research communications
A comparison of the structures of some 2- and 3-substituted chromone derivatives: a structural study on the importance of the secondary carboxamide backbone for the inhibitory activity of MAO-B
aFP-ENAS-Faculdade de Ciências de Saúde, Escola Superior de Saúde da UFP, Universidade Fernando Pessoa, Rua Carlos da Maia, 296, P-4200-150 Porto, Portugal, bREQUIMTE/Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal, cDepartment of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen, AB24 3UE, Scotland, and dCIQUP/Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal
*Correspondence e-mail: jnlow111@gmail.com
The crystal structures of the 3-substituted tertiary chromone carboxamide derivative, C17H13NO3, N-methyl-4-oxo-N-phenyl-4H-chromene-3-carboxamide (1), and the chromone carbonyl pyrrolidine derivatives, C14H13NO3, 3-(pyrrolidine-1-carbonyl)-4H-chromen-4-one (3) and 2-(pyrrolidine-1-carbonyl)-4H-chromen-4-one (4) have been determined. Their structural features are discussed and compared with similar compounds namely with respect to their MAO-B inhibitory activities. The chromone carboxamide presents a –syn conformation with the aromatic rings twisted with respect to each other [the dihedral angle between the mean planes of the chromone system and the exocyclic phenyl ring is 58.48 (8)°]. The pyrrolidine derivatives also display a significant twist: the dihedral angles between the chromone system and the best plane formed by the pyrrolidine atoms are 48.9 (2) and 23.97 (12)° in (3) and (4), respectively. Compound (3) shows a short C—H⋯O intramolecular contact forming an S(7) ring. The supramolecular structures for each compound are defined by weak C—H⋯O hydrogen bonds, which link the molecules into chains and sheets. The Cambridge Structural Database gave 45 hits for compounds with a pyrrolidinecarbonyl group. A simple statistical analysis of their geometric parameters is made in order to compare them with those of the molecules determined in the present work.
1. Chemical context
Chromone (1-benzopyran-4-one) is the building block of a large family of natural and synthetic compounds of the utmost importance in medicinal chemistry (Gaspar et al., 2014). Within this group of heterocycles, chromone carboxamide derivatives have been found to display interesting biological activities, namely as adenosine receptor ligands (Gaspar et al., 2012) and as MAO-B inhibitors (Gaspar et al., 2012; Gomes et al., 2015b; Cagide et al., 2015). From the library synthesized so far, chromones (1)–(6) were selected for the present study, see Scheme. Previous data acquired on the development of new MAO-B inhibitors allowed us to conclude that 2-substituted chromones based on the N-phenyl-4-oxo-4H-2-chromone carboxamide (6) skeleton have no significant IMAO-B activity whereas 3-substituted based on the N-phenyl-4-oxo-4H-3-chromone carboxamide (5) core have been shown to be potent and selective inhibitors (Cagide et al., 2015). Structure–activity relationship (SAR) studies revealed the significance of phenylcarboxamide as a key structure. Structural investigations made so far show that the derivatives of (5) have very similar conformations and indicate that the displayed IMAO-B activity is mostly dependent on electronic factors modulated by the nature and position of the substituent group attached to the exocyclic phenyl substituent (Gomes et al., 2015a,b). Despite this, those studies do not allow inferences to be made about (i) the importance of the carboxamide group, including the amidic hydrogen atom or (ii) the configuration of the amide due to the C–N rotamer, in the molecular docking. Thus new compounds were synthesised and structurally characterized viz. N-methyl-4-oxo-N-phenyl-4H-chromene-3-carboxamide (1) and its isomer N-methyl-4-oxo-N-phenyl-4H-chromene-2-carboxamide (2), both tertiary as opposed to the secondary (5) and (6) and 3-(pyrrolidine-1-carbonyl)-4H-chromen-4-one (3) and 2-(pyrrolidine-1-carbonyl)-4H-chromen-4-one (4), which instead of the carboxamide have a carbonyl pyrrolidine linked to the chromone (see Scheme). Compounds (2), (5) and (6), N-methyl-4-oxo-N-phenyl-4H-chromene-2-carboxamide, N-phenyl-4-oxo-4H-3-chromone carboxamide and N-phenyl-4-oxo-4H-2-chromone carboxamide, have previously been characterized by X-ray diffraction (Gomes et al. 2013, Cagide et al., 2015 and Reis et al., 2014, respectively). They will be used in this study for comparative purposes.
2. Structural commentary
2.1. Molecular Conformations
As mentioned above, the compounds discussed in this work are presented in the Scheme. Compounds (2), (5) and (6) have previously been characterized. The ellipsoid plots for the remaining structures, e.g. for (1), (3) and (4), are given in Figs. 1–3. The results of the biological tests show that only (5) exhibits significant IMAO-B activity. Its isomer (6) is much less active while the remaining ones are inactive towards MAO-B, suggesting that substitution on position number 3 of the chromone is required and it must be a secondary carboxamide. As will be discussed, the presence of a tertiary amide induces significant conformational changes to the compounds that can explain the lack of activity for those compounds.
Compound (1) is a phenyl chromone carboxamide similar to (5) where the amidic hydrogen atom has been replaced by a methyl substituent. Since the nitrogen atom of the amide tends to be planar due to the partial sp2 of the C—N bond and, owing to the high around that bond, often exhibit –anti/–syn conformations with respect to the C–N rotamer. The inactive chromone (1) and (2) present –syn conformations whereas chomone (5) (active) and (6) (inactive) are in the –anti form. In (5) and (6) the aromatic rings are roughly co-planar [dihedral angles between the mean planes of the aromatic rings are 10.77 (4) (Cagide et al., 2015) and 6.57 (7)° (Reis et al., 2013), respectively], while in compounds (1) and (2) the aromatic rings are twisted with respect to each other [dihedral angles between the mean planes of the chromone and the exocyclic phenyl rings are 58.48 (8) and 73.86 (5)° (Gomes et al., 2013), respectively]. The twisting is probably driven by the minimization of that would arise from the proximity of the rings.
Molecules (3) and (4) present a chromone residue and an exocycle pyrrolidine ring separated by a carbonyl spacer. The pyrrolidine ring in (3) assumes a mostly envelope shape as it is puckered at C313, with θ(2) = 0.349 (5) Å and φ(2) = 78.8 (7)°. In (4) the pyrrolidine conformation is between an envelope and a half-chair, the ring being twisted at C213—C214, with θ(2) = 0.380 (3) Å and φ(2) = 91.0 (3)°. The inactive pyrrolidines (3) and (4) also display a high degree of torsion; the dihedral angles between the chromone and the best plane formed by the pyrrolidine atoms are 48.9 (2) and 23.97 (12)° respectively. A close analysis of the –(C=O)—N bond lengths for (3) [1.337 (4) Å] and (4) [1.340 (3) Å] shows that these values are comparable with those presented for the corresponding bonds in the (1) [1.361 (2) Å] and (2) [1.3528 (14) Å], indicating partial sp2 of the nitrogen atom in (3) and (4). Furthermore, a search made in the Cambridge Structural Database (Groom & Allen, 2014) for structures containing the pyrrolidinecarbonyl unit (see Database survey section below) shows that the C—N distances range between 1.294 and 1.361 Å [the mean value is 1.335 (2) Å], suggesting that in carbonyl pyrrolidines the C—N bond displays partial hybridization (Laursen et al., 2013).
2.2. Intramolecular C—H⋯O bonding
There is no intramolecular hydrogen bonding in compounds (1) and (2). This contrasts with what occurs in (5) and (6) where, due to the presence of the imidic nitrogen atom, the molecules display N—H⋯O intramolecular S(6) rings and, due to the –anti configuration, they present weak Carom—H⋯O hydrogen bonds (the carbonyl group of the amide acting as acceptor for the ortho-carbon atom of the benzyl ring), resulting in second S(6) rings (Cagide et al., 2015; Reis et al., 2014). In (3) there is a short intramolecular contact C312—H312⋯O4 in which the pyrollidine carbon atom acts as a donor to the carbonyl oxygen atom, O4, of the chromone, forming an S(7) ring. The search of the CSD (Groom & Allen, 2014) described below found five molecules containing a pyrrolidine carbonyl moiety that exhibit similar intramolecular hydrogen bonding. In conclusion, apart from precluding the formation of an intramolecular N—H⋯A bond, substitution of the amidic hydrogen atom by a methyl group in the carboxamide or the insertion of a carboxypyrrolidine unit in the chromone causes a large change in the conformational geometry of the molecules that prevents a link to the active site of the MAO-B enzyme.
