research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of three co-crystals of 4,4′-bi­pyridyl with 4-alk­­oxy­benzoic acids: 4-eth­­oxy­benzoic acid–4,4′-bi­pyridyl (2/1), 4-n-propoxybenzoic acid–4,4′-bi­pyridyl (2/1) and 4-n-but­­oxy­benzoic acid–4,4′-bi­pyridyl (2/1)

aDepartment of Chemistry, Faculty of Science, Okayama University, Okayama 700-8530, Japan
*Correspondence e-mail: ishidah@cc.okayama-u.ac.jp

Edited by A. J. Lough, University of Toronto, Canada (Received 26 September 2015; accepted 2 October 2015; online 7 October 2015)

The crystal structures of three hydrogen-bonded co-crystals of 4-alk­oxy­benzoic acid–4,4′-bipyridyl (2/1), namely, 2C9H10O3·C10H8N2, (I), 2C10H12O3·C10H8N2, (II) and 2C11H14O3·C10H8N2, (III), have been determined at 93 K. Although the structure of (I) has been determined in the space group P21 with Z = 4 [Lai et al. (2008[Lai, L.-L., Lee, L.-J., Luo, D.-W., Liu, Y.-H. & Wang, Y. (2008). J. Struct. Chem. 49, 1137-1140.]). J. Struct. Chem. 49, 1137–1140], the present study shows that the space group is P21/n with Z = 4. In each crystal, the components are linked by O—H⋯N hydrogen bonds, forming a linear hydrogen-bonded 2:1 unit of the acid and the base. The 2:1 unit of (I) adopts nearly pseudo-C2 symmetry, viz. twofold rotation around an axis passing through the mid-point of the central C—C bond of 4,4′-bipyridyl, while the units of (II) and (III), except for the terminal alkyl chains, have pseudo-inversion symmetry. The 2:1 units of (I), (II) and (III) are linked via C—H⋯O hydrogen bonds, forming sheet, double-tape and tape structures, respectively.

1. Chemical context

The 4-alk­oxy­benzoic acid–4,4′-bipyridyl (2/1) system, in which the two acids and the base are held together by inter­molecular O—H⋯N hydrogen bonds, shows thermotropic liquid crystallinity (Kato et al., 1990[Kato, T., Wilson, P. G., Fujishima, A. & Fréchet, J. M. J. (1990). Chem. Lett. pp. 2003-2006.], 1993[Kato, T., Fréchet, J. M. J., Wilson, P. G., Saito, T., Uryu, T., Fujishima, A., Jin, C. & Kaneuchi, F. (1993). Chem. Mater. 5, 1094-1100.]; Grunert et al., 1997[Grunert, M., Howie, A., Kaeding, A. & Imrie, C. T. (1997). J. Mater. Chem. 7, 211-214.]). The compounds of 4-meth­oxy-, 4-eth­oxy- and 4-n-propoxybenzoic acid show nematic phases, while the compound of 4-n-but­oxy­benzoic acid exhibits a smectic A phase and then a nematic phase with increasing temperature (Kato et al., 1990[Kato, T., Wilson, P. G., Fujishima, A. & Fréchet, J. M. J. (1990). Chem. Lett. pp. 2003-2006.], 1993[Kato, T., Fréchet, J. M. J., Wilson, P. G., Saito, T., Uryu, T., Fujishima, A., Jin, C. & Kaneuchi, F. (1993). Chem. Mater. 5, 1094-1100.]). The crystal structure of 4-meth­oxy­benzoic acid–4,4′-bipyridyl (2/1) was reported recently (Mukherjee & Desiraju, 2014[Mukherjee, A. & Desiraju, G. R. (2014). Cryst. Growth Des. 14, 1375-1385.]; Ramon et al., 2014[Ramon, G., Davies, K. & Nassimbeni, L. R. (2014). CrystEngComm, 16, 5802-5810.]). Although the structure of 4-eth­oxy­benzoic acid–4,4′-bipyridyl (2/1) in space group P21 was also reported (Lai et al., 2008[Lai, L.-L., Lee, L.-J., Luo, D.-W., Liu, Y.-H. & Wang, Y. (2008). J. Struct. Chem. 49, 1137-1140.]), the mol­ecular structure is distorted probably due to the wrong choice of space group. In the present study, we have analysed the structure of 4-eth­oxy­benzoic acid–4,4′-bipyridyl (2/1), (I)[link], as well as the structures of 4-n-propoxybenzoic acid–4,4′-bipyridyl (2/1), (II)[link], and 4-n-but­oxy­benzoic acid–4,4′-bipyrid­yl(2/1), (III)[link].

[Scheme 1]

2. Structural commentary

The mol­ecular structure of (I)[link] is shown in Fig. 1[link]. Compound (I)[link] crystallizes in the space group P21/n with Z = 4. For the structure (space group P21) previously determined by Lai et al. (2008[Lai, L.-L., Lee, L.-J., Luo, D.-W., Liu, Y.-H. & Wang, Y. (2008). J. Struct. Chem. 49, 1137-1140.]), ADDSYM in PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) detected missed symmetry elements, viz. a centre of inversion and a glide plane. The mol­ecular structures of (II)[link] and (III)[link] are shown in Figs. 2[link] and 3[link], respectively. The asymmetric units each comprise two crystallographically independent 4-alk­oxy­benzoic acid mol­ecules and one 4,4′-bipyridyl mol­ecule, and the two acids and the base are held together by O—H⋯N hydrogen bonds (Tables 1[link], 2[link] and 3[link]), forming a linear hydrogen-bonded 2:1 aggregate. Similar to the reported structure of the 2:1 unit of 4-meth­oxy­benzoic acid–4,4′-bipyridyl (2/1) (Mukherjee & Desiraju, 2014[Mukherjee, A. & Desiraju, G. R. (2014). Cryst. Growth Des. 14, 1375-1385.]; Ramon et al., 2014[Ramon, G., Davies, K. & Nassimbeni, L. R. (2014). CrystEngComm, 16, 5802-5810.]), the 2:1 unit of (I)[link] also adopts nearly pseudo-C2 symmetry, viz. twofold rotation around an axis passing through the mid-point of the central C21—C26 bond of the 4,4′-bipyridyl mol­ecule. On the other hand, the 2:1 units of (II)[link] and (III)[link], except for the terminal alkyl chains, have pseudo-inversion symmetry.

Table 1
Hydrogen-bond geometry (Å, °) for (I)[link]

Cg1 and Cg2 are the centroids of the C1–C6 and C10–C15 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.942 (19) 1.72 (2) 2.6587 (11) 177.2 (19)
O4—H4⋯N2 0.948 (19) 1.690 (19) 2.6312 (11) 171.4 (19)
C12—H12⋯O2i 0.95 2.43 3.3712 (11) 172
C14—H14⋯O1ii 0.95 2.56 3.2288 (11) 128
C24—H24⋯O3ii 0.95 2.57 3.4407 (12) 153
C9—H9ACg2iii 0.98 2.68 3.6450 (11) 169
C18—H18CCg1iv 0.98 2.67 3.6253 (11) 164
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) [x+{\script{3\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) x-2, y, z+1; (iv) x+2, y, z-1.

Table 2
Hydrogen-bond geometry (Å, °) for (II)[link]

Cg1 and Cg2 are the centroids of the C1–C6 and C11–C16 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 1.03 (2) 1.61 (2) 2.6407 (10) 174.3 (19)
O4—H4⋯N2 1.01 (2) 1.67 (2) 2.6728 (11) 173.9 (18)
C3—H3⋯O5i 0.95 2.57 3.3981 (11) 146
C25—H25⋯O3ii 0.95 2.57 3.4581 (11) 156
C9—H9BCg2iii 0.99 2.84 3.6750 (1) 142
C19—H19ACg1iv 0.99 2.72 3.5781 (1) 146
Symmetry codes: (i) -x+1, -y+2, -z; (ii) -x, -y+2, -z; (iii) x-2, y, z-1; (iv) x+2, y, z+1.

Table 3
Hydrogen-bond geometry (Å, °) for (III)[link]

Cg1 and Cg2 are the centroids of the C1–C6 and C12–C17 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 1.04 (3) 1.56 (3) 2.600 (3) 173 (3)
O4—H4⋯N2 1.00 (4) 1.64 (4) 2.636 (3) 172 (4)
C24—H24⋯O5i 0.95 2.47 3.408 (3) 171
C29—H29⋯O2ii 0.95 2.53 3.456 (3) 164
C2—H2⋯Cg2iii 0.95 2.98 3.754 (3) 139
C8—H8BCg2iv 0.99 2.68 3.518 (3) 143
C19—H19BCg1v 0.99 2.77 3.586 (3) 140
Symmetry codes: (i) x, y-1, z; (ii) x, y+1, z; (iii) -x, -y+1, -z; (iv) -x+1, -y, -z; (v) -x+1, -y+1, -z.
[Figure 1]
Figure 1
The mol­ecular structure of compound (I)[link], showing the atom-numbering scheme. Displacement ellipsoids of non-H atoms are drawn at the 50% probability level and H atoms are drawn as circles of arbitrary size. The O—H⋯N hydrogen bonds are indicated by dashed lines.
[Figure 2]
Figure 2
The mol­ecular structure of compound (II)[link], showing the atom-numbering scheme. Displacement ellipsoids of non-H atoms are drawn at the 50% probability level and H atoms are drawn as circles of arbitrary size. The O—H⋯N hydrogen bonds are indicated by dashed lines.
[Figure 3]
Figure 3
The mol­ecular structure of compound (III)[link], showing the atom-numbering scheme. Displacement ellipsoids of non-H atoms are drawn at the 50% probability level and H atoms are drawn as circles of arbitrary size. The O—H⋯N hydrogen bonds are indicated by dashed lines.

