research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of N-(2-amino-5-cyano-4-methyl­sulfanyl-6-oxo-1,6-di­hydropyrimidin-1-yl)-4-bromo­benzene­sulfonamide di­methyl­formamide monosolvate

aChemistry Department, Faculty of Science, Helwan University, Cairo, Egypt, bPhotochemistry Department, National Research Center, Dokki, Cairo, Egypt, and cInstitut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Postfach 3329, D-38023 Braunschweig, Germany
*Correspondence e-mail: p.jones@tu-bs.de

Edited by A. J. Lough, University of Toronto, Canada (Received 18 September 2015; accepted 7 October 2015; online 14 October 2015)

The title compound, C12H10BrN5O3S2·C3H7NO, displays an almost planar amine group. The inter­planar angle between the rings is 31.72 (6)°. The residues are associated into ribbons parallel to [110] by three classical hydrogen bonds; one from each amine Hamine to ODMF and one from NHamide to Ooxo. Adjacent ribbons are connected by translation parallel to the c axis by a `weak' hydrogen bond Hmeth­yl⋯Osulfon­yl to form a layer structure parallel to (1-10), while a further contact Hbromo­phen­yl⋯Osulfon­yl connects the residues in the third dimension.

1. Chemical context

We are conducting studies directed towards exploring the synthetic potential of dimethyl N-cyano­imido-S,S-dimethyl-di­thio­carbonate and other ketene di­thio­acetals for synthesizing new classes of anti­metabolites (Elgemeie & Mohamed, 2014[Elgemeie, G. H. & Mohamed, R. A. (2014). Heterocyclic Commun. 20, 257-269.]; Elgemeie et al., 2007[Elgemeie, G. H., Elghandour, A. H. & Abd Elaziz, G. W. (2007). Synth. Commun. 37, 2827-2834.], 2009[Elgemeie, G. H., Elsayed, S. H. & Hassan, A. S. (2009). Synth. Commun. 39, 1781-1792.]). We have recently reported various successful approaches to the synthesis of mercapto­pyrimidines by the reaction of this compound with active methyl­ene functions (Elgemeie & Sood, 2001[Elgemeie, G. H. & Sood, S. A. (2001). J. Chem. Res. (S), pp. 439-441.]; Elgemeie et al., 2003[Elgemeie, G. H., El-Ezbawy, S. R. & Sood, S. A. (2003). Synth. Commun. 33, 2095-2101.]). In an extension of this work, we describe a one-pot synthesis of N-(2-amino-5-cyano-4-(methyl­thio)-6-oxopyrimidin-1(6H)-yl)-4-bromo­benzene­sulfonamide (I)[link] by the reaction of dimethyl N-cyano­dithio­imino­carbonate with N′-(4-bromo­phen­yl)sulfonyl-2-cyano­ethane­hydrazide. The chemical nature was proposed on the basis of elemental analysis and spectroscopic data and its X-ray structure determination was undertaken to confirm the nature of the product. We have recently presented the structure of a related pyrimidine (Elgemeie et al., 2015[Elgemeie, G. H., Salah, A. M., Mohamed, R. A. & Jones, P. G. (2015). Acta Cryst. E71, 1319-1321.]).

[Scheme 1]

2. Structural commentary

The structure of the title compound, which proved to be the di­methyl­formamide solvate (I)·DMF, is shown in Fig. 1[link]. The ring systems are as expected almost planar, with r.m.s. deviations of 0.002 Å for the phenyl and 0.04 Å for the pyrimidine ring. The substituent atoms N4 and S1 deviate significantly from the pyrimidine plane [by 0.199 (2) and 0.257 (2) Å respectively, to opposite sides of the plane]. The inter­planar angle is 31.72 (6)°, and is also associated with the torsion angles C12—C11—S2—N2 88.10 (12), C11—S2—N2—N1 78.98 (11) and S2—N2—N1—C2 100.31 (12)°. The amino group at N4 is almost planar, with the nitro­gen atom lying just 0.035 (11) Å out of the plane of its substituents.

[Figure 1]
Figure 1
The formula unit of compound (I)·DMF in the crystal. Displacement ellipsoids correspond to 50% probability levels. The hydrogen bond H03⋯O4 is drawn as a thin dashed line.

