) | 0.69719 (18) | 0.0252 (6) | |
C3 | 0.7579 (2) | 0.4000 (5) | 0.78767 (18) | 0.0264 (6) | |
C4 | 0.6942 (2) | 0.1981 (4) | 0.80235 (19) | 0.0279 (6) | |
H4A | 0.6195 | 0.2288 | 0.7870 | 0.033* | |
H4B | 0.7117 | 0.0912 | 0.7637 | 0.033* | |
C5 | 0.7119 (2) | 0.1065 (5) | 0.89279 (19) | 0.0301 (6) | |
H5A | 0.6482 | 0.0338 | 0.9021 | 0.036* | |
H5B | 0.7684 | 0.0044 | 0.8968 | 0.036* | |
C6 | 0.7394 (2) | 0.2648 (5) | 0.96202 (19) | 0.0293 (7) | |
C7 | 0.7658 (3) | 0.3273 (5) | 1.10039 (19) | 0.0327 (7) | |
H7 | 0.7714 | 0.2729 | 1.1583 | 0.039* | |
C8 | 0.8486 (2) | 0.4967 (5) | 1.0940 (2) | 0.0338 (7) | |
C9 | 0.8771 (2) | 0.5268 (5) | 1.0107 (2) | 0.0328 (7) | |
H9 | 0.9297 | 0.6218 | 1.0028 | 0.039* | |
C10 | 0.8270 (2) | 0.4165 (5) | 0.94420 (19) | 0.0287 (6) | |
C11 | 0.8592 (2) | 0.4071 (5) | 0.85721 (18) | 0.0270 (6) | |
C12 | 0.9380 (2) | 0.5804 (5) | 0.8432 (2) | 0.0316 (7) | |
H12A | 0.9080 | 0.7144 | 0.8551 | 0.038* | |
H12B | 1.0022 | 0.5614 | 0.8834 | 0.038* | |
C13 | 0.9661 (2) | 0.5851 (5) | 0.75408 (19) | 0.0326 (7) | |
H13A | 1.0117 | 0.7032 | 0.7477 | 0.039* | |
H13B | 1.0029 | 0.4580 | 0.7430 | 0.039* | |
C14 | 0.8634 (2) | 0.6041 (5) | 0.69266 (19) | 0.0277 (6) | |
H14 | 0.8256 | 0.7216 | 0.7135 | 0.033* | |
C15 | 0.8636 (2) | 0.6488 (5) | 0.59791 (19) | 0.0313 (7) | |
H15A | 0.8759 | 0.7955 | 0.5876 | 0.038* | |
H15B | 0.9157 | 0.5649 | 0.5751 | 0.038* | |
C16 | 0.7522 (2) | 0.5841 (4) | 0.56234 (19) | 0.0276 (6) | |
C17 | 0.6812 (2) | 0.5766 (4) | 0.48313 (18) | 0.0262 (6) | |
C18 | 0.6770 (2) | 0.6725 (4) | 0.40181 (18) | 0.0267 (6) | |
C19 | 0.5951 (2) | 0.6126 (5) | 0.33970 (19) | 0.0310 (7) | |
H19 | 0.5918 | 0.6687 | 0.2856 | 0.037* | |
C20 | 0.5165 (2) | 0.4704 (5) | 0.35503 (19) | 0.0308 (7) | |
H20 | 0.4644 | 0.4318 | 0.3105 | 0.037* | |
C21 | 0.5147 (2) | 0.3863 (5) | 0.43453 (19) | 0.0279 (6) | |
H21 | 0.4605 | 0.2986 | 0.4455 | 0.033* | |
C22 | 0.5987 (2) | 0.4402 (4) | 0.49762 (18) | 0.0262 (6) | |
C23 | 0.8453 (3) | 0.2072 (5) | 0.6718 (2) | 0.0308 (7) | |
H23A | 0.7937 | 0.0983 | 0.6598 | 0.046* | |
H23B | 0.8987 | 0.1648 | 0.7176 | 0.046* | |
H23C | 0.8774 | 0.2338 | 0.6223 | 0.046* | |
C24 | 0.6862 (2) | 0.5888 (4) | 0.80049 (19) | 0.0281 (6) | |
H24A | 0.7270 | 0.7150 | 0.8035 | 0.042* | |
H24B | 0.6576 | 0.5712 | 0.8523 | 0.042* | |
H24C | 0.6294 | 0.5971 | 0.7537 | 0.042* | |
C25 | 0.6530 (2) | 0.4108 (6) | 1.06813 (19) | 0.0336 (7) | |
C26 | 0.6353 (3) | 0.6379 (5) | 1.0847 (2) | 0.0384 (8) | |
H26A | 0.6817 | 0.7211 | 1.0565 | 0.058* | |
H26B | 0.6497 | 0.6639 | 1.1447 | 0.058* | |
H26C | 0.5633 | 0.6738 | 1.0637 | 0.058* | |
C27 | 0.5722 (3) | 0.2731 (6) | 1.1015 (2) | 0.0376 (8) | |
H27A | 0.5028 | 0.3075 | 1.0731 | 0.056* | |
H27B | 0.5757 | 0.2954 | 1.1614 | 0.056* | |