The dihedral angles between the pyridine rings of 4,4′-bipyridyl are 27.95 (5), 28.84 (4) and 38.76 (12)° for (I)[link], (II)[link] and (III)[link], respectively. The pyridine ring and the carboxyl group hydrogen-bonded to it are twisted slightly to each other. The dihedral angles between the N1/C19–C23 and O1/O2/C7 planes, and the N2/C24–C28 and O4/O5/C16 planes are 6.54 (11) and 10.31 (11)°, respectively, in (I)[link], those between the N1/C21–C25 and O1/O2/C7 planes, and the N2/C26–C30 and O4/O5/C17 planes are 12.13 (10) and 13.96 (10)°, respectively, in (II)[link], and those between the N1/C23–C27 and O1/O2/C7 planes, and the N2/C28–C32 and O4/O5/C18 planes are 13.7 (3) and 8.5 (3)°, respectively, in (III)[link].

The mol­ecular structures of the eth­oxy- and propoxy­benzoic acids in (I)[link] and (II)[link] are approximately planar. The dihedral angles made by the benzene ring with the carboxyl group and the alk­oxy group in each eth­oxy­benzoic acid in (I)[link] are 9.60 (10), 1.13 (11), 4.48 (9) and 7.57 (9)°, respectively, between the C1–C6 and O1/O2/C7 planes, the C10–C15 and O4/O5/C16 planes, the C1–C6 and O3/C8/C9 planes, and the C10–C15 and O6/C17/C18 planes. The corresponding dihedral angles in (II)[link] are 2.42 (10), 2.48 (10), 2.96 (7) and 5.82 (7)°, respectively, between the C1–C6 and O1/O2/C7 planes, the C11–C16 and O4/O5/C17 planes, the C1–C6 and O3/C8/C9/C10 planes, and the C11–C16 and O6/C18/C19/C20 planes. The but­oxy­benzoic acid mol­ecules in (III)[link] are also planar, except for the terminal ethyl groups which deviate from the mol­ecular plane with dihedral angles of 66.6 (3) and 60.7 (3)°, respectively, between the C4/O3/C8 and C9/C10/C11planes, and the C15/O6/C19 and C20/C21/C22 planes. The dihedral angles made by the benzene ring with the carboxyl group and the alk­oxy group are 5.6 (3), 5.4 (3), 5.2 (2) and 4.3 (2)°, respectively, between the C1–C6 and O1/O2/C7 planes, the C12–C17 and O4/O5/C18 planes, the C1–C6 and O3/C8/C9 planes, and the C11–C16 and O6/C19/C20 planes.

3. Supra­molecular features

In the crystal of (I)[link], the 2:1 units are linked by C—H⋯O hydrogen bonds (Table 1[link]), forming a sheet structure parallel to (103) (Fig. 4[link]). In addition, the units are stacked in a column through ππ inter­actions between the acid and base rings along the a axis (Fig. 5[link]). The centroid–centroid distances between the C1–C6 and N1/C19–C23(x − 1, y, z) rings, and between the C10–C15 and N2/C24–C28 (x + 1, y, z) rings are 3.7052 (5) and 3.7752 (6) Å, respectively. C—H⋯π inter­actions (Table 1[link]) are also observed between the columns and between the sheets.

[Figure 4]
Figure 4
A partial packing diagram of compound (I)[link], showing the sheet structure formed by O—H⋯N and C—H⋯O hydrogen bonds (dashed lines). H atoms not involved in the hydrogen bonds have been omitted. [Symmetry codes: (i) −x + 1, −y + 1, −z + 1; (ii) x + [{3\over 2}], −y + [{1\over 2}], z − [{1\over 2}].]
[Figure 5]
Figure 5
A partial packing diagram of compound (I)[link], showing the column structure formed by ππ stacking inter­actions (dashed lines). H atoms not involved in the O—H⋯N hydrogen bonds have been omitted. [Symmetry codes: (iii) x + 1, y, z; (iv) x − 1, y, z.]

In the crystal of (II)[link] and (III)[link], the 2:1 units are linked by C—H⋯O inter­actions (Tables 2[link] and 3[link]), forming a double-tape structure along the a axis (Fig. 6[link]) and a tape structure along the b axis (Fig. 7[link]), respectively. Between the tapes in (II)[link] and (III)[link] C—H⋯π inter­actions are observed (Tables 2[link] and 3[link]). A packing diagram of (III)[link] viewed along the a axis, which is approximately perpendicular to the mean plane of the 2:1 unit, is shown in Fig. 8[link]. The units are arranged into a layer parallel to the bc plane, which leads to a smectic structure. On the other hand, no such a layer structure is observed in compounds (I)[link] and (II)[link], which form nematic liquid phases.

[Figure 6]
Figure 6
A partial packing diagram of compound (II)[link], showing the double-tape structure formed by C—H⋯O inter­actions. H atoms not involved in the C—H⋯O and O—H⋯N hydrogen bonds (dashed lines) have been omitted. [Symmetry codes: (i) −x + 1, −y + 2, −z; (ii) −x, −y + 2, −z.]
[Figure 7]
Figure 7
A partial packing diagram of compound (III)[link], showing the tape structure formed by C—H⋯O inter­actions. H atoms not involved in the C—H⋯O and O—H⋯N hydrogen bonds (dashed lines) have been omitted. [Symmetry codes: (i) x, y − 1, z; (ii) x, y + 1, z.]
[Figure 8]
Figure 8
A packing diagram of compound (III)[link] viewed along the a axis, showing a layer aggregate. H atoms not involved in the O—H⋯N hydrogen bonds (dashed lines) have been omitted.

4. Database survey

A search of the Cambridge Structural Database (Version 5.36, last update February 2015; Groom & Allen, 2014[Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662-671.]) for co-crystals of 4,4′-bipyridyl with 4-alk­oxy­benzoic acid gave five structures (refcodes: NOPXIZ, ORASAC, RIRGUV, YAKVAI and YANCUM), except for 4-meth­oxy­benzoic acid–4,4′-bipyridyl (2/1) and 4-eth­oxy­benzoic acid–4,4′-bipyridyl (2/1). Of these compounds, NOPXIZ, 4-[(S)-(−)-2-methyl­but­oxy]benzoic acid–4,4′-bipyridyl (2/10, shows smectic A and nematic phases (Grunert et al., 1997[Grunert, M., Howie, A., Kaeding, A. & Imrie, C. T. (1997). J. Mater. Chem. 7, 211-214.]).

5. Synthesis and crystallization

Single crystals of compound (I)[link] were obtained by slow evaporation from an acetone solution (150 ml) of 4,4′-bipyridyl (70 mg) with 4-eth­oxy­benzoic acid (150 mg) at room temperature. Crystals of compounds (II)[link] and (III)[link] were obtained from ethanol solutions of 4,4′-bipyridyl with 4-n-propoxybenzoic acid and 4-n-but­oxy­benzoic acid, respectively, at room temperature [ethanol solution (150 ml) of 4,4′-bipyridyl (65 mg) and 4-n-propoxybenzoic acid (150 mg) for (II)[link], and ethanol solution (150 ml) of 4,4′-bipyridyl (60 mg) and 4-n-but­oxy­benzoic acid (150 mg) for (III)].

Liquid crystalline phases of these compounds were confirmed by measurements of DSC (differential scanning calorimetry) and polarizing microscope. DSC measurements were performed by using Perkin Elmer Pyris 1 in the temperature range from 103 K to the melting temperature at a heating rate of 10 K min−1. Phase transition temperatures (K) and enthalpies (kJ mol−1) determined by DSC are as follows:

(I) 373 (2) [5.4 (4)] K1 → K2, 424 (1) [50 (3)] K2 → N, 442 (1) [7.2 (6)] N → I;

(II) 365 (1) [2.9 (6)] K1 → K2, 369 (1) [3.9 (2)] K2 → K3, 417 (1) [39 (1)] K3 → N, 430 (1) [5.7 (2)] N → I;

(III) 358 (1) [2.5 (2)] K1 → K2, 386 (1) [0.30 (3)] K2 → K3, 403 (1) [11.1 (5)] K3 → K4, 407 (1) [24.5 (6)] K4 → SA, 425 (1) [2.2 (6)] SA → N, 432 (1) [6.4 (1)] N → I.

Ki, SA, N and I denote crystal, smectic A, nematic and isotropic phases, respectively. The observed transition temperatures and enthalpies from the solid phase to the liquid crystalline phase are in good agreement with those reported Kato et al. (1990[Kato, T., Wilson, P. G., Fujishima, A. & Fréchet, J. M. J. (1990). Chem. Lett. pp. 2003-2006.], 1993[Kato, T., Fréchet, J. M. J., Wilson, P. G., Saito, T., Uryu, T., Fujishima, A., Jin, C. & Kaneuchi, F. (1993). Chem. Mater. 5, 1094-1100.]). Some unreported thermal anomalies, 373 (2) K for (I)[link], 365 (1) and 369 (1) K for (II)[link], and 358 (1) and 386 (1) K for (III)[link], were also observed.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. For all compounds, C-bound H atoms were positioned geometrically with C—H = 0.95–0.99 Å and were refined as riding with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C). The O-bound H atoms were located in a difference Fourier map and refined freely [refined O—H = 0.942 (19)–1.04 (3) Å].

Table 4
Experimental details

  (I) (II) (III)
Crystal data
Chemical formula 2C9H10O3·C10H8N2 2C10H12O3·C10H8N2 2C11H14O3·C10H8N2
Mr 488.52 516.57 544.63
Crystal system, space group Monoclinic, P21/n Triclinic, P[\overline{1}] Triclinic, P[\overline{1}]
Temperature (K) 93 93 93
a, b, c (Å) 9.1090 (2), 20.9348 (5), 12.8738 (4) 10.7592 (4), 10.8838 (3), 11.6462 (4) 7.6645 (10), 8.5087 (13), 22.606 (3)
α, β, γ (°) 90, 102.9429 (10), 90 86.6411 (11), 89.2313 (13), 73.8867 (12) 80.498 (3), 86.486 (3), 80.082 (3)
V3) 2392.60 (11) 1307.95 (8) 1431.5 (4)
Z 4 2 2
Radiation type Mo Kα Mo Kα Mo Kα
μ (mm−1) 0.10 0.09 0.09
Crystal size (mm) 0.28 × 0.25 × 0.10 0.50 × 0.40 × 0.10 0.53 × 0.41 × 0.11
 
Data collection
Diffractometer Rigaku R-AXIS RAPIDII Rigaku R-AXIS RAPIDII Rigaku R-AXIS RAPIDIIr
No. of measured, independent and observed [I > 2σ(I)] reflections 28629, 6941, 6004 15909, 7507, 5980 12433, 5612, 3432
Rint 0.035 0.069 0.075
(sin θ/λ)max−1) 0.703 0.703 0.617
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.127, 1.04 0.047, 0.135, 1.04 0.069, 0.193, 1.01
No. of reflections 6941 7507 5610
No. of parameters 335 354 371
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.39, −0.37 0.35, −0.32 0.24, −0.41
Computer programs: RAPID-AUTO (Rigaku, 2006[Rigaku (2006). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]), SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014/7 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), CrystalStructure (Rigaku, 2010[Rigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

For all compounds, data collection: RAPID-AUTO (Rigaku, 2006); cell refinement: RAPID-AUTO (Rigaku, 2006); data reduction: RAPID-AUTO (Rigaku, 2006). Program(s) used to solve structure: SIR92 (Altomare et al., 1994) for (I); SHELXS97 (Sheldrick, 2008) for (II), (III). For all compounds, program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: CrystalStructure (Rigaku, 2010) and PLATON (Spek, 2009).