3. Supramolecular features
Details of the hydrogen bonding are given in Tables 1, 2 and 3.
|
|
In compound (1) the C2—H2⋯O4(x + 1, y, z) and C5—H5⋯O1(x + 1, y, z) hydrogen bonds link the molecules into R22(8) rings which link the, molecules into chains running parallel to the a axis, Fig. 4. These chains are then linked by the C314—314⋯O3(x − 1, y + 1, z) hydrogen bond, Fig. 5, to form sheets lying parallel to [001], Fig. 6. A centrosymmetric sheet interpenetrates the first sheet, and these two sheets are linked by π–π stacking between the chromone rings [centroid–centroid distance = 3.557 (2) Å].
In compound (3) the molecules are linked by C—H⋯O interactions and by C—H⋯π interactions. The C8—H8⋯O4(−x + , −y + 1, z + ) and C314—H31E⋯O3(−x + , −y + 2, z − ) contacts both form C(6) chains running parallel to the c axis which are propagated by the twofold screw axes at (, , z) and (, 1, z), respectively, Figs. 7 and 8. These combine to form a corrugated sheet in the bc plane, Fig. 9. The C2—H2⋯O4(x + , −y + , −z + 1) interaction links the molecules into C(5) chains running along the a axis propagated by the twofold screw axis at (x, , ), Fig. 10. The C6—H6⋯O4(−x + 1, y − , −z + ) interaction links the molecules into C(6) chains running along the b axis which are propagated by the twofold screw axis at (, y, ), Fig. 11. There is also a C—H⋯π interaction C313—H31D⋯Cg(x − 2, y + , −z + ). These interactions combine to form a complex three-dimensional network.
In compound (4) there is a short contact between C214—H21C and O4(−x + 1, −y + , z − ). This forms a C(9) chain which runs along the c axis, propagated by the twofold screw axis at (, , z), Fig. 12. There is also a short contact between C8—H8 and O2(x + , −y − , z) but in this case the angle at H8 is 121° and so this interaction will be relatively weak. It forms a C(7) chain parallel to the a axis propagated by the glideplane at along the b axis, Fig. 13. There are no C—H⋯π or π–π interactions.
4. Database survey
A search of the Cambridge Structural Database (Groom & Allen, 2014) gave 45 hits for the pyrrolidinecarbonyl group for structures with R ≤ 0.10 (see supplementary data for the search fragment). The mean value for the C—O bond length was 1.235 (2) Å with a range of 1.209–1.282 Å. The values for (3) and (4) are 1.239 (4) and 1.230 (2) Å, respectively. The mean C—N bond length is 1.335 (2) Å with a range of 1.294–1.361Å. The values for (3) and (4) are 1.337 (4) and 1.340 (3) Å, respectively. The values for these compounds are close to the mean values in each case.
The torsion angles around the C(carbonyl) and N(pyrrolidine) bond involving the carbonyl O atom lie in ranges between −9.15 and 8.023° with a mean value of close to zero and between −161.33 and 166.71° with a mean value close to 180° for both the C atoms attached to the N atom within the pyrolidine group. The respective torsion angles for (3) [−0.5 (5) and 171.9 (3)°] and those for (4) [1.1 (3) and −175.3 (2)°] are well within the ranges specified above.
Intramolecular C—H⋯O short contacts similar to that in (3) are found in five compounds in the CSD: LISLAB, 1-(1-pyrrolidinylcarbonyl)cyclopropyl sulfamate (Morin et al., 2007), PEQHAU, 2-[3′-(4′′-chlorophenyl)-4′,6′-dimethoxyindol-7′-yl]glyoxyl-1-pyrrolidine (Black et al., 1997), QIBBEJ, [2-hydroxy-5-(2-hydroxybenzoyl)phenyl](pyrrolidin-1-yl)methanone (Holtz et al., 2007), SINHAZ, 2-methoxy-1-(1-pyrrolidinylcarbonyl)naphthalene (Sakamoto et al., 2007) and TAJDIR, (4S,5S)-4,5-bis(pyrrolidinylcarbonyl)-2,2-dimethyl-1,3-dioxolane (Garcia et al., 1991), Fig. 10. In LISLAB and TAJDIR, S(6) rings are formed. In QIBBEJ and SINHAZ, an S(7) ring similar to that in (2) is formed. In PEQHAU, an S(8) ring is formed, Fig. 14.
5. Synthesis and crystallization
N-methyl-4-oxo-N-phenyl-4H-chromene-3-carboxamide, (1) was synthesized in a low yield (10%) by a one-pot reaction using 4-oxo-4H-chromene-3-carboxylic acid as starting material. The activation of the carboxylic acid was obtained by the coupling reagent bromotripyrrolidinophosphonium hexafluorophosphate (PyBrOP) and the amide obtained by reacting the ester derivative with N-methylaniline. The crude product was purified by flash (ethyl acetate and ethyl acetate/ CH2Cl2 in an 4:1 ratio). Crystals suitable for X-ray diffraction were obtained from ethyl acetate.
3-(Pyrrolidine-1-carbonyl)-4H-chromen-4-one, (3) and 2-(pyrrolidine-1-carbonyl)-4H-chromen-4-one, (4) were synthesized in moderate yields, 57% and 45%, by a one-pot reaction using 4-oxo-4H-chromene-3-carboxylic and 4-oxo-4H-chromene-2-carboxylic acids, respectively, as starting materials. The synthetic strategy encompasses the activation of the chromone carboxylic acids by reaction with phosphorus(V) oxychloride with formation in situ of an acid chloride intermediate. The acid chlorides react with pyrrolidine giving the desired Crystals suitable for X-ray diffraction for both compounds were obtained from a solution of CH2Cl2/n-hexane solvent 1:1, m.p. for (3): 421–426K; m.p. for (4): 382–386K.
6. Refinement
Crystal data, data collection and structure . H atoms were treated as riding atoms with C—H(aromatic) = 0.95 Å and C—H(CH2) = 0.99 Å with Uiso = 1.2Ueq(C), and C—H(methyl) = 0.98Å with Uiso = 1.5Ueq(C). The methyl hydrogen atoms were generated in idealized positions and checked on a final difference map.
details are summarized in Table 4
|
Supporting information
https://doi.org/10.1107/S2056989015017958/lh5791sup1.cif
contains datablocks general, 1, 3, 4. DOI:Structure factors: contains datablock 1. DOI: https://doi.org/10.1107/S2056989015017958/lh57911sup2.hkl
Structure factors: contains datablock 3. DOI: https://doi.org/10.1107/S2056989015017958/lh57913sup3.hkl
Structure factors: contains datablock 4. DOI: https://doi.org/10.1107/S2056989015017958/lh57914sup4.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989015017958/lh57911sup5.cml
Supporting information file. DOI: https://doi.org/10.1107/S2056989015017958/lh57913sup6.cml
Supporting information file. DOI: https://doi.org/10.1107/S2056989015017958/lh57914sup7.cml
For all compounds, data collection: CrystalClear-SM Expert (Rigaku, 2012); cell
CrystalClear-SM Expert (Rigaku, 2012); data reduction: CrystalClear-SM Expert (Rigaku, 2012). Program(s) used to solve structure: SHELXS (Sheldrick, 2015), PLATON (Spek, 2009), Flipper 25 (Oszlányi & Sütő, 2004) and Olex2 (Dolomanov et al., 2009 for (1); SHELXS (Sheldrick, 2015), PLATON (Spek, 2009), Flipper 25 (Oszlányi & Sütő, 2004) and Olex2 (Dolomanov et al., 2009). for (3); SHELXS (Sheldrick, 2015), PLATON (Spek, 2009), Flipper 25 (Oszlányi & Sütő, 2004) and Olex2 (Dolomanov et al., 2009) for (4). For all compounds, program(s) used to refine structure: OSCAIL (McArdle et al., 2004), ShelXle (Hübschle et al., 2011) and SHELXL2014/17 (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: OSCAIL (McArdle et al., 2004), SHELXL2014/17 (Sheldrick, 2015) and PLATON (Spek, 2009).C17H13NO3 | Z = 4 |
Mr = 279.28 | F(000) = 584 |
Monoclinic, P21/c | Dx = 1.383 Mg m−3 |
a = 6.716 (4) Å | Mo Kα radiation, λ = 0.71075 Å |
b = 6.809 (4) Å | µ = 0.10 mm−1 |
c = 29.425 (17) Å | T = 100 K |
β = 94.784 (7)° | Rod, colourless |
V = 1340.9 (14) Å3 | 0.25 × 0.07 × 0.06 mm |
Rigaku Saturn724+ diffractometer | 3032 independent reflections |
Radiation source: Rotating Anode | 2304 reflections with I > 2σ(I) |
Confocal monochromator | Rint = 0.043 |
Detector resolution: 28.5714 pixels mm-1 | θmax = 27.4°, θmin = 3.0° |
profile data from ω–scans | h = −8→8 |
Absorption correction: multi-scan (CrystalClear-SM Expert; Rigaku, 2012) | k = −8→8 |
Tmin = 0.572, Tmax = 1.000 | l = −17→38 |
6206 measured reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.056 | H-atom parameters constrained |
wR(F2) = 0.133 | w = 1/[σ2(Fo2) + (0.0336P)2 + 1.136P] where P = (Fo2 + 2Fc2)/3 |
S = 1.07 | (Δ/σ)max < 0.001 |
3032 reflections | Δρmax = 0.30 e Å−3 |
190 parameters | Δρmin = −0.25 e Å−3 |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.6806 (2) | 0.7176 (2) | 0.54188 (5) | 0.0226 (3) | |
O3 | 0.6513 (2) | 0.4530 (2) | 0.66760 (5) | 0.0351 (4) | |
O4 | 0.1517 (2) | 0.5956 (2) | 0.59524 (5) | 0.0219 (3) | |
N3 | 0.4090 (3) | 0.6598 (2) | 0.68645 (5) | 0.0204 (4) | |
C2 | 0.6722 (3) | 0.6736 (3) | 0.58634 (7) | 0.0206 (4) | |
H2 | 0.7952 | 0.6604 | 0.6045 | 0.025* | |
C3 | 0.5026 (3) | 0.6467 (3) | 0.60699 (6) | 0.0181 (4) | |
C4 | 0.3091 (3) | 0.6483 (3) | 0.58017 (6) | 0.0176 (4) | |
C4A | 0.3200 (3) | 0.7089 (3) | 0.53230 (6) | 0.0175 (4) | |
C5 | 0.1473 (3) | 0.7317 (3) | 0.50257 (7) | 0.0225 (4) | |
H5 | 0.0196 | 0.7139 | 0.5136 | 0.027* | |
C6 | 0.1615 (3) | 0.7800 (3) | 0.45738 (7) | 0.0262 (5) | |
H6 | 0.0437 | 0.7970 | 0.4376 | 0.031* | |
C7 | 0.3497 (3) | 0.8040 (3) | 0.44074 (7) | 0.0250 (5) | |
H7 | 0.3586 | 0.8342 | 0.4095 | 0.030* | |
C8 | 0.5213 (3) | 0.7842 (3) | 0.46923 (7) | 0.0228 (4) | |
H8 | 0.6488 | 0.8018 | 0.4581 | 0.027* | |
C8A | 0.5041 (3) | 0.7376 (3) | 0.51492 (6) | 0.0184 (4) | |
C31 | 0.5272 (3) | 0.5798 (3) | 0.65592 (7) | 0.0218 (4) | |
C32 | 0.4238 (4) | 0.5723 (3) | 0.73235 (7) | 0.0329 (6) | |
H32A | 0.3328 | 0.6409 | 0.7513 | 0.049* | |
H32B | 0.3872 | 0.4331 | 0.7302 | 0.049* | |
H32C | 0.5612 | 0.5848 | 0.7461 | 0.049* | |
C311 | 0.2721 (3) | 0.8175 (3) | 0.67737 (6) | 0.0180 (4) | |
C312 | 0.0764 (3) | 0.7959 (4) | 0.68895 (7) | 0.0296 (5) | |
H312 | 0.0338 | 0.6752 | 0.7011 | 0.036* | |
C313 | −0.0547 (4) | 0.9506 (5) | 0.68268 (8) | 0.0428 (7) | |
H313 | −0.1879 | 0.9361 | 0.6908 | 0.051* | |
C314 | 0.0046 (4) | 1.1271 (4) | 0.66470 (8) | 0.0450 (8) | |
H314 | −0.0873 | 1.2330 | 0.6605 | 0.054* | |
C315 | 0.1985 (4) | 1.1481 (3) | 0.65283 (8) | 0.0352 (6) | |
H315 | 0.2394 | 1.2679 | 0.6399 | 0.042* | |
C316 | 0.3337 (3) | 0.9941 (3) | 0.65974 (6) | 0.0225 (4) | |
H316 | 0.4679 | 1.0098 | 0.6524 | 0.027* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0171 (7) | 0.0268 (8) | 0.0242 (7) | 0.0015 (6) | 0.0046 (6) | −0.0019 (6) |
O3 | 0.0367 (10) | 0.0375 (9) | 0.0303 (8) | 0.0219 (8) | −0.0014 (7) | 0.0022 (7) |
O4 | 0.0176 (7) | 0.0269 (8) | 0.0215 (7) | −0.0015 (6) | 0.0035 (5) | 0.0009 (6) |
N3 | 0.0232 (9) | 0.0203 (8) | 0.0178 (8) | 0.0059 (7) | 0.0024 (7) | 0.0032 (6) |
C2 | 0.0162 (10) | 0.0218 (10) | 0.0236 (10) | 0.0045 (8) | −0.0001 (8) | −0.0030 (8) |