3. Supra­molecular features

The components are associated into ribbons parallel to [110] (Fig. 2[link]) by three classical hydrogen bonds (Table 1[link]). Two of these, H02⋯O4(1 − x, −y, 1 − z) and H03⋯O4, involve the di­methyl­formamide oxygen atom and lead to the formation of inversion-symmetric rings of graph set R42(8). The third hydrogen bond, H01⋯O1(2 − x, 1 − y, 1 − z), also forms inversion-symmetric rings, but of graph set R22(10).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H01⋯O1i 0.80 (2) 2.00 (2) 2.7784 (15) 165.5 (19)
N4—H02⋯O4ii 0.86 (2) 1.98 (2) 2.8382 (16) 177.9 (19)
N4—H03⋯O4 0.85 (2) 2.07 (2) 2.8005 (16) 143.1 (18)
C12—H12⋯O2iii 0.95 2.46 3.4096 (18) 173
C7—H7B⋯O3iv 0.98 2.45 3.2848 (19) 143
C17—H17⋯Br1v 0.95 3.05 3.6686 (15) 124
Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) -x+1, -y, -z+1; (iii) -x+1, -y+1, -z+1; (iv) x, y, z+1; (v) x, y-1, z.
[Figure 2]
Figure 2
Packing diagram of compound (I)· DMF viewed perpendicular to (1[\overline{1}]0). For clarity, only the ipso carbons of the bromo­phenyl groups are shown. Classical hydrogen bonds are indicated by dashed lines.

There are two short and acceptably linear C—H⋯O contacts that may be assumed to represent `weak' hydrogen bonds; H7B⋯O3 connects neighbouring ribbons by translation parallel to the c axis, thus completing a layer structure parallel to (1[\overline{1}]0), while H12⋯O2 connects the residues in the third dimension via the inversion operator (1 − x, 1 − y, 1 − z).

The bromine atom is involved in two secondary contacts: a halogen bond of 3.4582 (10) Å with O1(2 − x, 2 − y,1 − z) and a weak hydrogen bond of 3.05 Å from H17(x, 1 + y, z), with an angle of 124° at hydrogen. These inter­actions also connect the residues in the third dimension.

4. Synthesis and crystallization

Dimethyl N-cyano­imido-S,S-dimethyl-di­thio­carbonate (0.01 mol) was added to a stirred solution of N′-(4-bromo­phen­yl)sulfonyl-2-cyano­ethane­hydrazide (0.01 mol) in dry dioxane (50 mL) containing potassium hydroxide (0.01 mol) at room temperature. The reaction mixture was stirred for 30 min at room temperature; the precipitated solid was collected by filtration and crystallized from dimethyl formamide to give pale yellow crystals, m.p. 483–485 K, yield 85%.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The NH hydrogens were refined freely. The methyl groups were refined as idealized rigid groups allowed to rotate but not tip. Other H were included using a riding model starting from calculated positions [C—H = 0.95–0.98 Å with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for other H atoms].

Table 2
Experimental details

Crystal data
Chemical formula C12H10BrN5O3S2·C3H7NO
Mr 489.38
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 100
a, b, c (Å) 9.1107 (4), 9.9911 (4), 11.6498 (6)
α, β, γ (°) 96.482 (4), 107.802 (4), 99.322 (4)
V3) 981.33 (8)
Z 2
Radiation type Mo Kα
μ (mm−1) 2.34
Crystal size (mm) 0.45 × 0.40 × 0.40
 
Data collection
Diffractometer Oxford Diffraction Xcalibur, Eos
Absorption correction Multi-scan (CrysAlis PRO; Agilent, 2013[Agilent (2013). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.])
Tmin, Tmax 0.824, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 52130, 5844, 5306
Rint 0.031
(sin θ/λ)max−1) 0.722
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.061, 1.06
No. of reflections 5844
No. of parameters 268
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.76, −0.39
Computer programs: CrysAlis PRO (Agilent, 2013[Agilent (2013). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.]), SHELXS97, SHELXL97 and XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Agilent, 2013); cell refinement: CrysAlis PRO (Agilent, 2013); data reduction: CrysAlis PRO (Agilent, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