(I) 4-Ethoxybenzoic acid–4,4'-bipyridyl (2/1) top
Crystal data top
2C9H10O3·C10H8N2F(000) = 1032.00
Mr = 488.52Dx = 1.356 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71075 Å
a = 9.1090 (2) ÅCell parameters from 23666 reflections
b = 20.9348 (5) Åθ = 3.0–30.0°
c = 12.8738 (4) ŵ = 0.10 mm1
β = 102.9429 (10)°T = 93 K
V = 2392.60 (11) Å3Needle, colorless
Z = 40.28 × 0.25 × 0.10 mm
Data collection top
Rigaku R-AXIS RAPIDII
diffractometer
Rint = 0.035
Detector resolution: 10.000 pixels mm-1θmax = 30.0°
ω scansh = 1212
28629 measured reflectionsk = 2829
6941 independent reflectionsl = 1818
6004 reflections with I > 2σ(I)
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: mixed
wR(F2) = 0.127H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0817P)2 + 0.3767P]
where P = (Fo2 + 2Fc2)/3
6941 reflections(Δ/σ)max = 0.001
335 parametersΔρmax = 0.39 e Å3
0 restraintsΔρmin = 0.37 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Reflections were merged by SHELXL according to the crystal class for the calculation of statistics and refinement.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.33398 (8)0.30866 (3)0.77777 (6)0.02333 (16)
O20.37344 (8)0.40959 (3)0.72097 (6)0.02177 (15)
O30.92113 (7)0.36336 (3)0.94659 (6)0.01856 (14)
O40.74748 (8)0.35124 (3)0.34692 (6)0.02249 (16)
O50.77838 (8)0.45585 (3)0.38227 (6)0.02363 (16)
O61.33565 (7)0.38813 (3)0.17479 (6)0.01967 (15)
N10.10882 (9)0.31350 (4)0.67751 (7)0.02016 (17)
N20.51947 (9)0.35033 (4)0.44136 (7)0.02191 (17)
C10.54350 (10)0.36269 (4)0.81521 (7)0.01557 (17)
C20.57223 (10)0.31282 (4)0.88043 (7)0.01700 (17)
H20.50480.27770.89500.020*
C30.69860 (10)0.31438 (4)0.92393 (8)0.01764 (17)
H30.71690.28060.96860.021*
C40.79903 (10)0.36588 (4)0.90180 (7)0.01553 (17)
C50.77115 (10)0.41585 (4)0.83675 (7)0.01658 (17)
H50.83880.45090.82160.020*
C60.64371 (10)0.41374 (4)0.79445 (7)0.01672 (17)
H60.62460.44780.75050.020*
C70.40997 (10)0.36318 (4)0.76677 (7)0.01667 (17)
C81.02432 (10)0.41622 (4)0.92520 (8)0.01880 (18)
H8A1.07230.41790.84820.023*
H8B0.96960.45680.94530.023*
C91.14267 (11)0.40745 (5)0.98921 (8)0.02217 (19)
H9A1.09450.40701.06530.033*
H9B1.19540.36690.96950.033*
H9C1.21500.44270.97440.033*
C100.95579 (10)0.40171 (4)0.30216 (7)0.01621 (17)
C111.04428 (10)0.45571 (4)0.30003 (8)0.01774 (17)
H111.01600.49490.32730.021*
C121.17334 (10)0.45373 (4)0.25886 (8)0.01782 (18)
H121.23280.49100.25850.021*
C131.21379 (10)0.39607 (4)0.21808 (7)0.01639 (17)
C141.12647 (10)0.34139 (4)0.22033 (8)0.01837 (18)
H141.15440.30220.19280.022*
C150.99956 (10)0.34406 (4)0.26245 (8)0.01753 (17)
H150.94160.30650.26450.021*
C160.81942 (10)0.40630 (5)0.34748 (7)0.01747 (17)
C171.43238 (10)0.44212 (5)0.17318 (8)0.02026 (19)
H17A1.48300.45430.24680.024*
H17B1.37290.47910.13880.024*
C181.54764 (11)0.42313 (5)0.11099 (8)0.0229 (2)
H18A1.59980.38430.14210.034*
H18B1.62090.45780.11390.034*
H18C1.49700.41500.03660.034*
C190.09136 (10)0.36667 (5)0.62319 (8)0.01935 (18)
H190.16620.39900.61590.023*
C200.03056 (10)0.37669 (5)0.57728 (7)0.01765 (17)
H200.03880.41530.54020.021*
C210.14130 (10)0.32950 (4)0.58603 (7)0.01586 (17)
C220.12277 (10)0.27418 (5)0.64248 (8)0.01962 (18)
H220.19540.24090.65080.024*
C230.00263 (11)0.26821 (5)0.68641 (8)0.02095 (19)
H230.01370.23030.72450.025*
C240.46423 (11)0.29264 (5)0.45714 (9)0.0242 (2)
H240.51050.25590.43520.029*
C250.34301 (11)0.28424 (5)0.50393 (9)0.0228 (2)
H250.30800.24240.51400.027*
C260.27224 (10)0.33746 (4)0.53636 (7)0.01618 (17)
C270.32923 (10)0.39752 (4)0.51958 (8)0.01849 (18)
H270.28470.43520.54000.022*
C280.45223 (11)0.40137 (5)0.47250 (8)0.02086 (19)
H280.49060.44250.46190.025*
H10.254 (2)0.3118 (9)0.7426 (17)0.059 (5)*
H40.663 (2)0.3549 (10)0.3782 (17)0.066 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0216 (3)0.0188 (3)0.0345 (4)0.0023 (3)0.0167 (3)0.0000 (3)
O20.0200 (3)0.0207 (3)0.0274 (4)0.0013 (3)0.0114 (3)0.0013 (3)
O30.0148 (3)0.0197 (3)0.0238 (3)0.0017 (2)0.0099 (2)0.0022 (2)
O40.0194 (3)0.0226 (3)0.0293 (4)0.0033 (3)0.0136 (3)0.0007 (3)
O50.0217 (3)0.0227 (3)0.0293 (4)0.0038 (3)0.0117 (3)0.0003 (3)
O60.0165 (3)0.0182 (3)0.0276 (4)0.0019 (2)0.0120 (3)0.0021 (3)
N10.0170 (3)0.0235 (4)0.0220 (4)0.0013 (3)0.0086 (3)0.0038 (3)
N20.0168 (3)0.0281 (4)0.0228 (4)0.0005 (3)0.0088 (3)0.0003 (3)
C10.0141 (4)0.0167 (4)0.0167 (4)0.0013 (3)0.0053 (3)0.0030 (3)
C20.0152 (4)0.0166 (4)0.0198 (4)0.0006 (3)0.0052 (3)0.0012 (3)
C30.0163 (4)0.0169 (4)0.0207 (4)0.0003 (3)0.0062 (3)0.0019 (3)
C40.0134 (4)0.0176 (4)0.0165 (4)0.0009 (3)0.0054 (3)0.0019 (3)
C50.0161 (4)0.0157 (4)0.0189 (4)0.0009 (3)0.0059 (3)0.0003 (3)
C60.0173 (4)0.0165 (4)0.0175 (4)0.0010 (3)0.0061 (3)0.0007 (3)
C70.0150 (4)0.0179 (4)0.0181 (4)0.0015 (3)0.0058 (3)0.0043 (3)
C80.0169 (4)0.0185 (4)0.0228 (4)0.0022 (3)0.0082 (3)0.0003 (3)
C90.0175 (4)0.0280 (5)0.0230 (5)0.0027 (4)0.0087 (3)0.0021 (4)
C100.0148 (4)0.0179 (4)0.0168 (4)0.0010 (3)0.0051 (3)0.0023 (3)
C110.0177 (4)0.0159 (4)0.0209 (4)0.0019 (3)0.0070 (3)0.0005 (3)
C120.0164 (4)0.0156 (4)0.0227 (4)0.0010 (3)0.0070 (3)0.0012 (3)
C130.0142 (4)0.0176 (4)0.0183 (4)0.0008 (3)0.0056 (3)0.0018 (3)
C140.0179 (4)0.0150 (4)0.0240 (4)0.0009 (3)0.0084 (3)0.0001 (3)
C150.0171 (4)0.0159 (4)0.0209 (4)0.0009 (3)0.0069 (3)0.0016 (3)
C160.0153 (4)0.0207 (4)0.0172 (4)0.0015 (3)0.0053 (3)0.0026 (3)
C170.0181 (4)0.0192 (4)0.0260 (5)0.0034 (3)0.0104 (4)0.0015 (3)
C180.0187 (4)0.0272 (5)0.0255 (5)0.0047 (4)0.0108 (4)0.0055 (4)
C190.0159 (4)0.0230 (4)0.0201 (4)0.0026 (3)0.0061 (3)0.0022 (3)
C200.0159 (4)0.0205 (4)0.0174 (4)0.0009 (3)0.0057 (3)0.0007 (3)
C210.0134 (4)0.0196 (4)0.0153 (4)0.0008 (3)0.0047 (3)0.0034 (3)
C220.0173 (4)0.0200 (4)0.0233 (4)0.0022 (3)0.0084 (3)0.0000 (3)
C230.0204 (4)0.0212 (4)0.0237 (4)0.0006 (3)0.0102 (4)0.0007 (3)
C240.0212 (4)0.0241 (4)0.0313 (5)0.0035 (4)0.0141 (4)0.0014 (4)
C250.0218 (4)0.0194 (4)0.0313 (5)0.0000 (4)0.0147 (4)0.0019 (4)
C260.0139 (4)0.0197 (4)0.0160 (4)0.0009 (3)0.0055 (3)0.0010 (3)
C270.0186 (4)0.0194 (4)0.0191 (4)0.0006 (3)0.0077 (3)0.0007 (3)
C280.0201 (4)0.0227 (4)0.0218 (4)0.0028 (3)0.0090 (3)0.0000 (3)
Geometric parameters (Å, º) top
O1—C71.3259 (11)C10—C161.4891 (12)
O1—H10.942 (19)C11—C121.3941 (12)
O2—C71.2208 (12)C11—H110.9500
O3—C41.3637 (10)C12—C131.3984 (13)
O3—C81.4380 (11)C12—H120.9500
O4—C161.3252 (12)C13—C141.3979 (12)
O4—H40.948 (19)C14—C151.3836 (12)
O5—C161.2213 (12)C14—H140.9500
O6—C131.3592 (10)C15—H150.9500
O6—C171.4361 (11)C17—C181.5092 (13)
N1—C231.3409 (13)C17—H17A0.9900
N1—C191.3429 (13)C17—H17B0.9900
N2—C281.3370 (13)C18—H18A0.9800
N2—C241.3412 (14)C18—H18B0.9800
C1—C61.3920 (12)C18—H18C0.9800
C1—C21.4006 (13)C19—C201.3859 (12)
C1—C71.4860 (12)C19—H190.9500
C2—C31.3887 (12)C20—C211.3983 (12)
C2—H20.9500C20—H200.9500
C3—C41.4012 (12)C21—C221.3974 (13)
C3—H30.9500C21—C261.4835 (12)
C4—C51.3984 (12)C22—C231.3892 (12)
C5—C61.3890 (12)C22—H220.9500