C3 | 0.0151 (10) | 0.0187 (9) | 0.0206 (9) | 0.0021 (8) | 0.0018 (7) | −0.0025 (7) |
C4 | 0.0164 (10) | 0.0161 (9) | 0.0203 (9) | 0.0013 (8) | 0.0024 (7) | −0.0019 (7) |
C4A | 0.0180 (10) | 0.0153 (9) | 0.0195 (9) | 0.0008 (8) | 0.0032 (7) | −0.0026 (7) |
C5 | 0.0181 (10) | 0.0257 (11) | 0.0238 (10) | −0.0004 (9) | 0.0025 (8) | −0.0009 (8) |
C6 | 0.0254 (11) | 0.0299 (12) | 0.0227 (10) | 0.0018 (10) | −0.0019 (8) | 0.0010 (8) |
C7 | 0.0343 (12) | 0.0213 (10) | 0.0202 (9) | −0.0002 (9) | 0.0063 (9) | 0.0007 (8) |
C8 | 0.0254 (11) | 0.0181 (10) | 0.0263 (10) | 0.0004 (9) | 0.0101 (8) | −0.0027 (8) |
C8A | 0.0178 (10) | 0.0148 (9) | 0.0227 (9) | 0.0012 (8) | 0.0024 (8) | −0.0029 (7) |
C31 | 0.0190 (10) | 0.0226 (10) | 0.0235 (10) | 0.0049 (9) | −0.0005 (8) | 0.0002 (8) |
C32 | 0.0523 (16) | 0.0281 (12) | 0.0183 (10) | 0.0063 (11) | 0.0021 (10) | 0.0045 (8) |
C311 | 0.0160 (10) | 0.0215 (10) | 0.0162 (8) | 0.0055 (8) | −0.0006 (7) | −0.0028 (7) |
C312 | 0.0219 (11) | 0.0415 (13) | 0.0257 (10) | 0.0011 (10) | 0.0035 (9) | −0.0075 (9) |
C313 | 0.0223 (12) | 0.071 (2) | 0.0347 (13) | 0.0161 (13) | −0.0016 (10) | −0.0213 (13) |
C314 | 0.0448 (16) | 0.0515 (17) | 0.0355 (13) | 0.0353 (14) | −0.0166 (12) | −0.0195 (12) |
C315 | 0.0542 (16) | 0.0229 (11) | 0.0257 (11) | 0.0127 (11) | −0.0121 (11) | −0.0039 (9) |
C316 | 0.0254 (11) | 0.0232 (10) | 0.0181 (9) | 0.0021 (9) | −0.0023 (8) | −0.0017 (8) |
O1—C2 | 1.348 (2) | C7—C8 | 1.374 (3) |
O1—C8A | 1.377 (2) | C7—H7 | 0.9500 |
O3—C31 | 1.229 (2) | C8—C8A | 1.395 (3) |
O4—C4 | 1.233 (2) | C8—H8 | 0.9500 |
N3—C31 | 1.361 (3) | C32—H32A | 0.9800 |
N3—C311 | 1.425 (3) | C32—H32B | 0.9800 |
N3—C32 | 1.472 (3) | C32—H32C | 0.9800 |
C2—C3 | 1.347 (3) | C311—C316 | 1.386 (3) |
C2—H2 | 0.9500 | C311—C312 | 1.393 (3) |
C3—C4 | 1.464 (3) | C312—C313 | 1.375 (3) |
C3—C31 | 1.506 (3) | C312—H312 | 0.9500 |
C4—C4A | 1.476 (3) | C313—C314 | 1.385 (4) |
C4A—C8A | 1.391 (3) | C313—H313 | 0.9500 |
C4A—C5 | 1.402 (3) | C314—C315 | 1.384 (4) |
C5—C6 | 1.381 (3) | C314—H314 | 0.9500 |
C5—H5 | 0.9500 | C315—C316 | 1.391 (3) |
C6—C7 | 1.403 (3) | C315—H315 | 0.9500 |
C6—H6 | 0.9500 | C316—H316 | 0.9500 |
C2—O1—C8A | 118.54 (16) | O1—C8A—C8 | 116.18 (18) |
C31—N3—C311 | 125.50 (16) | C4A—C8A—C8 | 122.26 (19) |
C31—N3—C32 | 116.47 (17) | O3—C31—N3 | 121.05 (18) |
C311—N3—C32 | 118.03 (17) | O3—C31—C3 | 119.82 (18) |
C3—C2—O1 | 124.97 (19) | N3—C31—C3 | 119.13 (17) |
C3—C2—H2 | 117.5 | N3—C32—H32A | 109.5 |
O1—C2—H2 | 117.5 | N3—C32—H32B | 109.5 |
C2—C3—C4 | 120.15 (18) | H32A—C32—H32B | 109.5 |
C2—C3—C31 | 116.29 (18) | N3—C32—H32C | 109.5 |
C4—C3—C31 | 122.62 (17) | H32A—C32—H32C | 109.5 |
O4—C4—C3 | 123.61 (18) | H32B—C32—H32C | 109.5 |
O4—C4—C4A | 122.49 (18) | C316—C311—C312 | 120.02 (19) |
C3—C4—C4A | 113.82 (17) | C316—C311—N3 | 121.05 (18) |
C8A—C4A—C5 | 118.01 (18) | C312—C311—N3 | 118.83 (19) |
C8A—C4A—C4 | 120.47 (17) | C313—C312—C311 | 119.6 (2) |
C5—C4A—C4 | 121.47 (18) | C313—C312—H312 | 120.2 |
C6—C5—C4A | 120.51 (19) | C311—C312—H312 | 120.2 |
C6—C5—H5 | 119.7 | C312—C313—C314 | 121.0 (2) |
C4A—C5—H5 | 119.7 | C312—C313—H313 | 119.5 |
C5—C6—C7 | 120.01 (19) | C314—C313—H313 | 119.5 |
C5—C6—H6 | 120.0 | C315—C314—C313 | 119.5 (2) |
C7—C6—H6 | 120.0 | C315—C314—H314 | 120.2 |
C8—C7—C6 | 120.68 (19) | C313—C314—H314 | 120.2 |
C8—C7—H7 | 119.7 | C314—C315—C316 | 120.1 (2) |
C6—C7—H7 | 119.7 | C314—C315—H315 | 119.9 |
C7—C8—C8A | 118.51 (19) | C316—C315—H315 | 119.9 |
C7—C8—H8 | 120.7 | C311—C316—C315 | 119.8 (2) |
C8A—C8—H8 | 120.7 | C311—C316—H316 | 120.1 |
O1—C8A—C4A | 121.54 (17) | C315—C316—H316 | 120.1 |
C8A—O1—C2—C3 | 0.1 (3) | C7—C8—C8A—O1 | 179.39 (17) |
O1—C2—C3—C4 | 5.2 (3) | C7—C8—C8A—C4A | 0.7 (3) |
O1—C2—C3—C31 | 174.45 (18) | C311—N3—C31—O3 | 174.8 (2) |
C2—C3—C4—O4 | 168.55 (19) | C32—N3—C31—O3 | −6.1 (3) |
C31—C3—C4—O4 | 0.0 (3) | C311—N3—C31—C3 | −6.0 (3) |
C2—C3—C4—C4A | −8.3 (3) | C32—N3—C31—C3 | 173.13 (19) |
C31—C3—C4—C4A | −176.85 (17) | C2—C3—C31—O3 | −42.0 (3) |
O4—C4—C4A—C8A | −169.94 (18) | C4—C3—C31—O3 | 126.9 (2) |
C3—C4—C4A—C8A | 7.0 (3) | C2—C3—C31—N3 | 138.8 (2) |
O4—C4—C4A—C5 | 7.5 (3) | C4—C3—C31—N3 | −52.3 (3) |
C3—C4—C4A—C5 | −175.54 (18) | C31—N3—C311—C316 | −54.2 (3) |
C8A—C4A—C5—C6 | 0.5 (3) | C32—N3—C311—C316 | 126.7 (2) |
C4—C4A—C5—C6 | −177.09 (19) | C31—N3—C311—C312 | 129.5 (2) |
C4A—C5—C6—C7 | 0.9 (3) | C32—N3—C311—C312 | −49.6 (3) |
C5—C6—C7—C8 | −1.4 (3) | C316—C311—C312—C313 | 0.1 (3) |
C6—C7—C8—C8A | 0.7 (3) | N3—C311—C312—C313 | 176.53 (19) |
C2—O1—C8A—C4A | −1.6 (3) | C311—C312—C313—C314 | 0.5 (3) |
C2—O1—C8A—C8 | 179.71 (17) | C312—C313—C314—C315 | 0.1 (4) |
C5—C4A—C8A—O1 | −179.89 (17) | C313—C314—C315—C316 | −1.2 (3) |
C4—C4A—C8A—O1 | −2.3 (3) | C312—C311—C316—C315 | −1.3 (3) |
C5—C4A—C8A—C8 | −1.2 (3) | N3—C311—C316—C315 | −177.58 (18) |
C4—C4A—C8A—C8 | 176.34 (18) | C314—C315—C316—C311 | 1.8 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
C2—H2···O4i | 0.95 | 2.47 | 3.253 (3) | 140 |
C5—H5···O1ii | 0.95 | 2.49 | 3.432 (3) | 172 |
C314—H314···O3iii | 0.95 | 2.33 | 3.255 (3) | 164 |
Symmetry codes: (i) x+1, y, z; (ii) x−1, y, z; (iii) x−1, y+1, z. |
C14H13NO3 | Dx = 1.437 Mg m−3 |
Mr = 243.25 | Mo Kα radiation, λ = 0.71075 Å |
Orthorhombic, P212121 | Cell parameters from 4253 reflections |
a = 7.430 (3) Å | θ = 2.3–31.2° |
b = 11.963 (6) Å | µ = 0.10 mm−1 |
c = 12.648 (6) Å | T = 100 K |
V = 1124.2 (9) Å3 | Lath, colourless |
Z = 4 | 0.22 × 0.07 × 0.03 mm |
F(000) = 512 |
Rigaku Saturn724+ diffractometer | 3294 independent reflections |
Radiation source: Rotating Anode | 3066 reflections with I > 2σ(I) |
Confocal monochromator | Rint = 0.031 |
Detector resolution: 28.5714 pixels mm-1 | θmax = 31.3°, θmin = 2.3° |
profile data from ω–scans | h = −8→10 |
Absorption correction: multi-scan (CrystalClear-SM Expert; Rigaku, 2012) | k = −17→15 |
Tmin = 0.978, Tmax = 0.997 | l = −18→18 |
7547 measured reflections |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.069 | w = 1/[σ2(Fo2) + (0.0459P)2 + 1.1472P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.152 | (Δ/σ)max < 0.001 |
S = 1.07 | Δρmax = 0.51 e Å−3 |
3294 reflections | Δρmin = −0.44 e Å−3 |
163 parameters | Absolute structure: Flack x determined using 946 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
0 restraints | Absolute structure parameter: −0.1 (6) |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.8069 (3) | 0.5658 (2) | 0.58566 (17) | 0.0247 (5) | |
O3 | 0.6707 (4) | 0.8949 (2) | 0.5280 (2) | 0.0362 (6) | |
O4 | 0.5779 (3) | 0.66383 (19) | 0.30612 (18) | 0.0255 (5) | |
N311 | 0.7972 (4) | 0.8846 (2) | 0.3665 (2) | 0.0292 (6) | |
C2 | 0.7960 (5) | 0.6739 (3) | 0.5573 (2) | 0.0254 (7) | |
H2 | 0.8374 | 0.7277 | 0.6068 | 0.030* | |
C3 | 0.7316 (4) | 0.7126 (3) | 0.4646 (2) | 0.0224 (6) | |
C4 | 0.6548 (4) | 0.6348 (3) | 0.3885 (2) | 0.0215 (6) | |
C4A | 0.6710 (4) | 0.5165 (3) | 0.4186 (2) | 0.0212 (6) | |
C5 | 0.6124 (4) | 0.4305 (3) | 0.3517 (2) | 0.0236 (6) | |
H5 | 0.5596 | 0.4485 | 0.2855 | 0.028* | |
C6 | 0.6304 (5) | 0.3197 (3) | 0.3812 (3) | 0.0263 (7) | |
H6 | 0.5910 | 0.2620 | 0.3351 | 0.032* | |
C7 | 0.7069 (5) | 0.2928 (3) | 0.4790 (3) | 0.0271 (7) | |
H7 | 0.7185 | 0.2166 | 0.4992 | 0.033* | |
C8 | 0.7659 (5) | 0.3762 (3) | 0.5466 (3) | 0.0259 (6) | |
H8 | 0.8178 | 0.3581 | 0.6131 | 0.031* | |
C8A | 0.7474 (4) | 0.4865 (3) | 0.5153 (2) | 0.0223 (6) | |
C31 | 0.7301 (5) | 0.8378 (3) | 0.4541 (3) | 0.0259 (6) | |
C312 | 0.8921 (6) | 0.8294 (3) | 0.2780 (3) | 0.0318 (8) | |
H31A | 0.8245 | 0.7634 | 0.2523 | 0.038* | |
H31B | 1.0147 | 0.8057 | 0.2991 | 0.038* | |
C313 | 0.8989 (7) | 0.9193 (3) | 0.1957 (4) | 0.0430 (10) | |
H31C | 0.7881 | 0.9192 | 0.1522 | 0.052* | |
H31D | 1.0043 | 0.9093 | 0.1487 | 0.052* | |
C314 | 0.9147 (8) | 1.0274 (4) | 0.2587 (3) | 0.0477 (12) | |
H31E | 0.8685 | 1.0916 | 0.2175 | 0.057* | |
H31F | 1.0414 | 1.0421 | 0.2784 | 0.057* | |
C315 | 0.7994 (5) | 1.0074 (3) | 0.3571 (3) | 0.0360 (8) | |
H31G | 0.8542 | 1.0424 | 0.4203 | 0.043* | |
H31H | 0.6763 | 1.0374 | 0.3474 | 0.043* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0315 (12) | 0.0273 (11) | 0.0153 (9) | −0.0027 (10) | −0.0022 (9) | −0.0007 (8) |
O3 | 0.0401 (14) | 0.0323 (13) | 0.0362 (14) | 0.0008 (11) | 0.0038 (12) | −0.0126 (11) |
O4 | 0.0296 (12) | 0.0265 (11) | 0.0202 (10) | 0.0029 (10) | −0.0052 (9) | 0.0009 (9) |
N311 | 0.0379 (16) | 0.0207 (12) | 0.0288 (14) | −0.0021 (12) | −0.0007 (13) | −0.0022 (11) |
C2 | 0.0289 (16) | 0.0275 (15) | 0.0196 (14) | −0.0026 (13) | −0.0011 (13) | −0.0041 (12) |
C3 | 0.0221 (14) | 0.0245 (14) | 0.0208 (14) | 0.0004 (12) | 0.0003 (12) | −0.0033 (11) |
C4 | 0.0209 (13) | 0.0247 (14) | 0.0188 (13) | 0.0017 (11) | 0.0018 (11) | −0.0011 (11) |
C4A | 0.0195 (13) | 0.0259 (14) | 0.0180 (13) | −0.0005 (12) | 0.0013 (11) | 0.0002 (11) |
C5 | 0.0246 (14) | 0.0289 (15) | 0.0174 (13) | −0.0008 (12) | 0.0003 (12) | −0.0013 (11) |
C6 | 0.0300 (17) | 0.0246 (15) | 0.0243 (15) | −0.0042 (12) | 0.0012 (13) | −0.0017 (12) |
C7 | 0.0325 (17) | 0.0236 (14) | 0.0252 (15) | −0.0005 (13) | 0.0028 (14) | 0.0053 (12) |
C8 | 0.0274 (15) | 0.0310 (16) | 0.0193 (14) | 0.0007 (13) | −0.0019 (13) | 0.0044 (12) |
C8A | 0.0205 (14) | 0.0292 (15) | 0.0171 (13) | −0.0013 (12) | 0.0008 (11) | −0.0012 (11) |
C31 | 0.0267 (15) | 0.0261 (15) | 0.0250 (14) | −0.0003 (13) | −0.0040 (13) | −0.0043 (12) |
C312 | 0.045 (2) | 0.0271 (16) | 0.0229 (15) | −0.0047 (16) | 0.0005 (15) | 0.0001 (13) |
C313 | 0.047 (2) | 0.042 (2) | 0.040 (2) | 0.0007 (19) | 0.010 (2) | 0.0069 (17) |
C314 | 0.076 (3) | 0.036 (2) | 0.030 (2) | −0.019 (2) | −0.009 (2) | 0.0046 (16) |
C315 | 0.042 (2) | 0.0226 (15) | 0.044 (2) | −0.0042 (15) | −0.0086 (17) | 0.0010 (14) |
O1—C2 | 1.345 (4) | C6—H6 | 0.9500 |
O1—C8A | 1.374 (4) | C7—C8 | 1.386 (5) |
O3—C31 | 1.239 (4) | C7—H7 | 0.9500 |
O4—C4 | 1.238 (4) | C8—C8A | 1.384 (4) |
N311—C31 | 1.337 (4) | C8—H8 | 0.9500 |
N311—C315 | 1.474 (4) | C312—C313 | 1.498 (5) |
N311—C312 | 1.480 (5) | C312—H31A | 0.9900 |
C2—C3 | 1.348 (4) | C312—H31B | 0.9900 |
C2—H2 | 0.9500 | C313—C314 | 1.524 (6) |
C3—C4 | 1.455 (4) | C313—H31C | 0.9900 |
C3—C31 | 1.504 (4) | C313—H31D | 0.9900 |
C4—C4A | 1.471 (4) | C314—C315 | 1.529 (6) |
C4A—C8A | 1.396 (4) | C314—H31E | 0.9900 |
C4A—C5 | 1.401 (4) | C314—H31F | 0.9900 |
C5—C6 | 1.383 (5) | C315—H31G | 0.9900 |
C5—H5 | 0.9500 | C315—H31H | 0.9900 |
C6—C7 | 1.399 (5) | ||
C2—O1—C8A | 118.2 (2) | O1—C8A—C4A | 121.4 (3) |
C31—N311—C315 | 119.2 (3) | C8—C8A—C4A | 122.4 (3) |
C31—N311—C312 | 128.2 (3) | O3—C31—N311 | 121.8 (3) |
C315—N311—C312 | 112.2 (3) | O3—C31—C3 | 119.0 (3) |
O1—C2—C3 | 125.7 (3) | N311—C31—C3 | 119.2 (3) |
O1—C2—H2 | 117.2 | N311—C312—C313 | 102.8 (3) |
C3—C2—H2 | 117.2 | N311—C312—H31A | 111.2 |
C2—C3—C4 | 119.7 (3) | C313—C312—H31A | 111.2 |
C2—C3—C31 | 114.9 (3) | N311—C312—H31B | 111.2 |
C4—C3—C31 | 125.1 (3) | C313—C312—H31B | 111.2 |
O4—C4—C3 | 124.0 (3) | H31A—C312—H31B | 109.1 |
O4—C4—C4A | 121.7 (3) | C312—C313—C314 | 104.4 (3) |
C3—C4—C4A | 114.3 (3) | C312—C313—H31C | 110.9 |
C8A—C4A—C5 | 117.8 (3) | C314—C313—H31C | 110.9 |
C8A—C4A—C4 | 120.5 (3) | C312—C313—H31D | 110.9 |
C5—C4A—C4 | 121.7 (3) | C314—C313—H31D | 110.9 |
C6—C5—C4A | 120.7 (3) | H31C—C313—H31D | 108.9 |
C6—C5—H5 | 119.7 | C313—C314—C315 | 104.5 (3) |
C4A—C5—H5 | 119.7 | C313—C314—H31E | 110.9 |
C5—C6—C7 | 119.9 (3) | C315—C314—H31E | 110.9 |
C5—C6—H6 | 120.0 | C313—C314—H31F | 110.9 |
C7—C6—H6 | 120.0 | C315—C314—H31F | 110.9 |
C8—C7—C6 | 120.6 (3) | H31E—C314—H31F | 108.9 |
C8—C7—H7 | 119.7 | N311—C315—C314 | 103.2 (3) |
C6—C7—H7 | 119.7 | N311—C315—H31G | 111.1 |
C8A—C8—C7 | 118.6 (3) | C314—C315—H31G | 111.1 |
C8A—C8—H8 | 120.7 | N311—C315—H31H | 111.1 |
C7—C8—H8 | 120.7 | C314—C315—H31H | 111.1 |
O1—C8A—C8 | 116.2 (3) | H31G—C315—H31H | 109.1 |
C8A—O1—C2—C3 | −0.2 (5) | C5—C4A—C8A—O1 | −179.5 (3) |
O1—C2—C3—C4 | 4.3 (5) | C4—C4A—C8A—O1 | 1.0 (4) |
O1—C2—C3—C31 | 178.5 (3) | C5—C4A—C8A—C8 | −0.3 (5) |
C2—C3—C4—O4 | 173.1 (3) | C4—C4A—C8A—C8 | −179.8 (3) |
C31—C3—C4—O4 | −0.4 (5) | C315—N311—C31—O3 | −0.5 (5) |
C2—C3—C4—C4A | −5.3 (4) | C312—N311—C31—O3 | 171.9 (3) |
C31—C3—C4—C4A | −178.8 (3) | C315—N311—C31—C3 | −178.7 (3) |
O4—C4—C4A—C8A | −175.6 (3) | C312—N311—C31—C3 | −6.3 (5) |
C3—C4—C4A—C8A | 2.8 (4) | C2—C3—C31—O3 | −46.6 (4) |
O4—C4—C4A—C5 | 4.9 (5) | C4—C3—C31—O3 | 127.2 (4) |
C3—C4—C4A—C5 | −176.7 (3) | C2—C3—C31—N311 | 131.6 (3) |
C8A—C4A—C5—C6 | −0.1 (5) | C4—C3—C31—N311 | −54.6 (5) |
C4—C4A—C5—C6 | 179.4 (3) | C31—N311—C312—C313 | 168.7 (4) |
C4A—C5—C6—C7 | 0.4 (5) | C315—N311—C312—C313 | −18.4 (4) |
C5—C6—C7—C8 | −0.4 (5) | N311—C312—C313—C314 | 32.8 (5) |
C6—C7—C8—C8A | 0.0 (5) | C312—C313—C314—C315 | −36.0 (5) |
C2—O1—C8A—C8 | 178.2 (3) | C31—N311—C315—C314 | 169.9 (3) |
C2—O1—C8A—C4A | −2.5 (4) | C312—N311—C315—C314 | −3.6 (4) |
C7—C8—C8A—O1 | 179.6 (3) | C313—C314—C315—N311 | 24.0 (4) |
C7—C8—C8A—C4A | 0.3 (5) |
Cg is the centroid of the benzene ring C4A/C5–C8/C8A |
D—H···A | D—H | H···A | D···A | D—H···A |
C312—H31A···O4 | 0.99 | 2.29 | 3.082 (5) | 136 |
C2—H2···O4i | 0.95 | 2.47 | 3.338 (4) | 152 |
C6—H6···O4ii | 0.95 | 2.48 | 3.389 (4) | 161 |
C8—H8···O4iii | 0.95 | 2.57 | 3.514 (4) | 170 |
C314—H31E···O3iv | 0.99 | 2.42 | 3.128 (5) | 128 |
C313—H31D···Cgv | 0.99 | 2.59 | 3.570 (6) | 170 |
Symmetry codes: (i) x+1/2, −y+3/2, −z+1; (ii) −x+1, y−1/2, −z+1/2; (iii) −x+3/2, −y+1, z+1/2; (iv) −x+3/2, −y+2, z−1/2; (v) x−1/2, −y+3/2, −z+1. |
C14H13NO3 | Dx = 1.411 Mg m−3 |
Mr = 243.25 | Mo Kα radiation, λ = 0.71075 Å |
Orthorhombic, Aba2 | Cell parameters from 3760 reflections |
a = 15.337 (6) Å | θ = 2.3–31.2° |
b = 21.940 (8) Å | µ = 0.10 mm−1 |
c = 6.808 (3) Å | T = 100 K |
V = 2290.8 (16) Å3 | Needle, colourless |
Z = 8 | 0.50 × 0.04 × 0.02 mm |
F(000) = 1024 |
Rigaku Saturn724+ diffractometer | 3374 independent reflections |
Radiation source: Rotating Anode | 3079 reflections with I > 2σ(I) |
Confocal monochromator | Rint = 0.034 |
Detector resolution: 28.5714 pixels mm-1 | θmax = 31.3°, θmin = 2.3° |
profile data from ω–scans | h = −21→17 |
Absorption correction: multi-scan (CrystalClear-SM Expert; Rigaku, 2012) | k = −29→31 |
Tmin = 0.952, Tmax = 0.998 | l = −9→8 |
9598 measured reflections |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.048 | w = 1/[σ2(Fo2) + (0.0386P)2 + 1.0329P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.102 | (Δ/σ)max < 0.001 |
S = 1.11 | Δρmax = 0.32 e Å−3 |
3374 reflections | Δρmin = −0.21 e Å−3 |
163 parameters | Absolute structure: Flack x determined using 1043 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
1 restraint | Absolute structure parameter: 1.2 (5) |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.60596 (8) | 0.22901 (6) | 0.4803 (2) | 0.0186 (3) | |
O2 | 0.42149 (9) | 0.32316 (7) | 0.4657 (3) | 0.0254 (4) | |
O4 | 0.42290 (10) | 0.09521 (7) | 0.4038 (3) | 0.0244 (4) | |
C2 | 0.52132 (12) | 0.24216 (9) | 0.4484 (3) | 0.0176 (4) | |
C3 | 0.45851 (13) | 0.19980 (9) | 0.4233 (3) | 0.0193 (4) | |
H3 | 0.3999 | 0.2124 | 0.4038 | 0.023* | |
C4 | 0.47910 (13) | 0.13519 (9) | 0.4255 (3) | 0.0191 (4) | |
C4A | 0.57164 (13) | 0.12141 (9) | 0.4559 (3) | 0.0182 (4) | |
C5 | 0.60362 (13) | 0.06129 (9) | 0.4609 (4) | 0.0207 (4) | |
H5 | 0.5647 | 0.0281 | 0.4423 | 0.025* | |
C6 | 0.69058 (14) | 0.05020 (9) | 0.4923 (4) | 0.0227 (5) | |
H6 | 0.7113 | 0.0094 | 0.4973 | 0.027* | |
C7 | 0.74912 (15) | 0.09874 (9) | 0.5172 (4) | 0.0220 (4) | |
H7 | 0.8093 | 0.0906 | 0.5375 | 0.026* | |
C8 | 0.71978 (14) | 0.15805 (9) | 0.5122 (3) | 0.0203 (4) | |
H8 | 0.7592 | 0.1911 | 0.5286 | 0.024* | |
C8A | 0.63128 (13) | 0.16867 (9) | 0.4826 (3) | 0.0174 (4) | |
C21 | 0.49892 (13) | 0.30951 (9) | 0.4482 (3) | 0.0186 (4) | |
N211 | 0.56212 (11) | 0.35131 (7) | 0.4300 (3) | 0.0185 (4) | |
C212 | 0.53740 (13) | 0.41656 (8) | 0.4348 (4) | 0.0203 (4) | |
H21G | 0.5017 | 0.4259 | 0.5522 | 0.024* | |
H21H | 0.5043 | 0.4280 | 0.3156 | 0.024* | |
C213 | 0.62437 (14) | 0.44949 (9) | 0.4428 (4) | 0.0233 (5) | |
H21E | 0.6442 | 0.4548 | 0.5801 | 0.028* | |
H21F | 0.6207 | 0.4899 | 0.3789 | 0.028* | |
C214 | 0.68522 (14) | 0.40700 (10) | 0.3296 (4) | 0.0231 (5) | |
H21C | 0.6780 | 0.4123 | 0.1861 | 0.028* | |
H21D | 0.7469 | 0.4146 | 0.3648 | 0.028* | |
C215 | 0.65665 (13) | 0.34367 (9) | 0.3941 (4) | 0.0208 (4) | |
H21A | 0.6676 | 0.3132 | 0.2896 | 0.025* | |
H21B | 0.6874 | 0.3309 | 0.5152 | 0.025* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0133 (6) | 0.0152 (6) | 0.0271 (8) | −0.0003 (5) | −0.0021 (6) | 0.0001 (7) |
O2 | 0.0154 (7) | 0.0248 (7) | 0.0360 (10) | 0.0030 (5) | −0.0001 (7) | 0.0003 (8) |
O4 | 0.0199 (8) | 0.0242 (7) | 0.0289 (10) | −0.0073 (6) | 0.0007 (7) | −0.0016 (7) |
C2 | 0.0166 (9) | 0.0184 (8) | 0.0177 (10) | 0.0008 (7) | 0.0000 (8) | −0.0008 (9) |
C3 | 0.0155 (9) | 0.0211 (9) | 0.0213 (11) | −0.0005 (7) | 0.0013 (8) | 0.0010 (10) |
C4 | 0.0191 (10) | 0.0209 (9) | 0.0173 (11) | −0.0035 (7) | 0.0021 (8) | −0.0006 (9) |
C4A | 0.0188 (9) | 0.0181 (8) | 0.0177 (11) | −0.0024 (7) | 0.0028 (8) | 0.0002 (9) |
C5 | 0.0212 (10) | 0.0175 (8) | 0.0235 (11) | −0.0027 (7) | 0.0028 (9) | 0.0009 (9) |
C6 | 0.0245 (11) | 0.0167 (9) | 0.0267 (12) | 0.0018 (7) | 0.0039 (9) | 0.0013 (10) |
C7 | 0.0185 (10) | 0.0230 (10) | 0.0244 (12) | 0.0018 (8) | 0.0010 (9) | 0.0030 (10) |
C8 | 0.0179 (10) | 0.0197 (9) | 0.0233 (11) | −0.0014 (7) | −0.0008 (8) | 0.0002 (9) |
C8A | 0.0172 (9) | 0.0161 (8) | 0.0189 (10) | 0.0002 (7) | −0.0004 (8) | 0.0009 (8) |
C21 | 0.0174 (9) | 0.0199 (9) | 0.0185 (11) | 0.0022 (7) | −0.0011 (8) | −0.0006 (9) |
N211 | 0.0160 (8) | 0.0163 (7) | 0.0231 (10) | 0.0013 (6) | −0.0010 (7) | −0.0011 (8) |
C212 | 0.0216 (10) | 0.0167 (9) | 0.0225 (11) | 0.0034 (7) | −0.0021 (9) | 0.0005 (9) |
C213 | 0.0242 (10) | 0.0165 (9) | 0.0291 (13) | −0.0021 (7) | −0.0011 (9) | 0.0011 (10) |
C214 | 0.0190 (11) | 0.0238 (11) | 0.0263 (12) | −0.0028 (8) | −0.0009 (9) | 0.0022 (10) |
C215 | 0.0143 (9) | 0.0185 (9) | 0.0295 (12) | 0.0004 (7) | −0.0004 (8) | 0.0008 (9) |
O1—C2 | 1.347 (2) | C8—C8A | 1.392 (3) |
O1—C8A | 1.380 (2) | C8—H8 | 0.9500 |
O2—C21 | 1.230 (2) | C21—N211 | 1.340 (3) |
O4—C4 | 1.239 (2) | N211—C215 | 1.480 (3) |
C2—C3 | 1.349 (3) | N211—C212 | 1.481 (2) |
C2—C21 | 1.517 (3) | C212—C213 | 1.518 (3) |
C3—C4 | 1.452 (3) | C212—H21G | 0.9900 |
C3—H3 | 0.9500 | C212—H21H | 0.9900 |
C4—C4A | 1.466 (3) | C213—C214 | 1.528 (3) |
C4A—C8A | 1.395 (3) | C213—H21E | 0.9900 |
C4A—C5 | 1.408 (3) | C213—H21F | 0.9900 |
C5—C6 | 1.373 (3) | C214—C215 | 1.522 (3) |
C5—H5 | 0.9500 | C214—H21C | 0.9900 |
C6—C7 | 1.403 (3) | C214—H21D | 0.9900 |
C6—H6 | 0.9500 | C215—H21A | 0.9900 |
C7—C8 | 1.377 (3) | C215—H21B | 0.9900 |
C7—H7 | 0.9500 | ||
C2—O1—C8A | 118.59 (15) | O2—C21—C2 | 117.10 (17) |
O1—C2—C3 | 124.10 (18) | N211—C21—C2 | 120.19 (17) |
O1—C2—C21 | 115.27 (16) | C21—N211—C215 | 130.26 (16) |
C3—C2—C21 | 120.60 (17) | C21—N211—C212 | 118.31 (16) |
C2—C3—C4 | 121.05 (19) | C215—N211—C212 | 111.34 (15) |
C2—C3—H3 | 119.5 | N211—C212—C213 | 103.65 (16) |
C4—C3—H3 | 119.5 | N211—C212—H21G | 111.0 |
O4—C4—C3 | 122.60 (19) | C213—C212—H21G | 111.0 |
O4—C4—C4A | 122.99 (19) | N211—C212—H21H | 111.0 |
C3—C4—C4A | 114.41 (17) | C213—C212—H21H | 111.0 |
C8A—C4A—C5 | 117.71 (18) | H21G—C212—H21H | 109.0 |
C8A—C4A—C4 | 120.01 (18) | C212—C213—C214 | 103.19 (17) |
C5—C4A—C4 | 122.28 (17) | C212—C213—H21E | 111.1 |
C6—C5—C4A | 120.57 (18) | C214—C213—H21E | 111.1 |
C6—C5—H5 | 119.7 | C212—C213—H21F | 111.1 |
C4A—C5—H5 | 119.7 | C214—C213—H21F | 111.1 |
C5—C6—C7 | 120.39 (19) | H21E—C213—H21F | 109.1 |
C5—C6—H6 | 119.8 | C215—C214—C213 | 103.63 (19) |
C7—C6—H6 | 119.8 | C215—C214—H21C | 111.0 |
C8—C7—C6 | 120.3 (2) | C213—C214—H21C | 111.0 |
C8—C7—H7 | 119.8 | C215—C214—H21D | 111.0 |
C6—C7—H7 | 119.8 | C213—C214—H21D | 111.0 |
C7—C8—C8A | 118.71 (19) | H21C—C214—H21D | 109.0 |
C7—C8—H8 | 120.6 | N211—C215—C214 | 103.08 (17) |
C8A—C8—H8 | 120.6 | N211—C215—H21A | 111.1 |
O1—C8A—C8 | 115.90 (17) | C214—C215—H21A | 111.1 |
O1—C8A—C4A | 121.82 (17) | N211—C215—H21B | 111.1 |
C8—C8A—C4A | 122.28 (18) | C214—C215—H21B | 111.1 |
O2—C21—N211 | 122.71 (18) | H21A—C215—H21B | 109.1 |
C8A—O1—C2—C3 | 1.8 (3) | C5—C4A—C8A—O1 | −179.9 (2) |
C8A—O1—C2—C21 | 179.99 (19) | C4—C4A—C8A—O1 | −0.3 (3) |
O1—C2—C3—C4 | −1.2 (4) | C5—C4A—C8A—C8 | 0.4 (3) |
C21—C2—C3—C4 | −179.3 (2) | C4—C4A—C8A—C8 | 180.0 (2) |
C2—C3—C4—O4 | 179.6 (2) | O1—C2—C21—O2 | −163.5 (2) |
C2—C3—C4—C4A | −0.2 (3) | C3—C2—C21—O2 | 14.8 (3) |
O4—C4—C4A—C8A | −178.9 (2) | O1—C2—C21—N211 | 16.3 (3) |
C3—C4—C4A—C8A | 0.9 (3) | C3—C2—C21—N211 | −165.4 (2) |
O4—C4—C4A—C5 | 0.6 (4) | O2—C21—N211—C215 | −175.3 (2) |
C3—C4—C4A—C5 | −179.5 (2) | C2—C21—N211—C215 | 5.0 (4) |
C8A—C4A—C5—C6 | 0.4 (4) | O2—C21—N211—C212 | 1.1 (3) |
C4—C4A—C5—C6 | −179.1 (2) | C2—C21—N211—C212 | −178.7 (2) |
C4A—C5—C6—C7 | −0.9 (4) | C21—N211—C212—C213 | 171.5 (2) |
C5—C6—C7—C8 | 0.6 (4) | C215—N211—C212—C213 | −11.5 (3) |
C6—C7—C8—C8A | 0.1 (3) | N211—C212—C213—C214 | 31.0 (2) |
C2—O1—C8A—C8 | 178.7 (2) | C212—C213—C214—C215 | −39.4 (2) |
C2—O1—C8A—C4A | −1.0 (3) | C21—N211—C215—C214 | 163.8 (2) |
C7—C8—C8A—O1 | 179.6 (2) | C212—N211—C215—C214 | −12.8 (3) |
C7—C8—C8A—C4A | −0.7 (3) | C213—C214—C215—N211 | 31.8 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
C8—H8···O2i | 0.95 | 2.55 | 3.137 (3) | 121 |
C214—H21C···O4ii | 0.99 | 2.47 | 3.340 (3) | 146 |
Symmetry codes: (i) x+1/2, −y+1/2, z; (ii) −x+1, −y+1/2, z−1/2. |
Acknowledgements
The authors thank the staff at the National Crystallographic Service, University of Southampton (Coles & Gale, 2012), for the data collection, help and advice and the Foundation for Science and Technology (FCT) of Portugal (QUI/UI0081/2015). FC (SFRH/BPD/74491/2010) is supported by an FCT grant.
References
Black, D. St C., Craig, D. C. & McConnell, D. B. (1997). Tetrahedron Lett. 38, 4287–4290. CSD CrossRef Web of Science Google Scholar
Cagide, F., Silva, T., Reis, J., Gaspar, A., Borges, F., Gomes, L. R. & Low, J. N. (2015). Chem. Commun. 51, 2832–2835. Web of Science CSD CrossRef CAS Google Scholar
Coles, S. J. & Gale, P. A. (2012). Chem. Sci. 3, 683–689. Web of Science CSD CrossRef CAS Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Garcia, J. G., Fronczek, F. R. & McLaughlin, M. L. (1991). Acta Cryst. C47, 206–209. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Gaspar, A., Matos, M. J., Garrido, J., Uriarte, E. & Borges, F. (2014). Chem. Rev. 114, 4960–4992. Web of Science CrossRef CAS PubMed Google Scholar
Gaspar, A., Reis, J., Kachler, S., Paoletta, S., Uriarte, E., Klotz, K. N., Moro, S. & Borges, F. (2012). Biochem. Pharmacol. 84, 21–29. Web of Science CrossRef CAS PubMed Google Scholar
Gomes, L. R., Low, J. N., Cagide, F. & Borges, F. (2015a). Acta Cryst. E71, 88–93. CSD CrossRef IUCr Journals Google Scholar
Gomes, L. R., Low, J. N., Cagide, F., Chavarria, D. & Borges, F. (2015b). Acta Cryst. E71, 547–554. CSD CrossRef IUCr Journals Google Scholar
Gomes, L. R., Low, J. N., Cagide, F., Gaspar, A., Reis, J. & Borges, F. (2013). Acta Cryst. B69, 294–309. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671. Web of Science CSD CrossRef CAS Google Scholar
Holtz, E., Albrecht, U. & Langer, P. (2007). Tetrahedron, 63, 3293–3301. Web of Science CSD CrossRef CAS Google Scholar
Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284. Web of Science CrossRef IUCr Journals Google Scholar
Laursen, J. S., Engel-Andreasen, J., Fristrup, P., Harris, P. & Olsen, C. A. (2013). J. Am. Chem. Soc. 135, 2835–2844. Web of Science CSD CrossRef CAS PubMed Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
McArdle, P., Gilligan, K., Cunningham, D., Dark, R. & Mahon, M. (2004). CrystEngComm, 6, 303–309. Web of Science CSD CrossRef CAS Google Scholar
Morin, M. S. T., Toumieux, S., Compain, P., Peyrat, S. & Kalinowska-Tluscik, J. (2007). Tetrahedron Lett. 48, 8531–8535. Web of Science CSD CrossRef CAS Google Scholar
Oszlányi, G. & Sütő, A. (2004). Acta Cryst. A60, 134–141. Web of Science CrossRef IUCr Journals Google Scholar
Reis, J., Gaspar, A., Borges, F., Gomes, L. R. & Low, J. N. (2013). Acta Cryst. C69, 1527–1533. Web of Science CSD CrossRef IUCr Journals Google Scholar
Reis, J., Gaspar, A., Borges, F., Gomes, L. R. & Low, J. N. (2014). J. Mol. Struct. 1056–1057, 31–37. Web of Science CSD CrossRef CAS Google Scholar
Rigaku (2012). CrystalClear SM Expert. Rigaku Corporation, Tokyo, Japan. Google Scholar
Sakamoto, M., Unosawa, A., Kobaru, S., Fujita, K., Mino, T. & Fujita, T. (2007). Chem. Commun. pp. 3586–3588. Web of Science CSD CrossRef Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.