H27C | 0.5872 | 0.1292 | 1.0912 | 0.056* | |
C28 | 0.7593 (2) | 0.8372 (4) | 0.38782 (18) | 0.0295 (7) | |
C29 | 0.7411 (3) | 0.9297 (5) | 0.2981 (2) | 0.0381 (8) | |
H29A | 0.7483 | 0.8217 | 0.2576 | 0.057* | |
H29B | 0.7924 | 1.0372 | 0.2940 | 0.057* | |
H29C | 0.6714 | 0.9881 | 0.2866 | 0.057* | |
C30 | 0.7512 (3) | 1.0194 (5) | 0.4492 (2) | 0.0351 (7) | |
H30A | 0.6870 | 1.0954 | 0.4313 | 0.053* | |
H30B | 0.8106 | 1.1109 | 0.4494 | 0.053* | |
H30C | 0.7508 | 0.9657 | 0.5054 | 0.053* | |
C31 | 0.8695 (3) | 0.7438 (5) | 0.4004 (2) | 0.0340 (7) | |
H31 | 0.9255 | 0.8328 | 0.4195 | 0.041* | |
C32 | 0.8925 (3) | 0.5482 (6) | 0.3866 (2) | 0.0426 (8) | |
H32A | 0.8388 | 0.4540 | 0.3675 | 0.051* | |
H32B | 0.9625 | 0.5039 | 0.3960 | 0.051* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0397 (12) | 0.0260 (10) | 0.0297 (11) | 0.0012 (9) | −0.0062 (9) | 0.0028 (9) |
O2 | 0.0311 (10) | 0.0307 (11) | 0.0269 (10) | −0.0007 (9) | −0.0065 (8) | −0.0031 (9) |
O3 | 0.0390 (12) | 0.0489 (14) | 0.0317 (12) | −0.0085 (11) | −0.0090 (10) | −0.0092 (11) |
O4 | 0.0329 (11) | 0.0272 (11) | 0.0327 (11) | 0.0059 (9) | −0.0019 (9) | 0.0019 (9) |
N1 | 0.0308 (12) | 0.0218 (12) | 0.0254 (12) | −0.0015 (10) | −0.0027 (10) | 0.0024 (10) |
C1 | 0.0273 (14) | 0.0188 (13) | 0.0298 (15) | 0.0013 (11) | −0.0018 (12) | −0.0022 (11) |
C2 | 0.0296 (14) | 0.0163 (12) | 0.0270 (14) | 0.0012 (12) | −0.0037 (11) | −0.0015 (11) |
C3 | 0.0304 (14) | 0.0177 (13) | 0.0276 (15) | 0.0005 (12) | −0.0062 (12) | −0.0004 (11) |
C4 | 0.0310 (15) | 0.0198 (14) | 0.0303 (14) | −0.0030 (12) | −0.0031 (12) | −0.0014 (11) |
C5 | 0.0368 (16) | 0.0186 (13) | 0.0330 (16) | −0.0041 (12) | −0.0006 (13) | −0.0036 (12) |
C6 | 0.0351 (16) | 0.0229 (15) | 0.0268 (15) | 0.0005 (12) | −0.0055 (12) | −0.0014 (11) |
C7 | 0.0348 (16) | 0.0349 (16) | 0.0250 (15) | −0.0017 (13) | −0.0065 (12) | 0.0008 (13) |
C8 | 0.0299 (15) | 0.0364 (17) | 0.0325 (16) | 0.0013 (13) | −0.0034 (13) | −0.0014 (13) |
C9 | 0.0330 (15) | 0.0330 (16) | 0.0296 (15) | −0.0062 (13) | −0.0044 (12) | −0.0008 (13) |
C10 | 0.0307 (14) | 0.0212 (14) | 0.0314 (15) | 0.0026 (12) | −0.0038 (12) | 0.0015 (12) |
C11 | 0.0281 (14) | 0.0216 (13) | 0.0286 (15) | 0.0006 (12) | −0.0044 (12) | −0.0014 (12) |
C12 | 0.0316 (15) | 0.0278 (15) | 0.0325 (16) | −0.0030 (13) | −0.0047 (12) | −0.0014 (13) |
C13 | 0.0306 (15) | 0.0311 (15) | 0.0330 (16) | −0.0027 (13) | −0.0055 (13) | −0.0035 (13) |
C14 | 0.0285 (14) | 0.0231 (14) | 0.0290 (15) | −0.0015 (12) | −0.0037 (12) | 0.0008 (12) |
C15 | 0.0386 (17) | 0.0234 (14) | 0.0283 (15) | −0.0022 (12) | −0.0056 (13) | 0.0026 (12) |
C16 | 0.0322 (14) | 0.0193 (13) | 0.0292 (15) | 0.0002 (12) | −0.0021 (12) | −0.0022 (12) |
C17 | 0.0307 (14) | 0.0206 (13) | 0.0260 (14) | 0.0018 (12) | −0.0001 (12) | −0.0008 (11) |
C18 | 0.0329 (15) | 0.0207 (13) | 0.0247 (14) | −0.0001 (12) | −0.0007 (11) | 0.0007 (11) |
C19 | 0.0353 (15) | 0.0265 (15) | 0.0287 (15) | 0.0036 (13) | −0.0034 (13) | 0.0026 (12) |
C20 | 0.0329 (15) | 0.0247 (14) | 0.0300 (15) | 0.0019 (12) | −0.0099 (13) | −0.0009 (12) |
C21 | 0.0293 (14) | 0.0200 (13) | 0.0318 (15) | −0.0002 (12) | −0.0032 (12) | 0.0019 (12) |
C22 | 0.0327 (15) | 0.0190 (14) | 0.0254 (14) | 0.0028 (11) | −0.0006 (12) | −0.0004 (11) |
C23 | 0.0365 (16) | 0.0212 (15) | 0.0326 (15) | 0.0024 (12) | −0.0016 (13) | −0.0028 (12) |
C24 | 0.0362 (16) | 0.0183 (13) | 0.0280 (14) | 0.0027 (12) | −0.0013 (12) | −0.0020 (11) |
C25 | 0.0339 (16) | 0.0382 (17) | 0.0255 (15) | −0.0009 (14) | −0.0059 (12) | −0.0034 (13) |
C26 | 0.0408 (17) | 0.0387 (18) | 0.0317 (16) | 0.0011 (14) | −0.0074 (13) | −0.0077 (14) |
C27 | 0.0336 (17) | 0.0419 (19) | 0.0354 (17) | −0.0041 (14) | −0.0010 (14) | −0.0025 (14) |
C28 | 0.0384 (16) | 0.0222 (15) | 0.0262 (15) | −0.0027 (12) | −0.0007 (12) | 0.0031 (12) |
C29 | 0.0478 (19) | 0.0319 (17) | 0.0310 (16) | −0.0070 (14) | −0.0054 (14) | 0.0056 (13) |
C30 | 0.0453 (18) | 0.0211 (15) | 0.0359 (17) | −0.0015 (13) | −0.0034 (14) | 0.0009 (13) |
C31 | 0.0332 (16) | 0.0319 (16) | 0.0349 (16) | −0.0061 (13) | −0.0013 (13) | 0.0006 (13) |
C32 | 0.0397 (18) | 0.0356 (18) | 0.052 (2) | 0.0042 (15) | 0.0068 (16) | 0.0025 (15) |
O1—C7 | 1.427 (4) | C15—C16 | 1.509 (4) |
O1—C6 | 1.427 (4) | C15—H15A | 0.9700 |
O2—C6 | 1.437 (4) | C15—H15B | 0.9700 |
O2—C25 | 1.461 (4) | C16—C17 | 1.440 (4) |
O3—C8 | 1.231 (4) | C17—C22 | 1.417 (4) |
O4—C11 | 1.447 (4) | C17—C18 | 1.429 (4) |
O4—H4 | 0.8200 | C18—C19 | 1.382 (4) |
N1—C1 | 1.379 (4) | C18—C28 | 1.532 (4) |
N1—C22 | 1.390 (4) | C19—C20 | 1.406 (5) |
N1—H1 | 0.8600 | C19—H19 | 0.9300 |
C1—C16 | 1.366 (4) | C20—C21 | 1.381 (4) |
C1—C2 | 1.520 (4) | C20—H20 | 0.9300 |
C2—C23 | 1.557 (4) | C21—C22 | 1.399 (4) |
C2—C14 | 1.562 (4) | C21—H21 | 0.9300 |
C2—C3 | 1.565 (4) | C23—H23A | 0.9600 |
C3—C24 | 1.550 (4) | C23—H23B | 0.9600 |
C3—C4 | 1.565 (4) | C23—H23C | 0.9600 |
C3—C11 | 1.573 (4) | C24—H24A | 0.9600 |
C4—C5 | 1.542 (4) | C24—H24B | 0.9600 |
C4—H4A | 0.9700 | C24—H24C | 0.9600 |
C4—H4B | 0.9700 | C25—C26 | 1.501 (5) |
C5—C6 | 1.500 (4) | C25—C27 | 1.517 (5) |
C5—H5A | 0.9700 | C26—H26A | 0.9600 |
C5—H5B | 0.9700 | C26—H26B | 0.9600 |
C6—C10 | 1.543 (4) | C26—H26C | 0.9600 |
C7—C8 | 1.531 (5) | C27—H27A | 0.9600 |
C7—C25 | 1.552 (4) | C27—H27B | 0.9600 |
C7—H7 | 0.9800 | C27—H27C | 0.9600 |
C8—C9 | 1.443 (5) | C28—C31 | 1.516 (4) |
C9—C10 | 1.351 (4) | C28—C29 | 1.533 (4) |
C9—H9 | 0.9300 | C28—C30 | 1.537 (4) |
C10—C11 | 1.508 (4) | C29—H29A | 0.9600 |
C11—C12 | 1.538 (4) | C29—H29B | 0.9600 |
C12—C13 | 1.521 (4) | C29—H29C | 0.9600 |
C12—H12A | 0.9700 | C30—H30A | 0.9600 |
C12—H12B | 0.9700 | C30—H30B | 0.9600 |
C13—C14 | 1.520 (4) | C30—H30C | 0.9600 |
C13—H13A | 0.9700 | C31—C32 | 1.313 (5) |
C13—H13B | 0.9700 | C31—H31 | 0.9300 |
C14—C15 | 1.539 (4) | C32—H32A | 0.9300 |
C14—H14 | 0.9800 | C32—H32B | 0.9300 |
C7—O1—C6 | 102.0 (2) | C14—C15—H15A | 111.8 |
C6—O2—C25 | 108.6 (2) | C16—C15—H15B | 111.8 |
C11—O4—H4 | 109.5 | C14—C15—H15B | 111.8 |
C1—N1—C22 | 107.5 (2) | H15A—C15—H15B | 109.5 |
C1—N1—H1 | 126.3 | C1—C16—C17 | 107.9 (3) |
C22—N1—H1 | 126.3 | C1—C16—C15 | 110.4 (3) |
C16—C1—N1 | 110.3 (2) | C17—C16—C15 | 140.5 (3) |
C16—C1—C2 | 112.9 (2) | C22—C17—C18 | 119.1 (3) |
N1—C1—C2 | 134.2 (3) | C22—C17—C16 | 105.3 (2) |
C1—C2—C23 | 103.7 (2) | C18—C17—C16 | 135.6 (3) |
C1—C2—C14 | 96.9 (2) | C19—C18—C17 | 116.8 (3) |
C23—C2—C14 | 110.8 (2) | C19—C18—C28 | 123.4 (3) |
C1—C2—C3 | 121.6 (2) | C17—C18—C28 | 119.8 (2) |
C23—C2—C3 | 113.7 (2) | C18—C19—C20 | 122.6 (3) |
C14—C2—C3 | 108.7 (2) | C18—C19—H19 | 118.7 |
C24—C3—C2 | 109.7 (2) | C20—C19—H19 | 118.7 |
C24—C3—C4 | 106.9 (2) | C21—C20—C19 | 121.7 (3) |
C2—C3—C4 | 113.0 (2) | C21—C20—H20 | 119.2 |
C24—C3—C11 | 109.0 (2) | C19—C20—H20 | 119.2 |
C2—C3—C11 | 109.9 (2) | C20—C21—C22 | 116.5 (3) |
C4—C3—C11 | 108.1 (2) | C20—C21—H21 | 121.8 |
C5—C4—C3 | 116.7 (2) | C22—C21—H21 | 121.8 |
C5—C4—H4A | 108.1 | N1—C22—C21 | 127.9 (3) |
C3—C4—H4A | 108.1 | N1—C22—C17 | 109.1 (2) |
C5—C4—H4B | 108.1 | C21—C22—C17 | 123.0 (3) |
C3—C4—H4B | 108.1 | C2—C23—H23A | 109.5 |
H4A—C4—H4B | 107.3 | C2—C23—H23B | 109.5 |
C6—C5—C4 | 114.6 (2) | H23A—C23—H23B | 109.5 |
C6—C5—H5A | 108.6 | C2—C23—H23C | 109.5 |
C4—C5—H5A | 108.6 | H23A—C23—H23C | 109.5 |
C6—C5—H5B | 108.6 | H23B—C23—H23C | 109.5 |
C4—C5—H5B | 108.6 | C3—C24—H24A | 109.5 |
H5A—C5—H5B | 107.6 | C3—C24—H24B | 109.5 |
O1—C6—O2 | 103.8 (2) | H24A—C24—H24B | 109.5 |
O1—C6—C5 | 110.6 (2) | C3—C24—H24C | 109.5 |
O2—C6—C5 | 110.7 (2) | H24A—C24—H24C | 109.5 |
O1—C6—C10 | 107.8 (2) | H24B—C24—H24C | 109.5 |
O2—C6—C10 | 110.9 (2) | O2—C25—C26 | 109.4 (3) |
C5—C6—C10 | 112.6 (3) | O2—C25—C27 | 109.2 (3) |
O1—C7—C8 | 110.3 (3) | C26—C25—C27 | 111.8 (3) |
O1—C7—C25 | 101.4 (2) | O2—C25—C7 | 100.7 (2) |
C8—C7—C25 | 110.6 (3) | C26—C25—C7 | 115.7 (3) |
O1—C7—H7 | 111.4 | C27—C25—C7 | 109.5 (3) |
C8—C7—H7 | 111.4 | C25—C26—H26A | 109.5 |
C25—C7—H7 | 111.4 | C25—C26—H26B | 109.5 |
O3—C8—C9 | 124.6 (3) | H26A—C26—H26B | 109.5 |
O3—C8—C7 | 119.9 (3) | C25—C26—H26C | 109.5 |
C9—C8—C7 | 115.5 (3) | H26A—C26—H26C | 109.5 |
C10—C9—C8 | 119.8 (3) | H26B—C26—H26C | 109.5 |
C10—C9—H9 | 120.1 | C25—C27—H27A | 109.5 |
C8—C9—H9 | 120.1 | C25—C27—H27B | 109.5 |
C9—C10—C11 | 125.4 (3) | H27A—C27—H27B | 109.5 |
C9—C10—C6 | 117.1 (3) | C25—C27—H27C | 109.5 |
C11—C10—C6 | 116.9 (3) | H27A—C27—H27C | 109.5 |
O4—C11—C10 | 102.7 (2) | H27B—C27—H27C | 109.5 |
O4—C11—C12 | 109.6 (2) | C31—C28—C18 | 110.9 (2) |
C10—C11—C12 | 112.5 (2) | C31—C28—C29 | 106.3 (3) |
O4—C11—C3 | 107.6 (2) | C18—C28—C29 | 113.1 (3) |
C10—C11—C3 | 109.8 (2) | C31—C28—C30 | 111.6 (3) |
C12—C11—C3 | 114.0 (2) | C18—C28—C30 | 108.3 (2) |
C13—C12—C11 | 113.9 (2) | C29—C28—C30 | 106.7 (3) |
C13—C12—H12A | 108.8 | C28—C29—H29A | 109.5 |
C11—C12—H12A | 108.8 | C28—C29—H29B | 109.5 |
C13—C12—H12B | 108.8 | H29A—C29—H29B | 109.5 |
C11—C12—H12B | 108.8 | C28—C29—H29C | 109.5 |
H12A—C12—H12B | 107.7 | H29A—C29—H29C | 109.5 |
C14—C13—C12 | 107.4 (2) | H29B—C29—H29C | 109.5 |
C14—C13—H13A | 110.2 | C28—C30—H30A | 109.5 |
C12—C13—H13A | 110.2 | C28—C30—H30B | 109.5 |
C14—C13—H13B | 110.2 | H30A—C30—H30B | 109.5 |
C12—C13—H13B | 110.2 | C28—C30—H30C | 109.5 |
H13A—C13—H13B | 108.5 | H30A—C30—H30C | 109.5 |
C13—C14—C15 | 121.1 (3) | H30B—C30—H30C | 109.5 |
C13—C14—C2 | 111.7 (2) | C32—C31—C28 | 125.6 (3) |
C15—C14—C2 | 106.5 (2) | C32—C31—H31 | 117.2 |
C13—C14—H14 | 105.4 | C28—C31—H31 | 117.2 |
C15—C14—H14 | 105.4 | C31—C32—H32A | 120.0 |
C2—C14—H14 | 105.4 | C31—C32—H32B | 120.0 |
C16—C15—C14 | 100.1 (2) | H32A—C32—H32B | 120.0 |
C16—C15—H15A | 111.8 | ||
C22—N1—C1—C16 | 0.0 (3) | C4—C3—C11—C12 | 171.7 (2) |
C22—N1—C1—C2 | −159.8 (3) | O4—C11—C12—C13 | 70.5 (3) |
C16—C1—C2—C23 | −88.8 (3) | C10—C11—C12—C13 | −175.9 (2) |
N1—C1—C2—C23 | 70.7 (4) | C3—C11—C12—C13 | −50.1 (3) |
C16—C1—C2—C14 | 24.7 (3) | C11—C12—C13—C14 | 55.7 (3) |
N1—C1—C2—C14 | −175.9 (3) | C12—C13—C14—C15 | 170.0 (3) |
C16—C1—C2—C3 | 141.7 (3) | C12—C13—C14—C2 | −63.3 (3) |
N1—C1—C2—C3 | −58.8 (4) | C1—C2—C14—C13 | −169.4 (2) |
C1—C2—C3—C24 | −44.3 (3) | C23—C2—C14—C13 | −61.8 (3) |
C23—C2—C3—C24 | −169.4 (2) | C3—C2—C14—C13 | 63.8 (3) |
C14—C2—C3—C24 | 66.6 (3) | C1—C2—C14—C15 | −35.2 (3) |
C1—C2—C3—C4 | 74.9 (3) | C23—C2—C14—C15 | 72.4 (3) |
C23—C2—C3—C4 | −50.1 (3) | C3—C2—C14—C15 | −162.0 (2) |
C14—C2—C3—C4 | −174.1 (2) | C13—C14—C15—C16 | 162.6 (3) |
C1—C2—C3—C11 | −164.2 (2) | C2—C14—C15—C16 | 33.6 (3) |
C23—C2—C3—C11 | 70.7 (3) | N1—C1—C16—C17 | 0.6 (3) |
C14—C2—C3—C11 | −53.2 (3) | C2—C1—C16—C17 | 165.0 (2) |
C24—C3—C4—C5 | −93.2 (3) | N1—C1—C16—C15 | −169.2 (2) |
C2—C3—C4—C5 | 145.9 (3) | C2—C1—C16—C15 | −4.8 (3) |
C11—C3—C4—C5 | 24.0 (3) | C14—C15—C16—C1 | −18.0 (3) |
C3—C4—C5—C6 | 30.1 (4) | C14—C15—C16—C17 | 177.3 (4) |
C7—O1—C6—O2 | −44.4 (3) | C1—C16—C17—C22 | −0.9 (3) |
C7—O1—C6—C5 | −163.2 (3) | C15—C16—C17—C22 | 164.0 (4) |
C7—O1—C6—C10 | 73.3 (3) | C1—C16—C17—C18 | 177.8 (3) |
C25—O2—C6—O1 | 22.5 (3) | C15—C16—C17—C18 | −17.3 (6) |
C25—O2—C6—C5 | 141.2 (2) | C22—C17—C18—C19 | −4.7 (4) |
C25—O2—C6—C10 | −93.0 (3) | C16—C17—C18—C19 | 176.7 (3) |
C4—C5—C6—O1 | −168.4 (2) | C22—C17—C18—C28 | 173.7 (3) |
C4—C5—C6—O2 | 77.1 (3) | C16—C17—C18—C28 | −4.8 (5) |
C4—C5—C6—C10 | −47.7 (3) | C17—C18—C19—C20 | 2.3 (4) |
C6—O1—C7—C8 | −69.4 (3) | C28—C18—C19—C20 | −176.1 (3) |
C6—O1—C7—C25 | 47.9 (3) | C18—C19—C20—C21 | 2.1 (5) |
O1—C7—C8—O3 | −149.9 (3) | C19—C20—C21—C22 | −3.8 (4) |
C25—C7—C8—O3 | 98.7 (3) | C1—N1—C22—C21 | 178.2 (3) |
O1—C7—C8—C9 | 31.6 (4) | C1—N1—C22—C17 | −0.6 (3) |
C25—C7—C8—C9 | −79.8 (3) | C20—C21—C22—N1 | −177.4 (3) |
O3—C8—C9—C10 | −174.8 (3) | C20—C21—C22—C17 | 1.2 (4) |
C7—C8—C9—C10 | 3.5 (4) | C18—C17—C22—N1 | −178.0 (3) |
C8—C9—C10—C11 | −170.2 (3) | C16—C17—C22—N1 | 0.9 (3) |
C8—C9—C10—C6 | 1.0 (4) | C18—C17—C22—C21 | 3.1 (4) |
O1—C6—C10—C9 | −40.5 (4) | C16—C17—C22—C21 | −178.0 (3) |
O2—C6—C10—C9 | 72.5 (3) | C6—O2—C25—C26 | 128.7 (3) |
C5—C6—C10—C9 | −162.8 (3) | C6—O2—C25—C27 | −108.7 (3) |
O1—C6—C10—C11 | 131.5 (3) | C6—O2—C25—C7 | 6.5 (3) |
O2—C6—C10—C11 | −115.5 (3) | O1—C7—C25—O2 | −33.0 (3) |
C5—C6—C10—C11 | 9.2 (4) | C8—C7—C25—O2 | 84.1 (3) |
C9—C10—C11—O4 | 102.7 (3) | O1—C7—C25—C26 | −150.7 (3) |
C6—C10—C11—O4 | −68.5 (3) | C8—C7—C25—C26 | −33.7 (4) |
C9—C10—C11—C12 | −15.1 (4) | O1—C7—C25—C27 | 81.9 (3) |
C6—C10—C11—C12 | 173.7 (2) | C8—C7—C25—C27 | −161.0 (3) |
C9—C10—C11—C3 | −143.1 (3) | C19—C18—C28—C31 | −118.9 (3) |
C6—C10—C11—C3 | 45.7 (3) | C17—C18—C28—C31 | 62.7 (3) |
C24—C3—C11—O4 | 165.8 (2) | C19—C18—C28—C29 | 0.4 (4) |
C2—C3—C11—O4 | −73.9 (3) | C17—C18—C28—C29 | −178.0 (3) |
C4—C3—C11—O4 | 49.9 (3) | C19—C18—C28—C30 | 118.4 (3) |
C24—C3—C11—C10 | 54.8 (3) | C17—C18—C28—C30 | −60.0 (3) |
C2—C3—C11—C10 | 175.1 (2) | C18—C28—C31—C32 | 29.3 (4) |
C4—C3—C11—C10 | −61.1 (3) | C29—C28—C31—C32 | −94.0 (4) |
C24—C3—C11—C12 | −72.4 (3) | C30—C28—C31—C32 | 150.1 (3) |
C2—C3—C11—C12 | 47.9 (3) |
Cg is the centroid of the C17–C22 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
O4—H4···O3i | 0.82 | 2.03 | 2.757 (3) | 148 |
N1—H1···Cgii | 0.86 | 2.78 | 3.527 (1) | 146 |
Symmetry codes: (i) −x+2, y−1/2, −z+2; (ii) −x+1, y−1/2, −z+1. |
Cg is the centroid of the C17–C22 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
O4—H4···O3i | 0.82 | 2.03 | 2.757 (3) | 148.2 |
N1—H1···Cgii | 0.86 | 2.781 | 3.527 (1) | 145.96 |
Symmetry codes: (i) −x+2, y−1/2, −z+2; (ii) −x+1, y−1/2, −z+1. |
Acknowledgements
The authors wish to acknowledge the Alexander von Humboldt Foundation for providing a fellowship to B. N. Lenta at Bielefeld University
References
Agilent (2013). CrysAlis PRO Agilent Technologies Ltd, Yarnton, Oxfordshire, England. Google Scholar
Amin, N., Salam, M., Junaid, M., Asman & Baco, M. S. I. (2014). Int J Curr Microbiol Appl Sci. 3, 459–467. Google Scholar
Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Duran, R. M., Cary, J. W. & Calvo, A. M. (2006). Appl. Microbiol. Biotechnol. 73, 1158–1168. Web of Science CrossRef PubMed Google Scholar
Gallagher, R. T., Clardy, J. & Wilson, B. J. (1980b). Tetrahedron Lett. 21, 239–242. CrossRef CAS Web of Science Google Scholar
Gallagher, R. T., Finer, J., Clardy, J., Leutwiler, A., Weibel, F., Acklin, W. & Arigoni, D. (1980a). Tetrahedron Lett. 21, 235–238. CSD CrossRef CAS Web of Science Google Scholar
Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671. Web of Science CSD CrossRef CAS Google Scholar
Krishna, R., Velmurugan, D., Babu, G. & Perumal, P. T. (1999). Acta Cryst. C55, 75–78. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Ndjakou Lenta, B., Noungoue, D. T., Devkota, K. P., Fokou, P. A., Ngouela, S., Tsamo, E. & Sewald, N. (2007). Acta Cryst. E63, o1282–o1284. Web of Science CSD CrossRef IUCr Journals Google Scholar
Munday-Finch, S. C., Wilkins, A. L. & Miles, C. O. (1996). Phytochemistry, 41, 327–332. CAS Google Scholar
Nicholson, M. J., Koulman, A., Monahan, B. J., Pritchard, B. L., Payne, G. A. & Scott, B. (2009). Appl. Environ. Microbiol. 75, 7469–7481. Web of Science CrossRef PubMed CAS Google Scholar
Parsons, S. & Flack, H. (2004). Acta Cryst. A60, s61. CrossRef IUCr Journals Google Scholar
Petrini, O., Sueber, I., Titi, L. & Viret, O. (1992). Nat. Toxins, 1, 185–196. CrossRef PubMed CAS Google Scholar
Phongpaichit, S., Nikom, J., Rungjindamai, N., Sakayaroj, J., Hutadilok-Towatana, N., Rukachaisirikul, V. & Kirtikara, K. (2007). FEMS Immunol. Med. Microbiol. 51, 517–525. Web of Science CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Strobel, G. & Daisy, B. (2003). Microbiol. Mol. Biol. Rev. 67, 491–502. Web of Science CrossRef PubMed CAS Google Scholar
Sun, K., Li, Y., Guo, L., Wang, Y., Liu, P. & Zhu, W. (2014). Mar. Drugs, 12, 3970–3981. Web of Science CrossRef CAS PubMed Google Scholar
Tinao-Wooldridge, L. V., Hsiang, B. C. H., Latifi, T. N., Ferrendelli, J. A. & Covey, D. F. (1995). Bioorg. Med. Chem. Lett. 5, 265–270. CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The search of compounds from plant endophytes has been the subject of research interest (Strobel & Daisy 2003). They produce a plethora of substances with potential applications in agriculture, medicine, pharmaceutical and for industry (Petrini et al. 1992; Strobel & Daisy, 2003; Phongpaichit et al., 2007). We are interested in the isolation and the structural study of compounds produced by endophytes from Cameroonian medicinal plants with pharmacological properties (Lenta et al., 2007) and one of the compounds that we have isolated from the fungal endophyte of the stem of Symphonia globulifera was aflatrem. Some authors have identified the biosynthetic genes of this molecule in Aspergilius sp (Nicholson et al., 2009; Duran et al., 2006). We report herein the study of its molecular and crystal structure.
Aflatrem crystallizes in the non-centrosymmetric space group P21 and its asymmetric unit consists of a single molecule as shown in Figure 1. As known in the literature, the molecule has a 1,l-dimethyl-2-propenyl substituent on the indole nucleus at position C18 and this nucleus shares one edge with the 5-membered ring (A) belonging to a group of three fused rings like an anthracene system (see Fig.1). The two others rings (6-membered, B and C) also share one edge with the 7, 7-trimethyl-6,8- dioxabicyclo[3.2.1]oct-3-en-2-one group. All the bond distances observed in the compounds are in agreement with the bonds distance of the Cambridge Structural Database (CSD, Groom & Allen, 2014). In the indole ring system, a small tilt of 2.02 (1)° is observed between the 6 and 5-membered rings. This value as well as the values of the bond angles is near the values always obtained in the indole based compounds (Krishna et al., 1999). The ring A (C1/C16/C15/C14/C2) adopts a dihedral angle of 3.12 (1)° with the 5-membered ring of indole system. With the exception of the C1–C2–C14 angle (96.9 (1)°),the values of the bond angles in this ring are in the range between 100 and 112° and they are in good agreement with the ideal conformation for which the angle is 107°. The lower value observed could be favored by the chair conformation of the B ring which shares one edge (C2 and C14) with ring A. This conformation is close to the ideal chair conformation since the bond angles range from 107 to 113° compared to an ideal value of 109°. The ring C assumes a half-chair conformation. The bicyclo[3.2.1]oct-3-en-2-one system is composed by a 6-membered ring named D (C6/C10/C9/C8/C7/O1) sharing one edge (C6 –C7) with a 5-membered ring called E (O1/C7/C6/O2/C25). The carbon atoms of ring D lie in the same plane and the O1 atom is located at 0.80 (1) Å from this plane. This atom is also located at 0.656 (1) Å from the plane which contains the carbon atoms of ring E and the dihedral angle between the two planes is 69.07 (1)°. The methyl and hydroxyl groups linked to the fused ring give the absolute configuration of 1S,3R,6S,7S,11R,12S,13S determined by Cu Kα X-radiation with the Flack parameter being refined to 0.09 (14) and this configuration is in agreement with the previous circular dichroism assignment reported by Sun et al. (2014).
The crystal packing of the aflatrem molecules is illustrated in Figs. 2 and 3. In the crystal, molecules are connected along the b axis via O—H···O hydrogen bonds. In addition, weak N—H···π(indole) interactions connect these chains forming planes parallel to (10-1). This N—H···π(indole) interaction is typical of indole-based molecules as reported by Krishna et al. (1999).