C5—H50.9500C23—H230.9500
C6—H60.9500C24—C251.3825 (13)
C8—C91.5077 (13)C24—H240.9500
C8—H8A0.9900C25—C261.3971 (13)
C8—H8B0.9900C25—H250.9500
C9—H9A0.9800C26—C271.3956 (13)
C9—H9B0.9800C27—C281.3905 (12)
C9—H9C0.9800C27—H270.9500
C10—C111.3923 (12)C28—H280.9500
C10—C151.4030 (12)
C7—O1—H1109.2 (12)C15—C14—C13120.28 (8)
C4—O3—C8116.70 (7)C15—C14—H14119.9
C16—O4—H4112.0 (13)C13—C14—H14119.9
C13—O6—C17118.02 (7)C14—C15—C10120.54 (8)
C23—N1—C19117.60 (8)C14—C15—H15119.7
C28—N2—C24117.50 (8)C10—C15—H15119.7
C6—C1—C2119.00 (8)O5—C16—O4123.31 (8)
C6—C1—C7118.51 (8)O5—C16—C10123.32 (8)
C2—C1—C7122.49 (8)O4—C16—C10113.37 (8)
C3—C2—C1120.48 (8)O6—C17—C18107.60 (8)
C3—C2—H2119.8O6—C17—H17A110.2
C1—C2—H2119.8C18—C17—H17A110.2
C2—C3—C4119.90 (8)O6—C17—H17B110.2
C2—C3—H3120.0C18—C17—H17B110.2
C4—C3—H3120.0H17A—C17—H17B108.5
O3—C4—C5123.84 (8)C17—C18—H18A109.5
O3—C4—C3116.20 (8)C17—C18—H18B109.5
C5—C4—C3119.96 (8)H18A—C18—H18B109.5
C6—C5—C4119.40 (8)C17—C18—H18C109.5
C6—C5—H5120.3H18A—C18—H18C109.5
C4—C5—H5120.3H18B—C18—H18C109.5
C5—C6—C1121.25 (8)N1—C19—C20123.18 (8)
C5—C6—H6119.4N1—C19—H19118.4
C1—C6—H6119.4C20—C19—H19118.4
O2—C7—O1123.00 (8)C19—C20—C21119.42 (9)
O2—C7—C1123.05 (8)C19—C20—H20120.3
O1—C7—C1113.95 (8)C21—C20—H20120.3
O3—C8—C9108.56 (8)C22—C21—C20117.29 (8)
O3—C8—H8A110.0C22—C21—C26121.30 (8)
C9—C8—H8A110.0C20—C21—C26121.41 (8)
O3—C8—H8B110.0C23—C22—C21119.50 (8)
C9—C8—H8B110.0C23—C22—H22120.2
H8A—C8—H8B108.4C21—C22—H22120.2
C8—C9—H9A109.5N1—C23—C22123.01 (9)
C8—C9—H9B109.5N1—C23—H23118.5
H9A—C9—H9B109.5C22—C23—H23118.5
C8—C9—H9C109.5N2—C24—C25122.95 (9)
H9A—C9—H9C109.5N2—C24—H24118.5
H9B—C9—H9C109.5C25—C24—H24118.5
C11—C10—C15118.58 (8)C24—C25—C26119.73 (9)
C11—C10—C16119.52 (8)C24—C25—H25120.1
C15—C10—C16121.89 (8)C26—C25—H25120.1
C10—C11—C12121.64 (8)C27—C26—C25117.37 (8)
C10—C11—H11119.2C27—C26—C21122.05 (8)
C12—C11—H11119.2C25—C26—C21120.57 (8)
C11—C12—C13118.94 (8)C28—C27—C26118.92 (8)
C11—C12—H12120.5C28—C27—H27120.5
C13—C12—H12120.5C26—C27—H27120.5
O6—C13—C14115.41 (8)N2—C28—C27123.53 (9)
O6—C13—C12124.58 (8)N2—C28—H28118.2
C14—C13—C12120.01 (8)C27—C28—H28118.2
C6—C1—C2—C30.16 (13)C11—C10—C15—C141.18 (14)
C7—C1—C2—C3179.95 (8)C16—C10—C15—C14179.68 (8)
C1—C2—C3—C40.57 (14)C11—C10—C16—O51.11 (14)
C8—O3—C4—C50.72 (13)C15—C10—C16—O5179.75 (9)
C8—O3—C4—C3179.48 (8)C11—C10—C16—O4178.52 (8)
C2—C3—C4—O3179.25 (8)C15—C10—C16—O40.62 (13)
C2—C3—C4—C50.56 (14)C13—O6—C17—C18173.89 (8)
O3—C4—C5—C6179.65 (8)C23—N1—C19—C200.45 (14)
C3—C4—C5—C60.14 (14)N1—C19—C20—C210.69 (14)
C4—C5—C6—C10.28 (14)C19—C20—C21—C220.57 (13)
C2—C1—C6—C50.27 (14)C19—C20—C21—C26178.73 (8)
C7—C1—C6—C5179.53 (8)C20—C21—C22—C230.28 (14)
C6—C1—C7—O29.58 (13)C26—C21—C22—C23179.03 (9)
C2—C1—C7—O2170.62 (9)C19—N1—C23—C220.13 (15)
C6—C1—C7—O1170.43 (8)C21—C22—C23—N10.05 (15)
C2—C1—C7—O19.37 (13)C28—N2—C24—C250.27 (16)
C4—O3—C8—C9174.93 (8)N2—C24—C25—C260.41 (17)
C15—C10—C11—C120.53 (14)C24—C25—C26—C270.13 (15)
C16—C10—C11—C12179.70 (8)C24—C25—C26—C21179.56 (9)
C10—C11—C12—C130.48 (14)C22—C21—C26—C27152.77 (9)
C17—O6—C13—C14178.14 (8)C20—C21—C26—C2727.95 (13)
C17—O6—C13—C121.77 (13)C22—C21—C26—C2527.55 (13)
C11—C12—C13—O6179.23 (9)C20—C21—C26—C25151.72 (10)
C11—C12—C13—C140.87 (14)C25—C26—C27—C280.26 (14)
O6—C13—C14—C15179.85 (8)C21—C26—C27—C28179.94 (9)
C12—C13—C14—C150.24 (14)C24—N2—C28—C270.16 (15)
C13—C14—C15—C100.80 (14)C26—C27—C28—N20.43 (15)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C1–C6 and C10–C15 rings, respectively.
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.942 (19)1.72 (2)2.6587 (11)177.2 (19)
O4—H4···N20.948 (19)1.690 (19)2.6312 (11)171.4 (19)
C12—H12···O2i0.952.433.3712 (11)172
C14—H14···O1ii0.952.563.2288 (11)128
C24—H24···O3ii0.952.573.4407 (12)153
C9—H9A···Cg2iii0.982.683.6450 (11)169
C18—H18C···Cg1iv0.982.673.6253 (11)164
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+3/2, y+1/2, z1/2; (iii) x2, y, z+1; (iv) x+2, y, z1.
(II) 4-n-Propoxybenzoic acid–4,4'-bipyridyl (2/1) top
Crystal data top
2C10H12O3·C10H8N2Z = 2
Mr = 516.57F(000) = 548.00
Triclinic, P1Dx = 1.312 Mg m3
a = 10.7592 (4) ÅMo Kα radiation, λ = 0.71075 Å
b = 10.8838 (3) ÅCell parameters from 13551 reflections
c = 11.6462 (4) Åθ = 3.0–30.0°
α = 86.6411 (11)°µ = 0.09 mm1
β = 89.2313 (13)°T = 93 K
γ = 73.8867 (12)°Block, colorless
V = 1307.95 (8) Å30.50 × 0.40 × 0.10 mm
Data collection top
Rigaku R-AXIS RAPIDII
diffractometer
Rint = 0.069
Detector resolution: 10.000 pixels mm-1θmax = 30.0°, θmin = 3.0°
ω scansh = 1515
15909 measured reflectionsk = 1315
7507 independent reflectionsl = 1616
5980 reflections with I > 2σ(I)
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.047H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.135 w = 1/[σ2(Fo2) + (0.090P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
7507 reflectionsΔρmax = 0.35 e Å3
354 parametersΔρmin = 0.32 e Å3
0 restraintsExtinction correction: SHELXL-2014/7, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.019 (4)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Reflections were merged by SHELXL according to the crystal class for the calculation of statistics and refinement.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.21741 (6)0.84171 (6)0.00993 (6)0.02370 (16)
O20.26015 (7)0.62711 (6)0.01082 (6)0.02497 (16)
O30.31475 (6)0.79522 (6)0.19102 (6)0.02084 (15)
O41.32849 (7)0.66282 (6)0.36794 (6)0.02574 (16)
O51.28863 (7)0.87599 (6)0.33722 (6)0.02456 (15)
O61.86048 (6)0.70388 (6)0.55057 (5)0.01982 (14)
N10.44816 (7)0.80971 (7)0.08178 (6)0.01957 (16)
N21.08835 (7)0.69161 (7)0.29159 (6)0.01975 (16)
C10.05619 (8)0.74854 (8)0.06643 (7)0.01587 (16)
C20.02538 (8)0.86942 (8)0.09987 (7)0.01713 (16)
H20.00380.94350.09340.021*
C30.14819 (8)0.88217 (8)0.14234 (7)0.01796 (17)
H30.20240.96440.16600.022*
C40.19207 (8)0.77306 (8)0.15022 (7)0.01676 (17)
C50.11202 (8)0.65191 (8)0.11692 (7)0.01732 (16)
H50.14160.57790.12220.021*
C60.01143 (8)0.64099 (8)0.07598 (7)0.01671 (16)
H60.06650.55860.05410.020*
C70.18746 (8)0.73163 (8)0.01851 (7)0.01780 (17)
C80.36390 (8)0.68649 (8)0.20224 (7)0.01802 (17)
H8A0.36090.63850.12700.022*
H8B0.31080.62830.25760.022*
C90.50170 (9)0.73524 (9)0.24460 (8)0.02173 (18)
H9B0.50340.77670.32280.026*
H9A0.55220.79990.19310.026*
C100.56236 (9)0.62384 (9)0.24724 (10)0.0281 (2)
H10A0.64650.65320.28620.042*
H10B0.57420.59250.16840.042*
H10C0.50530.55440.28890.042*
C111.49360 (8)0.75522 (8)0.41394 (7)0.01674 (16)
C121.57341 (9)0.63400 (8)0.44879 (7)0.01858 (17)
H121.54340.56050.44180.022*
C131.69517 (9)0.62010 (8)0.49316 (7)0.01892 (17)
H131.74850.53730.51640.023*
C141.74023 (8)0.72791 (8)0.50403 (7)0.01712 (17)
C151.66235 (9)0.84947 (8)0.46796 (7)0.01804 (17)
H151.69270.92290.47400.022*
C161.54008 (8)0.86179 (8)0.42315 (7)0.01771 (17)
H161.48730.94430.39840.021*
C171.36100 (9)0.77237 (8)0.36890 (7)0.01841 (17)
C181.91667 (8)0.80929 (8)0.55338 (7)0.01815 (17)