N-(2-Amino-5-cyano-4-methylsulfanyl-6-oxo-1,6-dihydropyrimidin-1-yl)-4-bromobenzenesulfonamide dimethylformamide monosolvate top
Crystal data top
C12H10BrN5O3S2·C3H7NOZ = 2
Mr = 489.38F(000) = 496
Triclinic, P1Dx = 1.656 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.1107 (4) ÅCell parameters from 16424 reflections
b = 9.9911 (4) Åθ = 2.6–30.4°
c = 11.6498 (6) ŵ = 2.34 mm1
α = 96.482 (4)°T = 100 K
β = 107.802 (4)°Block, colourless
γ = 99.322 (4)°0.45 × 0.40 × 0.40 mm
V = 981.33 (8) Å3
Data collection top
Oxford Diffraction Xcalibur, Eos
diffractometer
5844 independent reflections
Radiation source: Enhance (Mo) X-ray Source5306 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
Detector resolution: 16.1419 pixels mm-1θmax = 30.9°, θmin = 2.4°
ω–scanh = 1213
Absorption correction: multi-scan
(CrysAlisPro; Agilent, 2013)
k = 1414
Tmin = 0.824, Tmax = 1.000l = 1616
52130 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.061H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0248P)2 + 0.6489P]
where P = (Fo2 + 2Fc2)/3
5844 reflections(Δ/σ)max = 0.001
268 parametersΔρmax = 0.76 e Å3
0 restraintsΔρmin = 0.39 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Non-bonded contact:

3.4582 (0.0010) Br1 - O1_$6

Operator for generating equivalent atoms: $6 - x + 2, -y + 2, -z + 1

============================================================================

Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane)

8.0547 (0.0765) x - 4.9253 (0.0915) y + 0.8579 (0.2093) z = 4.7396 (0.0731)

* 0.0000 (0.0001) C2 * 0.0000 (0.0001) H02 * 0.0000 (0.0000) H03 0.0352 (0.0108) N4

Rms deviation of fitted atoms = 0.0000

7.4457 (0.0028) x - 5.9260 (0.0044) y + 1.6748 (0.0062) z = 4.4689 (0.0045)

Angle to previous plane (with approximate e.s.d.) = 7.74 (1.41)

* -0.0578 (0.0009) N1 * 0.0522 (0.0009) C2 * 0.0025 (0.0009) N3 * -0.0485 (0.0010) C4 * 0.0394 (0.0010) C5 * 0.0122 (0.0009) C6 0.1986 (0.0021) N4 - 0.2565 (0.0018) S1 - 0.3373 (0.0028) C7 0.1276 (0.0023) C8 0.2186 (0.0028) N5 0.0409 (0.0018) O1 - 0.0581 (0.0020) N2

Rms deviation of fitted atoms = 0.0411

6.0229 (0.0041) x - 2.3534 (0.0057) y + 5.9679 (0.0059) z = 4.9873 (0.0043)

Angle to previous plane (with approximate e.s.d.) = 31.72 (0.06)

* -0.0028 (0.0010) C11 * 0.0004 (0.0010) C12 * 0.0025 (0.0010) C13 * -0.0031 (0.0010) C14 * 0.0007 (0.0010) C15 * 0.0023 (0.0010) C16 - 0.0142 (0.0020) Br1 0.0055 (0.0019) S2

Rms deviation of fitted atoms = 0.0022

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.74640 (5)0.49517 (4)0.94893 (3)0.02271 (8)
S20.64492 (4)0.41433 (3)0.34915 (3)0.01389 (7)
Br10.903097 (18)1.043895 (15)0.333551 (15)0.02167 (5)
N10.78069 (13)0.40042 (11)0.57992 (10)0.0118 (2)
C20.70629 (16)0.30239 (14)0.62952 (12)0.0132 (2)
N20.77711 (15)0.36204 (12)0.45978 (10)0.0130 (2)
H010.863 (2)0.3749 (19)0.4545 (17)0.020 (5)*
N30.69682 (14)0.33056 (12)0.74159 (11)0.0151 (2)
C40.77293 (17)0.45373 (14)0.80858 (12)0.0147 (3)
C50.87008 (16)0.55054 (14)0.77173 (12)0.0142 (2)
C60.87526 (15)0.52734 (13)0.65034 (12)0.0122 (2)
C70.6131 (2)0.34218 (18)0.95215 (15)0.0254 (3)
H7A0.52110.32150.87740.038*
H7B0.57870.35731.02360.038*
H7C0.66690.26460.95720.038*
C80.96232 (18)0.67418 (15)0.85179 (13)0.0186 (3)
N40.64153 (15)0.17814 (13)0.56513 (12)0.0169 (2)
H020.597 (2)0.119 (2)0.5990 (18)0.024 (5)*
H030.633 (2)0.159 (2)0.4900 (19)0.025 (5)*
N51.03702 (19)0.77174 (15)0.91924 (14)0.0298 (3)
O10.95091 (12)0.60446 (10)0.60406 (9)0.01553 (19)
O20.50567 (12)0.40373 (11)0.38292 (10)0.0196 (2)
O30.64611 (14)0.33408 (11)0.23994 (9)0.0215 (2)
C110.71531 (16)0.58768 (14)0.34507 (12)0.0140 (2)
C120.68353 (17)0.69127 (15)0.41854 (13)0.0162 (3)
H120.62370.66900.47030.019*
C130.74062 (17)0.82758 (15)0.41502 (13)0.0175 (3)
H130.72060.89990.46460.021*
C140.82751 (17)0.85737 (15)0.33814 (13)0.0167 (3)
C150.86007 (17)0.75425 (15)0.26524 (13)0.0179 (3)
H150.92020.77670.21370.021*
C160.80332 (17)0.61764 (15)0.26891 (13)0.0162 (3)
H160.82440.54540.21990.019*
N60.33893 (15)0.04126 (13)0.14664 (11)0.0182 (2)
O40.50814 (13)0.02165 (11)0.32929 (10)0.0198 (2)
C170.48080 (18)0.04576 (14)0.22375 (13)0.0174 (3)
H170.56810.06920.19630.021*
C180.2020 (2)0.0087 (2)0.18574 (17)0.0322 (4)
H18A0.19410.08370.20710.048*
H18B0.10660.01170.11910.048*
H18C0.21320.07620.25740.048*
C190.3164 (2)0.08261 (18)0.02765 (15)0.0274 (3)
H19A0.41840.10360.01460.041*
H19B0.27000.16460.02480.041*
H19C0.24560.00750.03660.041*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0325 (2)0.02259 (18)0.01318 (16)0.00060 (15)0.01114 (15)0.00105 (13)
S20.01596 (16)0.01541 (15)0.01050 (14)0.00078 (12)0.00523 (12)0.00418 (11)
Br10.02029 (8)0.01729 (7)0.02730 (9)0.00028 (5)0.00798 (6)0.00829 (6)
N10.0146 (5)0.0130 (5)0.0090 (5)0.0013 (4)0.0062 (4)0.0024 (4)
C20.0140 (6)0.0143 (6)0.0120 (6)0.0018 (5)0.0050 (5)0.0048 (5)
N20.0151 (6)0.0159 (5)0.0107 (5)0.0033 (4)0.0077 (4)0.0034 (4)
N30.0178 (6)0.0167 (5)0.0110 (5)0.0015 (4)0.0058 (4)0.0033 (4)
C40.0160 (6)0.0179 (6)0.0106 (6)0.0041 (5)0.0046 (5)0.0037 (5)
C50.0155 (6)0.0141 (6)0.0124 (6)0.0023 (5)0.0040 (5)0.0018 (5)
C60.0105 (6)0.0124 (6)0.0141 (6)0.0032 (5)0.0038 (5)0.0034 (5)
C70.0280 (8)0.0315 (8)0.0170 (7)0.0022 (6)0.0117 (6)0.0051 (6)
C80.0223 (7)0.0173 (6)0.0167 (7)0.0042 (5)0.0067 (6)0.0044 (5)
N40.0226 (6)0.0150 (5)0.0125 (6)0.0014 (5)0.0075 (5)0.0026 (4)
N50.0357 (8)0.0210 (7)0.0259 (7)0.0004 (6)0.0043 (6)0.0005 (5)
O10.0151 (5)0.0149 (4)0.0189 (5)0.0013 (4)0.0091 (4)0.0051 (4)
O20.0147 (5)0.0246 (5)0.0205 (5)0.0017 (4)0.0069 (4)0.0091 (4)
O30.0318 (6)0.0194 (5)0.0113 (5)0.0003 (4)0.0077 (4)0.0014 (4)
C110.0146 (6)0.0153 (6)0.0132 (6)0.0028 (5)0.0047 (5)0.0062 (5)
C120.0161 (6)0.0194 (6)0.0163 (6)0.0053 (5)0.0076 (5)0.0075 (5)
C130.0175 (7)0.0187 (7)0.0176 (7)0.0058 (5)0.0061 (5)0.0045 (5)
C140.0140 (6)0.0166 (6)0.0182 (7)0.0012 (5)0.0032 (5)0.0071 (5)
C150.0171 (7)0.0212 (7)0.0179 (7)0.0027 (5)0.0083 (5)0.0084 (5)
C160.0173 (7)0.0199 (7)0.0129 (6)0.0040 (5)0.0063 (5)0.0051 (5)
N60.0199 (6)0.0184 (6)0.0158 (6)0.0022 (5)0.0054 (5)0.0049 (5)
O40.0222 (5)0.0175 (5)0.0161 (5)0.0018 (4)0.0036 (4)0.0044 (4)
C170.0203 (7)0.0134 (6)0.0174 (7)0.0009 (5)0.0071 (5)0.0016 (5)
C180.0204 (8)0.0526 (11)0.0288 (9)0.0110 (8)0.0106 (7)0.0167 (8)
C190.0315 (9)0.0315 (8)0.0177 (7)0.0026 (7)0.0059 (6)0.0101 (6)
Geometric parameters (Å, º) top
S1—C41.7392 (14)C15—C161.389 (2)
S1—C71.8036 (16)N6—C171.320 (2)
S2—O31.4292 (11)N6—C191.4551 (19)
S2—O21.4305 (11)N6—C181.455 (2)
S2—N21.6707 (13)O4—C171.2373 (18)
S2—C111.7580 (14)N2—H010.80 (2)
Br1—C141.8920 (14)C7—H7A0.9800
N1—C21.3801 (16)C7—H7B0.9800
N1—N21.3979 (15)C7—H7C0.9800
N1—C61.4150 (17)N4—H020.86 (2)
C2—N41.3167 (18)N4—H030.85 (2)
C2—N31.3361 (17)C12—H120.9500
N3—C41.3342 (18)C13—H130.9500
C4—C51.3971 (19)C15—H150.9500
C5—C61.4235 (18)C16—H160.9500
C5—C81.4235 (19)C17—H170.9500
C6—O11.2281 (16)C18—H18A0.9800
C8—N51.147 (2)C18—H18B0.9800
C11—C121.392 (2)C18—H18C0.9800
C11—C161.3918 (19)C19—H19A0.9800
C12—C131.387 (2)C19—H19B0.9800
C13—C141.391 (2)C19—H19C0.9800
C14—C151.388 (2)
C4—S1—C7101.66 (7)C17—N6—C18119.55 (13)
O3—S2—O2121.50 (7)C19—N6—C18118.46 (13)
O3—S2—N2103.18 (6)O4—C17—N6124.64 (14)
O2—S2—N2106.00 (6)N1—N2—H01111.8 (14)
O3—S2—C11107.29 (6)S2—N2—H01113.5 (14)
O2—S2—C11109.08 (7)S1—C7—H7A109.5
N2—S2—C11109.23 (6)S1—C7—H7B109.5
C2—N1—N2116.88 (11)H7A—C7—H7B109.5
C2—N1—C6122.54 (11)S1—C7—H7C109.5
N2—N1—C6120.02 (11)H7A—C7—H7C109.5
N4—C2—N3118.74 (12)H7B—C7—H7C109.5
N4—C2—N1119.66 (12)C2—N4—H02117.5 (13)
N3—C2—N1121.60 (12)C2—N4—H03121.9 (14)
N1—N2—S2117.24 (9)H02—N4—H03120.2 (19)
C4—N3—C2117.70 (12)C13—C12—H12120.5
N3—C4—C5123.85 (13)C11—C12—H12120.5
N3—C4—S1117.37 (10)C12—C13—H13120.3
C5—C4—S1118.77 (11)C14—C13—H13120.3
C4—C5—C6119.61 (12)C14—C15—H15120.6
C4—C5—C8121.71 (13)C16—C15—H15120.6
C6—C5—C8118.67 (12)C15—C16—H16120.3
O1—C6—N1119.46 (12)C11—C16—H16120.3
O1—C6—C5126.95 (13)O4—C17—H17117.7
N1—C6—C5113.59 (11)N6—C17—H17117.7
N5—C8—C5177.93 (16)N6—C18—H18A109.5
C12—C11—C16121.64 (13)N6—C18—H18B109.5
C12—C11—S2119.54 (10)H18A—C18—H18B109.5
C16—C11—S2118.82 (11)N6—C18—H18C109.5
C13—C12—C11118.95 (13)H18A—C18—H18C109.5
C12—C13—C14119.35 (13)H18B—C18—H18C109.5
C15—C14—C13121.82 (13)N6—C19—H19A109.5
C15—C14—Br1119.39 (11)N6—C19—H19B109.5
C13—C14—Br1118.79 (11)H19A—C19—H19B109.5
C14—C15—C16118.90 (13)N6—C19—H19C109.5
C15—C16—C11119.35 (13)H19A—C19—H19C109.5
C17—N6—C19121.65 (13)H19B—C19—H19C109.5
N2—N1—C2—N42.44 (19)C4—C5—C6—O1177.72 (13)
C6—N1—C2—N4168.95 (13)C8—C5—C6—O11.0 (2)
N2—N1—C2—N3176.97 (12)C4—C5—C6—N12.16 (18)
C6—N1—C2—N311.6 (2)C8—C5—C6—N1179.16 (12)
C2—N1—N2—S2100.31 (12)O3—S2—C11—C12160.71 (11)
C6—N1—N2—S288.07 (13)O2—S2—C11—C1227.34 (13)
O3—S2—N2—N1167.13 (9)N2—S2—C11—C1288.10 (12)
O2—S2—N2—N138.42 (11)O3—S2—C11—C1619.99 (13)
C11—S2—N2—N178.98 (11)O2—S2—C11—C16153.36 (11)
N4—C2—N3—C4175.25 (13)N2—S2—C11—C1691.20 (12)
N1—C2—N3—C45.3 (2)C16—C11—C12—C130.3 (2)
C2—N3—C4—C54.6 (2)S2—C11—C12—C13179.59 (11)
C2—N3—C4—S1174.66 (10)C11—C12—C13—C140.2 (2)
C7—S1—C4—N30.12 (13)C12—C13—C14—C150.6 (2)
C7—S1—C4—C5179.14 (12)C12—C13—C14—Br1179.51 (11)
N3—C4—C5—C68.4 (2)C13—C14—C15—C160.4 (2)
S1—C4—C5—C6170.82 (10)Br1—C14—C15—C16179.69 (11)
N3—C4—C5—C8172.98 (14)C14—C15—C16—C110.1 (2)
S1—C4—C5—C87.81 (19)C12—C11—C16—C150.5 (2)
C2—N1—C6—O1172.81 (12)S2—C11—C16—C15179.77 (11)
N2—N1—C6—O11.68 (19)C19—N6—C17—O4174.49 (15)
C2—N1—C6—C57.29 (18)C18—N6—C17—O41.3 (2)
N2—N1—C6—C5178.42 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H01···O1i0.80 (2)2.00 (2)2.7784 (15)165.5 (19)
N4—H02···O4ii0.86 (2)1.98 (2)2.8382 (16)177.9 (19)
N4—H03···O40.85 (2)2.07 (2)2.8005 (16)143.1 (18)
C12—H12···O2iii0.952.463.4096 (18)173
C7—H7B···O3iv0.982.453.2848 (19)143
C17—H17···Br1v0.953.053.6686 (15)124
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y, z+1; (iii) x+1, y+1, z+1; (iv) x, y, z+1; (v) x, y1, z.
 

References

First citationAgilent (2013). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.  Google Scholar
First citationElgemeie, G. H., El-Ezbawy, S. R. & Sood, S. A. (2003). Synth. Commun. 33, 2095–2101.  Web of Science CrossRef CAS Google Scholar
First citationElgemeie, G. H., Elghandour, A. H. & Abd Elaziz, G. W. (2007). Synth. Commun. 37, 2827–2834.  Web of Science CrossRef CAS Google Scholar
First citationElgemeie, G. H., Elsayed, S. H. & Hassan, A. S. (2009). Synth. Commun. 39, 1781–1792.  Web of Science CrossRef CAS Google Scholar
First citationElgemeie, G. H. & Mohamed, R. A. (2014). Heterocyclic Commun. 20, 257–269.  CAS Google Scholar
First citationElgemeie, G. H., Salah, A. M., Mohamed, R. A. & Jones, P. G. (2015). Acta Cryst. E71, 1319–1321.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationElgemeie, G. H. & Sood, S. A. (2001). J. Chem. Res. (S), pp. 439–441.  CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds