research communications
κ4S,N1,N1′,S′](pyridine-κN)zinc(II)
of [butane-2,3-dione bis(4-methylthiosemicarbazonato)-aUniversity of Kent, School of Physical Sciences, Canterbury CT2 7NH, England, bDepartment of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, England, and cKing's College London, Division of Imaging Sciences and Biomedical Engineering, 4th Floor Lambeth Wing, St Thomas' Hospital, London SE1 7EH, England
*Correspondence e-mail: m.j.went@kent.ac.uk
In the structure of the title complex, [Zn(C8H14N6S2)(C5H5N)], the ZnII ion has a pseudo-square-pyramidal coordination environment and is displaced by 0.490 Å from the plane of best fit defined by the bis(thiosemicarbazonate) N2S2 donor atoms. Chains sustained by intermolecular N—H⋯N and N—H⋯S hydrogen-bonding interactions extend parallel to [10-1].
Keywords: crystal structure; bis(thiosemicarbazone); copper; zinc; hypoxia; PET.
CCDC reference: 1430734
1. Chemical context
Bis(thiosemicarbazonato)copper complexes labelled with 60/62/64Cu isotopes are useful radiopharmaceuticals for imaging blood flow and hypoxic tissues in vivo (Dearling et al., 2002). Bis(thiosemicarbazonato)zinc complexes can act as precursors for bis(thiosemicarbazonato)copper complexes by reaction with copper acetate in water (Holland et al., 2007). This synthetic approach can be very useful in the quick, clean synthesis of radio-copper complexes, particularly if the copper isotope has a short half live. A solid-phase synthesis has been developed based on the attachment of a bis(thiosemicarbazonato)zinc complex to 4-(dimethylamino)pyridine functionalized polystyrene resin and elution of the desired radio-copper complex by the addition of a [64Cu]copper acetate solution (Betts et al., 2008). A number of different polymers for zinc–copper bis(thiosemicarbazonato) transmetalation reactions have been tested and a pyridyl system was found to be optimal (Aphaiwong et al., 2012). This communication reports the of a zinc bis(thiosemicarbazonato) pyridine complex, [Zn(C8H14N6S2)(C5H5N)]. Comparison of the infra-red and Raman spectra indicates that [butane-2,3-dione bis(4-methylthiosemicarbazonato)]zinc(II) coordinates to poly(4-vinylpyridine) (Brown 2015).
2. Structural commentary
The molecular structure of [butane-2,3-dione bis(4-methylthiosemicarbazonato)]pyridinezinc is shown in Fig. 1. The ZnII ion lies in a pseudo-square-pyramidal coordination and is displaced by 0.490 Å from the plane of best fit defined by the bis(thiosemicarbazonate) N2S2 donor atoms. In the related 4-(dimethylamino)pyridine complex, the displacement is 0.517 Å (Betts et al., 2008). The Zn–pyridine bond is shorter [2.0900 (18) Å] than the other two bonds to atoms N3 and N4. It is apparent that the ligand cavity is too small to fit the ZnII ideally, resulting in an N—Zn—N angle of only 74.45 (7)° which may contribute to the ready transmetalations that result in CuII complexes with angles of approximately 80° (Blower et al., 2003). A comparison of the vibrational spectroscopy of poly(4-vinylpyridine), [butane-2,3-dione bis(4-methylthiosemicarbazonato)]zinc(II) and [butane-2,3-dione bis(4-methylthiosemicarbazonato)]zinc(II) on poly(4-vinylpyridine) can be found in the supporting information.
3. Supramolecular features
The molecules form a chain via N6—H6⋯S1 (2.65 Å) and N1—H1⋯N5 (2.21 Å) hydrogen bonds (Table 1), as has been seen previously in related CuII bis(thiosemicarbazonate) complexes (Blower et al., 2003), with weaker interactions between the chains [H6A⋯S2( + x, − y, + z) = 2.88 Å and H12⋯N5(−x, 1 − y, 1 − z) = 2.67 Å] (see Fig. 2).
4. Synthesis and crystallization
[Butane-2,3-dione bis(4-methylthiosemicarbazonato)]zinc (0.194 g, 0.60 mmol) was dissolved in DMSO (2 ml). Pyridine (0.06 ml, 0.059 g, 0.70 mol) was added to the solution and left to stir overnight. Water (5 ml) was added to solution. The crystalline precipitate was recovered via filtration, washed with ethanol (1 × 10 ml) and diethyl ether (5 × 10 ml). The solid was dried in air. A yellow solid (0.125 g) was recovered (52% yield).
5. Spectroscopic data
1H NMR (DMSO-d6, 400 MHz): δ 8.49 (2H, m, H(2,6) pyridyl), 7.79 (2H, m, H(4) pyridyl), 7.39 (2H, m, H(3,5) pyridyl), 7.18 (2H, s, H3C-NH), 2.79 (6H, m, HN-CH3), 2.26 (6H, s, N=C—CH3). 13C {1H} NMR (DMSO-d6, 100 MHz): δ 149.72 (C(2,6) pyridyl), 137.57 (C(4) pyridyl), 124.90 (C(3,5) pyridyl), 29.81 (HN—CH3), 14.47 (N=C—CH3). IR (cm−1) 3273 (w), 3217 (w), 3001 (w), 2938 (w), 1603 (w), 1530 (m), 1510 (m), 1476 (m), 1447 (m), 1396 (m), 1337 (m), 1250 (s), 1213 (s), 1157 (m), 1072 (s), 1040 (s), 1013 (m), 974 (m), 839 (m), 760 (m), 694 (s), 648 (m), 635 (m), 590 (m), 446 (s). Raman (632.81 nm): cm−1 = 3285 (w), 1613 (w), 1544 (s), 1513 (s), 1478 (m), 1377 (w), 1337 (w), 1285 (m), 1254 (m), 1217 (w), 1190 (w), 1037 (w), 1013 (w), 989 (w),841 (w), 795 (w), 726 (w), 592 (w), 538 (w), 448 (w), 375 (w), 334 (w), 289 (w). Found for Zn1C13H19N7S2: C, 38.8; H, 4.6; N, 24.3. Calculated for Zn1C13H19N7S2: C, 38.8; H, 4.75; N, 24.3%. UV–Vis: λmax/nm (DMSO) 314 (∊/dm3 mol−1 cm−1 12 600) and 434 (12 800).
6. Refinement
Crystal data, data collection and structure . Hydrogen atoms were included in idealized positions and refined as riding: N—H = 0.86 Å, C—H = 0.93 (aromatic) or 0.96 (methyl) Å; Uiso(H) = 1.2Ueq(C,N) or 1.5Ueq(Cmethyl). Methyl H atoms were generated in idealized positions and refined as rotating groups. [please check added text]
details are summarized in Table 2Supporting information
CCDC reference: 1430734
https://doi.org/10.1107/S2056989015019234/pj2023sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989015019234/pj2023Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989015019234/pj2023sup3.pdf
Data collection: (CrysAlis PRO; Agilent, 2014); cell
(CrysAlis PRO; Agilent, 2014); data reduction: (CrysAlis PRO; Agilent, 2014); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).[Zn(C8H14N6S2)(C5H5N)] | F(000) = 832 |
Mr = 402.84 | Dx = 1.535 Mg m−3 |
Monoclinic, P21/n | Cu Kα radiation, λ = 1.54184 Å |
a = 10.1466 (2) Å | Cell parameters from 6492 reflections |
b = 13.9076 (3) Å | θ = 4.8–73.0° |
c = 12.7775 (3) Å | µ = 4.27 mm−1 |
β = 104.756 (2)° | T = 150 K |
V = 1743.64 (7) Å3 | Needle, clear yellow |
Z = 4 | 0.26 × 0.04 × 0.02 mm |
Agilent SuperNova Dual Source diffractometer with an Atlas detector | 3445 independent reflections |
Radiation source: sealed X-ray tube, SuperNova (Cu) X-ray Source | 3020 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.041 |
Detector resolution: 5.2031 pixels mm-1 | θmax = 73.6°, θmin = 4.8° |
ω scans | h = −7→12 |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2014) | k = −16→17 |
Tmin = 0.775, Tmax = 1.000 | l = −15→15 |
12050 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.031 | H-atom parameters constrained |
wR(F2) = 0.074 | w = 1/[σ2(Fo2) + (0.032P)2 + 1.1359P] where P = (Fo2 + 2Fc2)/3 |
S = 1.04 | (Δ/σ)max = 0.001 |
3445 reflections | Δρmax = 0.36 e Å−3 |
212 parameters | Δρmin = −0.42 e Å−3 |
0 restraints |
Experimental. Absorption correction: CrysAlisPro, Agilent Technologies, Version 1.171.37.34 (release 22-05-2014 CrysAlis171 .NET) (compiled May 22 2014,16:03:01) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Zn1 | 0.30020 (3) | 0.73515 (2) | 0.47000 (2) | 0.01926 (9) | |
S1 | 0.44685 (5) | 0.79566 (4) | 0.36852 (4) | 0.02284 (12) | |
S2 | 0.14259 (6) | 0.85069 (4) | 0.50133 (4) | 0.02449 (13) | |
N1 | 0.68465 (19) | 0.71828 (14) | 0.37359 (15) | 0.0248 (4) | |
H1 | 0.6813 | 0.7600 | 0.3233 | 0.030* | |
N2 | 0.59011 (19) | 0.65189 (13) | 0.50031 (15) | 0.0235 (4) | |
N3 | 0.47831 (18) | 0.65526 (13) | 0.54215 (14) | 0.0203 (4) | |
N4 | 0.26884 (18) | 0.68075 (13) | 0.61711 (14) | 0.0213 (4) | |
N5 | 0.15519 (18) | 0.70523 (13) | 0.65027 (14) | 0.0215 (4) | |
N6 | −0.02309 (19) | 0.80647 (14) | 0.62535 (15) | 0.0257 (4) | |
H6 | −0.0411 | 0.7758 | 0.6785 | 0.031* | |
N7 | 0.17142 (18) | 0.64416 (13) | 0.35929 (14) | 0.0213 (4) | |
C1 | 0.8028 (2) | 0.65595 (18) | 0.4039 (2) | 0.0301 (5) | |
H1A | 0.8662 | 0.6725 | 0.3624 | 0.045* | |
H1B | 0.7748 | 0.5903 | 0.3898 | 0.045* | |
H1C | 0.8457 | 0.6638 | 0.4796 | 0.045* | |
C2 | 0.5800 (2) | 0.71402 (15) | 0.42040 (17) | 0.0214 (4) | |
C3 | 0.4771 (2) | 0.60479 (15) | 0.62697 (16) | 0.0211 (4) | |
C4 | 0.5913 (3) | 0.54130 (19) | 0.6841 (2) | 0.0344 (6) | |
H4A | 0.5647 | 0.4752 | 0.6712 | 0.052* | |
H4B | 0.6127 | 0.5542 | 0.7604 | 0.052* | |
H4C | 0.6700 | 0.5537 | 0.6575 | 0.052* | |
C5 | 0.3557 (2) | 0.61910 (15) | 0.66955 (16) | 0.0200 (4) | |
C6 | 0.3438 (2) | 0.56830 (17) | 0.76987 (17) | 0.0251 (4) | |
H6A | 0.4086 | 0.5947 | 0.8314 | 0.038* | |
H6B | 0.3618 | 0.5010 | 0.7639 | 0.038* | |
H6C | 0.2533 | 0.5766 | 0.7788 | 0.038* | |
C7 | 0.0907 (2) | 0.78126 (15) | 0.59668 (17) | 0.0215 (4) | |
C8 | −0.1183 (2) | 0.88087 (17) | 0.57441 (18) | 0.0269 (5) | |
H8A | −0.1695 | 0.8591 | 0.5046 | 0.040* | |
H8B | −0.0689 | 0.9381 | 0.5662 | 0.040* | |
H8C | −0.1794 | 0.8946 | 0.6188 | 0.040* | |
C9 | 0.1317 (2) | 0.67116 (17) | 0.25522 (18) | 0.0264 (5) | |
H9 | 0.1650 | 0.7287 | 0.2350 | 0.032* | |
C10 | 0.0434 (2) | 0.61722 (18) | 0.17651 (19) | 0.0313 (5) | |
H10 | 0.0177 | 0.6381 | 0.1050 | 0.038* | |
C11 | −0.0057 (2) | 0.53150 (17) | 0.2068 (2) | 0.0301 (5) | |
H11 | −0.0652 | 0.4937 | 0.1558 | 0.036* | |
C12 | 0.0346 (2) | 0.50294 (17) | 0.3136 (2) | 0.0301 (5) | |
H12 | 0.0030 | 0.4455 | 0.3356 | 0.036* | |
C13 | 0.1226 (2) | 0.56104 (16) | 0.38725 (18) | 0.0247 (4) | |
H13 | 0.1492 | 0.5417 | 0.4592 | 0.030* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Zn1 | 0.01595 (15) | 0.02595 (15) | 0.01686 (14) | 0.00116 (10) | 0.00599 (10) | 0.00201 (10) |
S1 | 0.0201 (3) | 0.0283 (3) | 0.0226 (2) | 0.00170 (19) | 0.0101 (2) | 0.00528 (19) |
S2 | 0.0234 (3) | 0.0268 (3) | 0.0264 (3) | 0.0057 (2) | 0.0122 (2) | 0.0057 (2) |
N1 | 0.0194 (9) | 0.0345 (10) | 0.0227 (9) | 0.0000 (7) | 0.0097 (7) | 0.0049 (7) |
N2 | 0.0193 (9) | 0.0316 (10) | 0.0219 (8) | 0.0020 (7) | 0.0095 (7) | 0.0024 (7) |
N3 | 0.0158 (9) | 0.0268 (9) | 0.0191 (8) | 0.0023 (7) | 0.0060 (7) | 0.0020 (7) |
N4 | 0.0202 (9) | 0.0270 (9) | 0.0186 (8) | 0.0011 (7) | 0.0081 (7) | 0.0002 (7) |
N5 | 0.0149 (9) | 0.0318 (9) | 0.0201 (8) | 0.0022 (7) | 0.0088 (7) | 0.0010 (7) |
N6 | 0.0182 (9) | 0.0365 (10) | 0.0246 (9) | 0.0064 (8) | 0.0098 (7) | 0.0051 (8) |
N7 | 0.0159 (9) | 0.0259 (9) | 0.0221 (8) | 0.0001 (7) | 0.0050 (7) | −0.0005 (7) |
C1 | 0.0169 (11) | 0.0405 (13) | 0.0358 (12) | 0.0037 (9) | 0.0118 (9) | 0.0010 (10) |
C2 | 0.0176 (10) | 0.0268 (10) | 0.0209 (10) | −0.0029 (8) | 0.0069 (8) | −0.0028 (8) |
C3 | 0.0178 (10) | 0.0270 (10) | 0.0192 (9) | 0.0017 (8) | 0.0060 (8) | 0.0019 (8) |
C4 | 0.0292 (13) | 0.0448 (14) | 0.0331 (12) | 0.0165 (11) | 0.0149 (10) | 0.0157 (11) |
C5 | 0.0179 (10) | 0.0257 (10) | 0.0165 (9) | −0.0013 (8) | 0.0047 (8) | −0.0002 (8) |
C6 | 0.0185 (11) | 0.0355 (12) | 0.0210 (10) | 0.0003 (9) | 0.0047 (8) | 0.0051 (9) |
C7 | 0.0183 (11) | 0.0295 (11) | 0.0171 (9) | −0.0006 (8) | 0.0055 (8) | −0.0036 (8) |
C8 | 0.0209 (11) | 0.0346 (12) | 0.0263 (11) | 0.0062 (9) | 0.0077 (9) | −0.0014 (9) |
C9 | 0.0230 (12) | 0.0300 (11) | 0.0247 (11) | −0.0010 (9) | 0.0034 (9) | 0.0025 (9) |
C10 | 0.0255 (12) | 0.0408 (13) | 0.0242 (11) | 0.0011 (10) | 0.0004 (9) | 0.0004 (9) |
C11 | 0.0203 (11) | 0.0334 (12) | 0.0346 (12) | −0.0013 (9) | 0.0032 (9) | −0.0096 (10) |
C12 | 0.0240 (12) | 0.0258 (11) | 0.0410 (13) | −0.0018 (9) | 0.0094 (10) | −0.0021 (10) |
C13 | 0.0197 (11) | 0.0274 (11) | 0.0280 (11) | 0.0017 (9) | 0.0080 (8) | 0.0037 (9) |
Zn1—S1 | 2.3635 (6) | C1—H1C | 0.9600 |
Zn1—S2 | 2.3718 (6) | C3—C4 | 1.491 (3) |
Zn1—N3 | 2.1218 (18) | C3—C5 | 1.482 (3) |
Zn1—N4 | 2.1241 (17) | C4—H4A | 0.9600 |
Zn1—N7 | 2.0900 (18) | C4—H4B | 0.9600 |
S1—C2 | 1.760 (2) | C4—H4C | 0.9600 |
S2—C7 | 1.738 (2) | C5—C6 | 1.495 (3) |
N1—H1 | 0.8600 | C6—H6A | 0.9600 |
N1—C1 | 1.450 (3) | C6—H6B | 0.9600 |
N1—C2 | 1.347 (3) | C6—H6C | 0.9600 |
N2—N3 | 1.372 (3) | C8—H8A | 0.9600 |
N2—C2 | 1.321 (3) | C8—H8B | 0.9600 |
N3—C3 | 1.294 (3) | C8—H8C | 0.9600 |
N4—N5 | 1.369 (2) | C9—H9 | 0.9300 |
N4—C5 | 1.288 (3) | C9—C10 | 1.385 (3) |
N5—C7 | 1.337 (3) | C10—H10 | 0.9300 |
N6—H6 | 0.8600 | C10—C11 | 1.385 (4) |
N6—C7 | 1.344 (3) | C11—H11 | 0.9300 |
N6—C8 | 1.452 (3) | C11—C12 | 1.379 (4) |
N7—C9 | 1.341 (3) | C12—H12 | 0.9300 |
N7—C13 | 1.341 (3) | C12—C13 | 1.382 (3) |
C1—H1A | 0.9600 | C13—H13 | 0.9300 |
C1—H1B | 0.9600 | ||
S1—Zn1—S2 | 113.40 (2) | C5—C3—C4 | 120.98 (18) |
N3—Zn1—S1 | 80.75 (5) | C3—C4—H4A | 109.5 |
N3—Zn1—S2 | 144.85 (5) | C3—C4—H4B | 109.5 |
N3—Zn1—N4 | 74.45 (7) | C3—C4—H4C | 109.5 |
N4—Zn1—S1 | 150.39 (5) | H4A—C4—H4B | 109.5 |
N4—Zn1—S2 | 80.36 (5) | H4A—C4—H4C | 109.5 |
N7—Zn1—S1 | 102.52 (5) | H4B—C4—H4C | 109.5 |
N7—Zn1—S2 | 101.09 (5) | N4—C5—C3 | 114.89 (18) |
N7—Zn1—N3 | 107.07 (7) | N4—C5—C6 | 124.51 (19) |
N7—Zn1—N4 | 100.05 (7) | C3—C5—C6 | 120.51 (18) |
C2—S1—Zn1 | 95.38 (7) | C5—C6—H6A | 109.5 |
C7—S2—Zn1 | 94.57 (7) | C5—C6—H6B | 109.5 |
C1—N1—H1 | 118.4 | C5—C6—H6C | 109.5 |
C2—N1—H1 | 118.4 | H6A—C6—H6B | 109.5 |
C2—N1—C1 | 123.16 (19) | H6A—C6—H6C | 109.5 |
C2—N2—N3 | 111.67 (18) | H6B—C6—H6C | 109.5 |
N2—N3—Zn1 | 123.07 (13) | N5—C7—S2 | 127.03 (16) |
C3—N3—Zn1 | 117.35 (14) | N5—C7—N6 | 114.16 (19) |
C3—N3—N2 | 119.53 (18) | N6—C7—S2 | 118.75 (17) |
N5—N4—Zn1 | 120.87 (13) | N6—C8—H8A | 109.5 |
C5—N4—Zn1 | 117.43 (14) | N6—C8—H8B | 109.5 |
C5—N4—N5 | 121.53 (18) | N6—C8—H8C | 109.5 |
C7—N5—N4 | 112.29 (17) | H8A—C8—H8B | 109.5 |
C7—N6—H6 | 117.1 | H8A—C8—H8C | 109.5 |
C7—N6—C8 | 125.71 (19) | H8B—C8—H8C | 109.5 |
C8—N6—H6 | 117.1 | N7—C9—H9 | 118.5 |
C9—N7—Zn1 | 118.66 (15) | N7—C9—C10 | 122.9 (2) |
C13—N7—Zn1 | 123.45 (15) | C10—C9—H9 | 118.5 |
C13—N7—C9 | 117.86 (19) | C9—C10—H10 | 120.8 |
N1—C1—H1A | 109.5 | C11—C10—C9 | 118.4 (2) |
N1—C1—H1B | 109.5 | C11—C10—H10 | 120.8 |
N1—C1—H1C | 109.5 | C10—C11—H11 | 120.4 |
H1A—C1—H1B | 109.5 | C12—C11—C10 | 119.1 (2) |
H1A—C1—H1C | 109.5 | C12—C11—H11 | 120.4 |
H1B—C1—H1C | 109.5 | C11—C12—H12 | 120.6 |
N1—C2—S1 | 114.89 (16) | C11—C12—C13 | 118.9 (2) |
N2—C2—S1 | 127.89 (17) | C13—C12—H12 | 120.6 |
N2—C2—N1 | 117.2 (2) | N7—C13—C12 | 122.8 (2) |
N3—C3—C4 | 124.0 (2) | N7—C13—H13 | 118.6 |
N3—C3—C5 | 114.89 (18) | C12—C13—H13 | 118.6 |
Zn1—S1—C2—N1 | 173.89 (15) | N4—N5—C7—N6 | 178.74 (18) |
Zn1—S1—C2—N2 | −7.9 (2) | N5—N4—C5—C3 | −176.54 (18) |
Zn1—S2—C7—N5 | 17.1 (2) | N5—N4—C5—C6 | −0.1 (3) |
Zn1—S2—C7—N6 | −165.88 (16) | N7—C9—C10—C11 | −0.1 (4) |
Zn1—N3—C3—C4 | 177.10 (18) | C1—N1—C2—S1 | −179.04 (17) |
Zn1—N3—C3—C5 | −6.8 (2) | C1—N1—C2—N2 | 2.6 (3) |
Zn1—N4—N5—C7 | −15.4 (2) | C2—N2—N3—Zn1 | 8.8 (2) |
Zn1—N4—C5—C3 | 8.2 (2) | C2—N2—N3—C3 | −174.17 (19) |
Zn1—N4—C5—C6 | −175.37 (16) | C4—C3—C5—N4 | 175.3 (2) |
Zn1—N7—C9—C10 | −178.02 (18) | C4—C3—C5—C6 | −1.3 (3) |
Zn1—N7—C13—C12 | 178.17 (17) | C5—N4—N5—C7 | 169.43 (19) |
N2—N3—C3—C4 | −0.1 (3) | C8—N6—C7—S2 | 7.9 (3) |
N2—N3—C3—C5 | 175.95 (18) | C8—N6—C7—N5 | −174.7 (2) |
N3—N2—C2—S1 | 1.0 (3) | C9—N7—C13—C12 | 0.2 (3) |
N3—N2—C2—N1 | 179.17 (18) | C9—C10—C11—C12 | 0.0 (4) |
N3—C3—C5—N4 | −0.9 (3) | C10—C11—C12—C13 | 0.2 (3) |
N3—C3—C5—C6 | −177.50 (19) | C11—C12—C13—N7 | −0.4 (3) |
N4—N5—C7—S2 | −4.1 (3) | C13—N7—C9—C10 | 0.0 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···N5i | 0.86 | 2.21 | 2.988 (3) | 150 |
N6—H6···S1ii | 0.86 | 2.65 | 3.500 (2) | 167 |
Symmetry codes: (i) x+1/2, −y+3/2, z−1/2; (ii) x−3/2, −y+1/2, z−1/2. |
References
Agilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England. Google Scholar
Aphaiwong, A., Moloney, M. G. & Christlieb, M. (2012). J. Mater. Chem. 22, 24627–24636. Web of Science CrossRef CAS Google Scholar
Betts, H. M., Barnard, P. J., Bayly, S. R., Dilworth, J. R., Gee, A. D. & Holland, J. P. (2008). Angew. Chem. Int. Ed. 47, 8416–8419. Web of Science CSD CrossRef CAS Google Scholar
Blower, P. J., Castle, T. C., Cowley, A. R., Dilworth, J. R., Donnelly, P. S., Labisbal, E., Sowrey, F. E., Teat, S. J. & Went, M. J. (2003). Dalton Trans. pp. 4416–4425. Web of Science CSD CrossRef Google Scholar
Brown, O. C. (2015). PhD thesis, University of Kent, England. Google Scholar
Dearling, J. L. J., Lewis, J. S., Mullen, G. E. D., Welch, M. J. & Blower, P. J. (2002). J. Biol. Inorg. Chem. 7, 249–259. Web of Science CrossRef PubMed CAS Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Holland, J. P., Aigbirhio, F. I., Betts, H. M., Bonnitcha, P. D., Burke, P., Christlieb, M., Churchill, G. C., Cowley, A. R., Dilworth, J. R., Donnelly, P. S., Green, J. C., Peach, J. M., Vasudevan, S. R. & Warren, J. E. (2007). Inorg. Chem. 46, 465–485. Web of Science CSD CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.