H18A1.86350.87610.60160.022*
H18B1.92060.84770.47470.022*
C192.05137 (9)0.75818 (9)0.60313 (8)0.02037 (18)
H19B2.10280.68880.55640.024*
H19A2.04650.72200.68250.024*
C202.11746 (9)0.86578 (9)0.60422 (9)0.0277 (2)
H20A2.06430.93600.64750.042*
H20B2.12770.89720.52510.042*
H20C2.20270.83300.64080.042*
C210.52853 (9)0.69053 (9)0.08870 (8)0.02069 (18)
H210.49700.62200.06660.025*
C220.65531 (8)0.66285 (8)0.12658 (8)0.01907 (17)
H220.70880.57710.13020.023*
C230.70378 (8)0.76194 (8)0.15928 (7)0.01608 (16)
C240.61977 (8)0.88583 (8)0.15197 (7)0.01863 (17)
H240.64880.95630.17300.022*
C250.49411 (8)0.90534 (8)0.11387 (7)0.01989 (17)
H250.43800.99000.11030.024*
C261.02841 (8)0.80376 (8)0.23616 (7)0.02020 (18)
H261.07300.86780.22730.024*
C270.90438 (8)0.83033 (8)0.19124 (7)0.01839 (17)
H270.86550.91100.15270.022*
C280.83731 (8)0.73745 (8)0.20317 (7)0.01565 (16)
C290.90043 (8)0.62059 (8)0.26043 (7)0.01836 (17)
H290.85860.55440.27010.022*
C301.02416 (9)0.60203 (8)0.30285 (7)0.02023 (18)
H301.06560.52220.34170.024*
H10.305 (2)0.8292 (19)0.0308 (18)0.088 (6)*
H41.240 (2)0.6740 (19)0.3337 (16)0.082 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0188 (3)0.0171 (3)0.0356 (4)0.0057 (3)0.0076 (3)0.0000 (3)
O20.0195 (3)0.0176 (3)0.0355 (4)0.0016 (2)0.0077 (3)0.0014 (3)
O30.0148 (3)0.0155 (3)0.0318 (3)0.0040 (2)0.0071 (2)0.0017 (2)
O40.0198 (3)0.0180 (3)0.0396 (4)0.0060 (3)0.0084 (3)0.0027 (3)
O50.0202 (3)0.0193 (3)0.0314 (3)0.0018 (3)0.0051 (3)0.0043 (3)
O60.0175 (3)0.0163 (3)0.0255 (3)0.0048 (2)0.0064 (2)0.0022 (2)
N10.0156 (3)0.0211 (4)0.0216 (3)0.0048 (3)0.0021 (3)0.0009 (3)
N20.0166 (3)0.0199 (3)0.0219 (3)0.0035 (3)0.0022 (3)0.0019 (3)
C10.0154 (4)0.0154 (4)0.0163 (3)0.0036 (3)0.0007 (3)0.0006 (3)
C20.0171 (4)0.0139 (3)0.0207 (4)0.0049 (3)0.0016 (3)0.0000 (3)
C30.0165 (4)0.0132 (3)0.0229 (4)0.0025 (3)0.0028 (3)0.0018 (3)
C40.0143 (4)0.0161 (4)0.0188 (4)0.0028 (3)0.0019 (3)0.0007 (3)
C50.0178 (4)0.0139 (4)0.0205 (4)0.0049 (3)0.0018 (3)0.0003 (3)
C60.0168 (4)0.0134 (3)0.0186 (3)0.0024 (3)0.0017 (3)0.0012 (3)
C70.0167 (4)0.0173 (4)0.0190 (4)0.0041 (3)0.0011 (3)0.0008 (3)
C80.0172 (4)0.0164 (4)0.0206 (4)0.0051 (3)0.0024 (3)0.0003 (3)
C90.0169 (4)0.0194 (4)0.0287 (4)0.0052 (3)0.0052 (3)0.0013 (3)
C100.0205 (4)0.0241 (4)0.0409 (5)0.0080 (4)0.0064 (4)0.0010 (4)
C110.0161 (4)0.0166 (4)0.0168 (3)0.0036 (3)0.0004 (3)0.0003 (3)
C120.0196 (4)0.0153 (4)0.0209 (4)0.0052 (3)0.0017 (3)0.0005 (3)
C130.0196 (4)0.0136 (4)0.0220 (4)0.0024 (3)0.0031 (3)0.0017 (3)
C140.0163 (4)0.0168 (4)0.0170 (3)0.0027 (3)0.0011 (3)0.0005 (3)
C150.0189 (4)0.0146 (4)0.0203 (4)0.0042 (3)0.0012 (3)0.0000 (3)
C160.0177 (4)0.0148 (4)0.0187 (4)0.0016 (3)0.0006 (3)0.0010 (3)
C170.0176 (4)0.0185 (4)0.0179 (4)0.0034 (3)0.0003 (3)0.0006 (3)
C180.0178 (4)0.0161 (4)0.0206 (4)0.0051 (3)0.0021 (3)0.0010 (3)
C190.0177 (4)0.0193 (4)0.0239 (4)0.0052 (3)0.0035 (3)0.0017 (3)
C200.0213 (4)0.0252 (4)0.0376 (5)0.0091 (4)0.0056 (4)0.0043 (4)
C210.0184 (4)0.0204 (4)0.0240 (4)0.0064 (3)0.0024 (3)0.0019 (3)
C220.0163 (4)0.0164 (4)0.0238 (4)0.0031 (3)0.0019 (3)0.0010 (3)
C230.0142 (4)0.0172 (4)0.0160 (3)0.0035 (3)0.0002 (3)0.0010 (3)
C240.0174 (4)0.0158 (4)0.0223 (4)0.0042 (3)0.0012 (3)0.0003 (3)
C250.0164 (4)0.0180 (4)0.0235 (4)0.0025 (3)0.0016 (3)0.0025 (3)
C260.0171 (4)0.0214 (4)0.0227 (4)0.0066 (3)0.0014 (3)0.0006 (3)
C270.0167 (4)0.0167 (4)0.0213 (4)0.0043 (3)0.0016 (3)0.0018 (3)
C280.0138 (4)0.0164 (4)0.0161 (3)0.0030 (3)0.0000 (3)0.0017 (3)
C290.0169 (4)0.0157 (4)0.0219 (4)0.0036 (3)0.0018 (3)0.0002 (3)
C300.0180 (4)0.0175 (4)0.0235 (4)0.0021 (3)0.0037 (3)0.0002 (3)
Geometric parameters (Å, º) top
O1—C71.3335 (10)C11—C171.4853 (12)
O1—H11.03 (2)C12—C131.3802 (12)
O2—C71.2208 (11)C12—H120.9500
O3—C41.3612 (10)C13—C141.4010 (11)
O3—C81.4368 (10)C13—H130.9500
O4—C171.3331 (11)C14—C151.3993 (12)
O4—H41.01 (2)C15—C161.3904 (12)
O5—C171.2190 (11)C15—H150.9500
O6—C141.3603 (10)C16—H160.9500
O6—C181.4397 (10)C18—C191.5109 (11)
N1—C251.3430 (11)C18—H18A0.9900
N1—C211.3430 (12)C18—H18B0.9900
N2—C301.3420 (11)C19—C201.5301 (12)
N2—C261.3433 (12)C19—H19B0.9900
C1—C61.3944 (11)C19—H19A0.9900
C1—C21.4004 (12)C20—H20A0.9800
C1—C71.4848 (11)C20—H20B0.9800
C2—C31.3848 (11)C20—H20C0.9800
C2—H20.9500C21—C221.3851 (12)
C3—C41.4023 (11)C21—H210.9500
C3—H30.9500C22—C231.3950 (11)
C4—C51.3963 (12)C22—H220.9500
C5—C61.3886 (11)C23—C241.3981 (11)
C5—H50.9500C23—C281.4790 (11)
C6—H60.9500C24—C251.3840 (12)
C8—C91.5084 (11)C24—H240.9500
C8—H8A0.9900C25—H250.9500
C8—H8B0.9900C26—C271.3875 (11)
C9—C101.5301 (12)C26—H260.9500
C9—H9B0.9900C27—C281.3955 (11)
C9—H9A0.9900C27—H270.9500
C10—H10A0.9800C28—C291.3990 (12)
C10—H10B0.9800C29—C301.3834 (11)
C10—H10C0.9800C29—H290.9500
C11—C161.3946 (11)C30—H300.9500
C11—C121.4002 (12)
C7—O1—H1112.5 (11)C16—C15—C14119.37 (8)
C4—O3—C8117.72 (6)C16—C15—H15120.3
C17—O4—H4113.0 (11)C14—C15—H15120.3
C14—O6—C18117.65 (6)C15—C16—C11121.16 (8)
C25—N1—C21117.73 (7)C15—C16—H16119.4
C30—N2—C26117.69 (7)C11—C16—H16119.4
C6—C1—C2118.87 (7)O5—C17—O4123.34 (8)
C6—C1—C7119.01 (7)O5—C17—C11123.60 (8)
C2—C1—C7122.11 (7)O4—C17—C11113.06 (7)
C3—C2—C1120.70 (7)O6—C18—C19107.89 (7)
C3—C2—H2119.6O6—C18—H18A110.1
C1—C2—H2119.6C19—C18—H18A110.1
C2—C3—C4119.63 (7)O6—C18—H18B110.1
C2—C3—H3120.2C19—C18—H18B110.1
C4—C3—H3120.2H18A—C18—H18B108.4
O3—C4—C5124.21 (8)C18—C19—C20110.05 (7)
O3—C4—C3115.45 (7)C18—C19—H19B109.6
C5—C4—C3120.34 (8)C20—C19—H19B109.6
C6—C5—C4119.14 (8)C18—C19—H19A109.6
C6—C5—H5120.4C20—C19—H19A109.6
C4—C5—H5120.4H19B—C19—H19A108.2
C5—C6—C1121.31 (8)C19—C20—H20A109.5
C5—C6—H6119.3C19—C20—H20B109.5
C1—C6—H6119.3H20A—C20—H20B109.5
O2—C7—O1123.50 (8)C19—C20—H20C109.5
O2—C7—C1123.11 (8)H20A—C20—H20C109.5
O1—C7—C1113.39 (7)H20B—C20—H20C109.5
O3—C8—C9107.90 (7)N1—C21—C22123.03 (8)
O3—C8—H8A110.1N1—C21—H21118.5
C9—C8—H8A110.1C22—C21—H21118.5
O3—C8—H8B110.1C21—C22—C23119.47 (8)
C9—C8—H8B110.1C21—C22—H22120.3
H8A—C8—H8B108.4C23—C22—H22120.3
C8—C9—C10109.79 (7)C22—C23—C24117.30 (8)
C8—C9—H9B109.7C22—C23—C28121.74 (8)
C10—C9—H9B109.7C24—C23—C28120.94 (8)
C8—C9—H9A109.7C25—C24—C23119.67 (8)
C10—C9—H9A109.7C25—C24—H24120.2
H9B—C9—H9A108.2C23—C24—H24120.2
C9—C10—H10A109.5N1—C25—C24122.80 (8)
C9—C10—H10B109.5N1—C25—H25118.6
H10A—C10—H10B109.5C24—C25—H25118.6
C9—C10—H10C109.5N2—C26—C27123.00 (8)
H10A—C10—H10C109.5N2—C26—H26118.5
H10B—C10—H10C109.5C27—C26—H26118.5
C16—C11—C12118.80 (8)C26—C27—C28119.40 (8)
C16—C11—C17119.71 (7)C26—C27—H27120.3
C12—C11—C17121.49 (8)C28—C27—H27120.3
C13—C12—C11120.75 (8)C27—C28—C29117.37 (7)
C13—C12—H12119.6C27—C28—C23121.57 (8)
C11—C12—H12119.6C29—C28—C23121.05 (8)
C12—C13—C14120.08 (8)C30—C29—C28119.54 (8)
C12—C13—H13120.0C30—C29—H29120.2
C14—C13—H13120.0C28—C29—H29120.2
O6—C14—C15124.82 (7)N2—C30—C29123.00 (8)
O6—C14—C13115.36 (7)N2—C30—H30118.5
C15—C14—C13119.82 (8)C29—C30—H30118.5
C6—C1—C2—C30.36 (13)C12—C11—C16—C151.18 (13)
C7—C1—C2—C3178.83 (7)C17—C11—C16—C15178.18 (7)
C1—C2—C3—C41.02 (13)C16—C11—C17—O50.98 (13)
C8—O3—C4—C51.09 (12)C12—C11—C17—O5179.69 (8)
C8—O3—C4—C3179.21 (7)C16—C11—C17—O4178.26 (7)
C2—C3—C4—O3178.88 (7)C12—C11—C17—O41.08 (12)
C2—C3—C4—C50.84 (13)C14—O6—C18—C19177.34 (7)
O3—C4—C5—C6179.70 (7)O6—C18—C19—C20178.05 (7)
C3—C4—C5—C60.01 (13)C25—N1—C21—C220.30 (13)
C4—C5—C6—C10.69 (13)N1—C21—C22—C230.11 (14)
C2—C1—C6—C50.51 (13)C21—C22—C23—C240.12 (12)
C7—C1—C6—C5178.01 (7)C21—C22—C23—C28178.42 (8)
C6—C1—C7—O21.75 (13)C22—C23—C24—C250.27 (12)
C2—C1—C7—O2179.78 (8)C28—C23—C24—C25178.04 (8)
C6—C1—C7—O1177.75 (7)C21—N1—C25—C240.72 (13)
C2—C1—C7—O10.72 (12)C23—C24—C25—N10.72 (13)
C4—O3—C8—C9178.04 (7)C30—N2—C26—C270.30 (13)
O3—C8—C9—C10174.77 (7)N2—C26—C27—C280.11 (13)
C16—C11—C12—C130.99 (13)C26—C27—C28—C290.23 (12)
C17—C11—C12—C13178.35 (8)C26—C27—C28—C23178.56 (8)
C11—C12—C13—C140.13 (13)C22—C23—C28—C27152.95 (9)
C18—O6—C14—C155.96 (12)C24—C23—C28—C2728.82 (12)
C18—O6—C14—C13174.06 (7)C22—C23—C28—C2928.31 (12)
C12—C13—C14—O6178.89 (7)C24—C23—C28—C29149.93 (8)
C12—C13—C14—C151.09 (13)C27—C28—C29—C300.37 (12)
O6—C14—C15—C16179.08 (7)C23—C28—C29—C30178.42 (8)
C13—C14—C15—C160.91 (13)C26—N2—C30—C290.15 (13)
C14—C15—C16—C110.23 (13)C28—C29—C30—N20.19 (13)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C1–C6 and C11–C16 rings, respectively.
D—H···AD—HH···AD···AD—H···A
O1—H1···N11.03 (2)1.61 (2)2.6407 (10)174.3 (19)
O4—H4···N21.01 (2)1.67 (2)2.6728 (11)173.9 (18)
C3—H3···O5i0.952.573.3981 (11)146
C25—H25···O3ii0.952.573.4581 (11)156
C9—H9B···Cg2iii0.992.843.6750 (1)142
C19—H19A···Cg1iv0.992.723.5781 (1)146
Symmetry codes: (i) x+1, y+2, z; (ii) x, y+2, z; (iii) x2, y, z1; (iv) x+2, y, z+1.
(III) 4-n-Butoxybenzoic acid–4,4'-bipyridyl (2/1) top
Crystal data top
2C11H14O3·C10H8N2Z = 2
Mr = 544.63F(000) = 580.00
Triclinic, P1Dx = 1.264 Mg m3
a = 7.6645 (10) ÅMo Kα radiation, λ = 0.71075 Å
b = 8.5087 (13) ÅCell parameters from 9788 reflections
c = 22.606 (3) Åθ = 3.2–30.1°
α = 80.498 (3)°µ = 0.09 mm1
β = 86.486 (3)°T = 93 K
γ = 80.082 (3)°Platelet, colorless
V = 1431.5 (4) Å30.53 × 0.41 × 0.11 mm
Data collection top
Rigaku R-AXIS RAPIDII
diffractometer
Rint = 0.075
Detector resolution: 10.000 pixels mm-1θmax = 26.0°
ω scansh = 89
12433 measured reflectionsk = 1010
5612 independent reflectionsl = 2727
3432 reflections with I > 2σ(I)
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.069Hydrogen site location: mixed
wR(F2) = 0.193H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0965P)2]
where P = (Fo2 + 2Fc2)/3
5610 reflections(Δ/σ)max < 0.001
371 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.41 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Reflections were merged by SHELXL according to the crystal class for the calculation of statistics and refinement.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.1390 (2)0.1143 (2)0.18237 (8)0.0358 (4)
O20.3054 (2)0.3129 (2)0.12317 (8)0.0399 (5)
O30.1632 (2)0.6711 (2)0.33646 (8)0.0347 (4)
O40.2363 (2)0.7005 (2)0.21058 (8)0.0380 (5)
O50.3659 (3)0.8609 (3)0.13954 (8)0.0433 (5)
O60.3442 (2)1.2321 (2)0.36266 (7)0.0336 (4)
N10.1708 (3)0.0497 (3)0.09736 (10)0.0375 (5)
N20.2511 (3)0.5220 (3)0.12499 (9)0.0343 (5)
C10.2120 (3)0.3677 (3)0.21459 (10)0.0288 (5)
C20.1061 (3)0.3154 (3)0.26457 (11)0.0318 (6)
H20.04290.20800.27100.038*
C30.0926 (3)0.4186 (3)0.30463 (11)0.0325 (6)
H30.02060.38210.33850.039*
C40.1843 (3)0.5760 (3)0.29530 (11)0.0306 (5)
C50.2917 (3)0.6282 (3)0.24626 (11)0.0329 (6)
H50.35550.73540.23990.040*
C60.3055 (3)0.5231 (3)0.20661 (11)0.0323 (6)
H60.38040.55860.17340.039*
C70.2243 (3)0.2636 (3)0.16939 (11)0.0323 (6)
C80.2479 (3)0.8367 (3)0.32529 (12)0.0338 (6)
H8A0.20050.89180.28720.041*
H8B0.37710.84270.32190.041*
C90.2121 (3)0.9175 (4)0.37668 (11)0.0352 (6)
H9A0.25421.03500.36630.042*
H9B0.08240.90160.38140.042*
C100.2976 (3)0.8574 (4)0.43586 (12)0.0381 (6)
H10A0.42710.87010.43130.046*
H10B0.25210.74090.44750.046*
C110.2622 (4)0.9474 (4)0.48561 (13)0.0474 (7)
H11A0.30741.06290.47450.071*
H11B0.32210.90550.52300.071*
H11C0.13430.93190.49140.071*
C120.3175 (3)0.9341 (3)0.23705 (11)0.0300 (5)
C130.2420 (3)0.9052 (3)0.29435 (11)0.0300 (5)
H130.18160.81550.30530.036*
C140.2538 (3)1.0058 (3)0.33557 (11)0.0301 (5)
H140.20190.98520.37470.036*
C150.3423 (3)1.1382 (3)0.31945 (11)0.0305 (5)
C160.4185 (3)1.1671 (3)0.26282 (11)0.0325 (6)
H160.47811.25720.25180.039*
C170.4079 (3)1.0642 (3)0.22178 (11)0.0320 (6)
H170.46291.08290.18300.038*
C180.3088 (3)0.8303 (3)0.19068 (11)0.0323 (6)
C190.4228 (3)1.3756 (3)0.34655 (12)0.0375 (6)
H19A0.35951.44780.31290.045*
H19B0.54851.34690.33370.045*
C200.4099 (3)1.4595 (4)0.40073 (12)0.0376 (6)
H20A0.47191.55390.39120.045*
H20B0.47201.38450.43400.045*
C210.2211 (3)1.5162 (4)0.42172 (12)0.0372 (6)
H21A0.15521.58290.38750.045*
H21B0.16241.42100.43540.045*
C220.2123 (4)1.6142 (4)0.47241 (13)0.0452 (7)
H22A0.27001.54640.50750.068*
H22B0.08811.65240.48300.068*
H22C0.27311.70700.45960.068*
C230.2365 (4)0.0184 (4)0.04412 (13)0.0472 (7)
H230.27110.13240.03680.057*
C240.2571 (4)0.0681 (4)0.00093 (12)0.0421 (7)
H240.30000.01440.03880.051*
C250.2135 (3)0.2354 (3)0.01037 (11)0.0307 (5)
C260.1489 (3)0.3070 (3)0.06606 (11)0.0332 (6)
H260.11910.42110.07560.040*
C270.1286 (3)0.2094 (3)0.10754 (12)0.0347 (6)
H270.08190.25930.14530.042*
C280.2950 (3)0.5728 (4)0.06786 (11)0.0365 (6)
H280.33590.67350.05810.044*
C290.2834 (3)0.4853 (3)0.02218 (11)0.0329 (6)
H290.31160.52710.01820.040*
C300.2296 (3)0.3348 (3)0.03651 (11)0.0298 (5)
C310.1889 (3)0.2808 (3)0.09596 (11)0.0334 (6)
H310.15510.17750.10750.040*
C320.1978 (3)0.3784 (3)0.13857 (11)0.0332 (6)
H320.16480.34200.17900.040*
H10.160 (4)0.054 (4)0.1475 (15)0.060 (9)*
H40.242 (5)0.642 (5)0.1754 (16)0.065 (10)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0412 (10)0.0304 (11)0.0354 (10)0.0006 (8)0.0033 (8)0.0091 (8)
O20.0485 (11)0.0369 (12)0.0331 (10)0.0009 (9)0.0080 (8)0.0085 (8)
O30.0326 (9)0.0333 (11)0.0377 (10)0.0069 (8)0.0063 (7)0.0156 (8)
O40.0436 (10)0.0351 (12)0.0371 (10)0.0067 (8)0.0014 (8)0.0110 (9)
O50.0581 (12)0.0399 (13)0.0319 (10)0.0076 (10)0.0004 (9)0.0064 (9)
O60.0371 (9)0.0322 (11)0.0333 (9)0.0080 (8)0.0011 (7)0.0089 (8)
N10.0455 (12)0.0327 (14)0.0337 (12)0.0007 (10)0.0019 (9)0.0092 (10)
N20.0328 (10)0.0357 (14)0.0340 (11)0.0000 (9)0.0018 (9)0.0097 (10)
C10.0261 (11)0.0307 (15)0.0292 (12)0.0020 (10)0.0019 (9)0.0074 (10)
C20.0290 (11)0.0315 (15)0.0338 (13)0.0009 (10)0.0018 (10)0.0079 (11)
C30.0280 (11)0.0358 (16)0.0321 (13)0.0023 (11)0.0042 (10)0.0071 (11)
C40.0250 (11)0.0340 (15)0.0327 (13)0.0001 (10)0.0016 (9)0.0100 (11)
C50.0329 (12)0.0283 (15)0.0357 (13)0.0050 (10)0.0041 (10)0.0088 (11)
C60.0293 (11)0.0369 (16)0.0304 (12)0.0021 (11)0.0018 (10)0.0078 (11)
C70.0324 (12)0.0317 (15)0.0328 (13)0.0040 (11)0.0008 (10)0.0074 (11)
C80.0357 (12)0.0288 (15)0.0360 (14)0.0005 (11)0.0002 (10)0.0088 (11)
C90.0351 (12)0.0359 (16)0.0360 (13)0.0052 (11)0.0022 (10)0.0115 (12)
C100.0383 (13)0.0402 (17)0.0365 (14)0.0050 (12)0.0019 (11)0.0111 (12)
C110.0518 (16)0.054 (2)0.0385 (15)0.0066 (15)0.0001 (13)0.0161 (14)
C120.0268 (11)0.0271 (14)0.0351 (13)0.0014 (10)0.0069 (10)0.0060 (11)
C130.0261 (11)0.0291 (14)0.0331 (13)0.0000 (10)0.0030 (10)0.0043 (11)
C140.0280 (11)0.0326 (15)0.0296 (12)0.0038 (10)0.0021 (10)0.0053 (11)
C150.0265 (11)0.0289 (15)0.0353 (13)0.0004 (10)0.0035 (10)0.0058 (11)
C160.0312 (12)0.0315 (15)0.0338 (13)0.0040 (11)0.0019 (10)0.0035 (11)
C170.0290 (11)0.0341 (15)0.0309 (13)0.0009 (10)0.0023 (10)0.0037 (11)
C180.0333 (12)0.0297 (15)0.0317 (13)0.0019 (11)0.0065 (10)0.0035 (11)
C190.0354 (13)0.0357 (17)0.0442 (15)0.0095 (12)0.0020 (11)0.0120 (12)
C200.0351 (13)0.0387 (17)0.0419 (15)0.0062 (12)0.0037 (11)0.0135 (12)
C210.0377 (13)0.0335 (16)0.0397 (14)0.0009 (11)0.0032 (11)0.0101 (12)
C220.0491 (16)0.0396 (18)0.0474 (16)0.0021 (13)0.0005 (13)0.0149 (14)
C230.071 (2)0.0278 (16)0.0404 (15)0.0043 (14)0.0095 (14)0.0083 (13)
C240.0577 (17)0.0306 (16)0.0344 (14)0.0049 (13)0.0063 (12)0.0055 (12)
C250.0292 (11)0.0310 (15)0.0314 (13)0.0004 (10)0.0003 (10)0.0086 (11)
C260.0368 (13)0.0280 (15)0.0337 (13)0.0002 (11)0.0044 (10)0.0061 (11)
C270.0351 (13)0.0339 (16)0.0340 (13)0.0014 (11)0.0027 (10)0.0087 (11)
C280.0382 (13)0.0349 (16)0.0377 (14)0.0058 (12)0.0014 (11)0.0093 (12)
C290.0327 (12)0.0326 (15)0.0327 (13)0.0018 (11)0.0012 (10)0.0071 (11)
C300.0273 (11)0.0295 (14)0.0314 (12)0.0026 (10)0.0020 (9)0.0086 (11)
C310.0346 (12)0.0316 (15)0.0326 (13)0.0004 (11)0.0004 (10)0.0064 (11)
C320.0323 (12)0.0324 (15)0.0312 (13)0.0036 (11)0.0003 (10)0.0042 (11)
Geometric parameters (Å, º) top
O1—C71.319 (3)C12—C181.489 (3)
O1—H11.04 (3)C13—C141.382 (3)
O2—C71.225 (3)C13—H130.9500
O3—C41.363 (3)C14—C151.399 (3)
O3—C81.435 (3)C14—H140.9500
O4—C181.322 (3)C15—C161.376 (3)
O4—H41.00 (4)C16—C171.392 (3)
O5—C181.214 (3)C16—H160.9500
O6—C151.362 (3)C17—H170.9500
O6—C191.438 (3)C19—C201.506 (3)
N1—C271.325 (4)C19—H19A0.9900
N1—C231.335 (4)C19—H19B0.9900
N2—C281.334 (3)C20—C211.518 (4)
N2—C321.337 (3)C20—H20A0.9900
C1—C61.381 (4)C20—H20B0.9900
C1—C21.398 (3)C21—C221.516 (4)
C1—C71.475 (3)C21—H21A0.9900
C2—C31.381 (3)C21—H21B0.9900
C2—H20.9500C22—H22A0.9800
C3—C41.390 (4)C22—H22B0.9800
C3—H30.9500C22—H22C0.9800
C4—C51.389 (3)C23—C241.382 (4)
C5—C61.387 (3)C23—H230.9500
C5—H50.9500C24—C251.389 (4)
C6—H60.9500C24—H240.9500
C8—C91.505 (3)C25—C261.386 (3)
C8—H8A0.9900C25—C301.483 (3)
C8—H8B0.9900C26—C271.383 (3)
C9—C101.504 (4)C26—H260.9500
C9—H9A0.9900C27—H270.9500
C9—H9B0.9900C28—C291.384 (3)
C10—C111.523 (3)C28—H280.9500
C10—H10A0.9900C29—C301.394 (4)
C10—H10B0.9900C29—H290.9500
C11—H11A0.9800C30—C311.382 (3)
C11—H11B0.9800C31—C321.383 (3)
C11—H11C0.9800C31—H310.9500
C12—C131.387 (3)C32—H320.9500
C12—C171.390 (3)
C7—O1—H1107 (2)C15—C16—C17119.9 (2)
C4—O3—C8117.16 (19)C15—C16—H16120.1
C18—O4—H4105 (2)C17—C16—H16120.1
C15—O6—C19117.34 (19)C12—C17—C16120.5 (2)
C27—N1—C23117.5 (2)C12—C17—H17119.7
C28—N2—C32118.2 (2)C16—C17—H17119.7
C6—C1—C2118.9 (2)O5—C18—O4123.1 (2)
C6—C1—C7118.8 (2)O5—C18—C12123.0 (2)
C2—C1—C7122.3 (2)O4—C18—C12113.9 (2)
C3—C2—C1120.5 (2)O6—C19—C20108.0 (2)
C3—C2—H2119.7O6—C19—H19A110.1
C1—C2—H2119.7C20—C19—H19A110.1
C2—C3—C4120.0 (2)O6—C19—H19B110.1
C2—C3—H3120.0C20—C19—H19B110.1
C4—C3—H3120.0H19A—C19—H19B108.4
O3—C4—C5123.5 (2)C19—C20—C21113.9 (2)
O3—C4—C3116.6 (2)C19—C20—H20A108.8
C5—C4—C3119.9 (2)C21—C20—H20A108.8
C6—C5—C4119.6 (2)C19—C20—H20B108.8
C6—C5—H5120.2C21—C20—H20B108.8
C4—C5—H5120.2H20A—C20—H20B107.7
C1—C6—C5121.1 (2)C22—C21—C20112.6 (2)
C1—C6—H6119.5C22—C21—H21A109.1
C5—C6—H6119.5C20—C21—H21A109.1
O2—C7—O1122.9 (2)C22—C21—H21B109.1
O2—C7—C1122.4 (2)C20—C21—H21B109.1
O1—C7—C1114.7 (2)H21A—C21—H21B107.8
O3—C8—C9108.3 (2)C21—C22—H22A109.5
O3—C8—H8A110.0C21—C22—H22B109.5
C9—C8—H8A110.0H22A—C22—H22B109.5
O3—C8—H8B110.0C21—C22—H22C109.5
C9—C8—H8B110.0H22A—C22—H22C109.5
H8A—C8—H8B108.4H22B—C22—H22C109.5
C10—C9—C8114.8 (2)N1—C23—C24123.5 (3)
C10—C9—H9A108.6N1—C23—H23118.3
C8—C9—H9A108.6C24—C23—H23118.3
C10—C9—H9B108.6C23—C24—C25118.5 (3)
C8—C9—H9B108.6C23—C24—H24120.7
H9A—C9—H9B107.5C25—C24—H24120.7
C9—C10—C11112.5 (2)C26—C25—C24118.2 (2)
C9—C10—H10A109.1C26—C25—C30120.8 (2)
C11—C10—H10A109.1C24—C25—C30121.0 (2)
C9—C10—H10B109.1C27—C26—C25118.9 (3)
C11—C10—H10B109.1C27—C26—H26120.6
H10A—C10—H10B107.8C25—C26—H26120.6
C10—C11—H11A109.5N1—C27—C26123.4 (2)
C10—C11—H11B109.5N1—C27—H27118.3
H11A—C11—H11B109.5C26—C27—H27118.3
C10—C11—H11C109.5N2—C28—C29122.9 (2)
H11A—C11—H11C109.5N2—C28—H28118.5
H11B—C11—H11C109.5C29—C28—H28118.5
C13—C12—C17119.2 (2)C28—C29—C30118.8 (2)
C13—C12—C18123.0 (2)C28—C29—H29120.6
C17—C12—C18117.7 (2)C30—C29—H29120.6
C14—C13—C12120.5 (2)C31—C30—C29118.0 (2)
C14—C13—H13119.7C31—C30—C25120.5 (2)
C12—C13—H13119.7C29—C30—C25121.5 (2)
C13—C14—C15119.8 (2)C30—C31—C32119.5 (2)
C13—C14—H14120.1C30—C31—H31120.3
C15—C14—H14120.1C32—C31—H31120.3
O6—C15—C16124.4 (2)N2—C32—C31122.5 (2)
O6—C15—C14115.6 (2)N2—C32—H32118.7
C16—C15—C14120.0 (2)C31—C32—H32118.7
C6—C1—C2—C31.2 (3)C18—C12—C17—C16179.0 (2)
C7—C1—C2—C3177.4 (2)C15—C16—C17—C121.4 (4)
C1—C2—C3—C40.2 (4)C13—C12—C18—O5175.6 (2)
C8—O3—C4—C54.5 (3)C17—C12—C18—O55.2 (4)
C8—O3—C4—C3176.1 (2)C13—C12—C18—O45.6 (3)
C2—C3—C4—O3179.5 (2)C17—C12—C18—O4173.5 (2)
C2—C3—C4—C51.1 (4)C15—O6—C19—C20179.9 (2)
O3—C4—C5—C6180.0 (2)O6—C19—C20—C2162.8 (3)
C3—C4—C5—C60.5 (4)C19—C20—C21—C22174.4 (2)
C2—C1—C6—C51.8 (3)C27—N1—C23—C242.1 (4)
C7—C1—C6—C5176.9 (2)N1—C23—C24—C252.6 (5)
C4—C5—C6—C10.9 (4)C23—C24—C25—C261.0 (4)
C6—C1—C7—O24.7 (4)C23—C24—C25—C30178.9 (3)
C2—C1—C7—O2174.0 (2)C24—C25—C26—C270.8 (4)
C6—C1—C7—O1176.3 (2)C30—C25—C26—C27177.1 (2)
C2—C1—C7—O15.1 (3)C23—N1—C27—C260.2 (4)
C4—O3—C8—C9178.40 (19)C25—C26—C27—N11.3 (4)
O3—C8—C9—C1066.9 (3)C32—N2—C28—C291.6 (4)
C8—C9—C10—C11178.0 (2)N2—C28—C29—C302.3 (4)
C17—C12—C13—C141.0 (4)C28—C29—C30—C310.5 (4)
C18—C12—C13—C14179.8 (2)C28—C29—C30—C25179.6 (2)
C12—C13—C14—C150.1 (4)C26—C25—C30—C31140.9 (3)
C19—O6—C15—C163.6 (4)C24—C25—C30—C3137.0 (3)
C19—O6—C15—C14175.7 (2)C26—C25—C30—C2938.2 (3)
C13—C14—C15—O6178.8 (2)C24—C25—C30—C29144.0 (3)
C13—C14—C15—C160.5 (4)C29—C30—C31—C321.8 (4)
O6—C15—C16—C17179.5 (2)C25—C30—C31—C32177.3 (2)
C14—C15—C16—C170.3 (4)C28—N2—C32—C310.9 (4)
C13—C12—C17—C161.8 (4)C30—C31—C32—N22.6 (4)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C1–C6 and C12–C17 rings, respectively.
D—H···AD—HH···AD···AD—H···A
O1—H1···N11.04 (3)1.56 (3)2.600 (3)173 (3)
O4—H4···N21.00 (4)1.64 (4)2.636 (3)172 (4)
C24—H24···O5i0.952.473.408 (3)171
C29—H29···O2ii0.952.533.456 (3)164
C2—H2···Cg2iii0.952.983.754 (3)139
C8—H8B···Cg2iv0.992.683.518 (3)143
C19—H19B···Cg1v0.992.773.586 (3)140
Symmetry codes: (i) x, y1, z; (ii) x, y+1, z; (iii) x, y+1, z; (iv) x+1, y, z; (v) x+1, y+1, z.
 

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.  Web of Science CSD CrossRef CAS Google Scholar
First citationGrunert, M., Howie, A., Kaeding, A. & Imrie, C. T. (1997). J. Mater. Chem. 7, 211–214.  CSD CrossRef CAS Web of Science Google Scholar
First citationKato, T., Fréchet, J. M. J., Wilson, P. G., Saito, T., Uryu, T., Fujishima, A., Jin, C. & Kaneuchi, F. (1993). Chem. Mater. 5, 1094–1100.  CrossRef CAS Web of Science Google Scholar
First citationKato, T., Wilson, P. G., Fujishima, A. & Fréchet, J. M. J. (1990). Chem. Lett. pp. 2003–2006.  CrossRef Web of Science Google Scholar
First citationLai, L.-L., Lee, L.-J., Luo, D.-W., Liu, Y.-H. & Wang, Y. (2008). J. Struct. Chem. 49, 1137–1140.  Web of Science CSD CrossRef CAS Google Scholar
First citationMukherjee, A. & Desiraju, G. R. (2014). Cryst. Growth Des. 14, 1375–1385.  Web of Science CSD CrossRef CAS Google Scholar
First citationRamon, G., Davies, K. & Nassimbeni, L. R. (2014). CrystEngComm, 16, 5802–5810.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku (2006). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds