research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of [butane-2,3-dione bis­­(4-methyl­thio­semicarbazonato)-κ4S,N1,N1′,S′](pyridine-κN)zinc(II)

aUniversity of Kent, School of Physical Sciences, Canterbury CT2 7NH, England, bDepartment of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, England, and cKing's College London, Division of Imaging Sciences and Biomedical Engineering, 4th Floor Lambeth Wing, St Thomas' Hospital, London SE1 7EH, England
*Correspondence e-mail: m.j.went@kent.ac.uk

Edited by T. J. Prior, University of Hull, England (Received 27 September 2015; accepted 12 October 2015; online 17 October 2015)

In the structure of the title complex, [Zn(C8H14N6S2)(C5H5N)], the ZnII ion has a pseudo-square-pyramidal coordination environment and is displaced by 0.490 Å from the plane of best fit defined by the bis­(thio­semicarbazonate) N2S2 donor atoms. Chains sustained by intermolecular N—H⋯N and N—H⋯S hydrogen-bonding interactions extend parallel to [10-1].

1. Chemical context

Bis(thio­semicarbazonato)copper complexes labelled with 60/62/64Cu isotopes are useful radiopharmaceuticals for imaging blood flow and hypoxic tissues in vivo (Dearling et al., 2002[Dearling, J. L. J., Lewis, J. S., Mullen, G. E. D., Welch, M. J. & Blower, P. J. (2002). J. Biol. Inorg. Chem. 7, 249-259.]). Bis(thio­semicarbazonato)zinc complexes can act as precursors for bis­(thio­semicarbazonato)copper complexes by reaction with copper acetate in water (Holland et al., 2007[Holland, J. P., Aigbirhio, F. I., Betts, H. M., Bonnitcha, P. D., Burke, P., Christlieb, M., Churchill, G. C., Cowley, A. R., Dilworth, J. R., Donnelly, P. S., Green, J. C., Peach, J. M., Vasudevan, S. R. & Warren, J. E. (2007). Inorg. Chem. 46, 465-485.]). This synthetic approach can be very useful in the quick, clean synthesis of radio-copper complexes, particularly if the copper isotope has a short half live. A solid-phase synthesis has been developed based on the attachment of a bis­(thio­semi­carba­zonato)zinc complex to 4-(di­methyl­amino)­pyridine function­al­ized polystyrene resin and elution of the desired radio-copper complex by the addition of a [64Cu]copper acetate solution (Betts et al., 2008[Betts, H. M., Barnard, P. J., Bayly, S. R., Dilworth, J. R., Gee, A. D. & Holland, J. P. (2008). Angew. Chem. Int. Ed. 47, 8416-8419.]). A number of different polymers for zinc–copper bis­(thio­semicarbazonato) transmetalation reactions have been tested and a pyridyl system was found to be optimal (Aphaiwong et al., 2012[Aphaiwong, A., Moloney, M. G. & Christlieb, M. (2012). J. Mater. Chem. 22, 24627-24636.]). This communication reports the crystal structure of a zinc bis­(thio­semi­carbazonato) pyridine complex, [Zn(C8H14N6S2)(C5H5N)]. Comparison of the infra-red and Raman spectra indicates that [butane-2,3-dione bis­(4-methyl­thio­semi­carbazonato)]zinc(II) coordinates to poly(4-vinyl­pyri­dine) (Brown 2015[Brown, O. C. (2015). PhD thesis, University of Kent, England.]).

[Scheme 1]

2. Structural commentary

The molecular structure of [butane-2,3-dione bis­(4-methyl­thio­semicarbazonato)]pyridine­zinc is shown in Fig. 1[link]. The ZnII ion lies in a pseudo-square-pyramidal coord­ination and is displaced by 0.490 Å from the plane of best fit defined by the bis­(thio­semicarbazonate) N2S2 donor atoms. In the related 4-(di­methyl­amino)­pyridine complex, the displace­ment is 0.517 Å (Betts et al., 2008[Betts, H. M., Barnard, P. J., Bayly, S. R., Dilworth, J. R., Gee, A. D. & Holland, J. P. (2008). Angew. Chem. Int. Ed. 47, 8416-8419.]). The Zn–pyridine bond is shorter [2.0900 (18) Å] than the other two bonds to atoms N3 and N4. It is apparent that the ligand cavity is too small to fit the ZnII ideally, resulting in an N—Zn—N angle of only 74.45 (7)° which may contribute to the ready transmetalations that result in CuII complexes with angles of approximately 80° (Blower et al., 2003[Blower, P. J., Castle, T. C., Cowley, A. R., Dilworth, J. R., Donnelly, P. S., Labisbal, E., Sowrey, F. E., Teat, S. J. & Went, M. J. (2003). Dalton Trans. pp. 4416-4425.]). A comparison of the vibrational spectroscopy of poly(4-vinylpyridine), [butane-2,3-dione bis(4-methylthiosemicarbazonato)]zinc(II) and [butane-2,3-dione bis(4-methylthiosemicarbazonato)]zinc(II) on poly(4-vinylpyridine) can be found in the supporting information.

[Figure 1]
Figure 1
The mol­ecular structure of the title complex.

3. Supramolecular features

The mol­ecules form a chain via N6—H6⋯S1 (2.65 Å) and N1—H1⋯N5 (2.21 Å) hydrogen bonds (Table 1[link]), as has been seen previously in related CuII bis­(thio­semicarbazonate) complexes (Blower et al., 2003[Blower, P. J., Castle, T. C., Cowley, A. R., Dilworth, J. R., Donnelly, P. S., Labisbal, E., Sowrey, F. E., Teat, S. J. & Went, M. J. (2003). Dalton Trans. pp. 4416-4425.]), with weaker inter­actions between the chains [H6A⋯S2([{1\over 2}] + x, [{3\over 2}] − y, [{1\over 2}] + z) = 2.88 Å and H12⋯N5(−x, 1 − y, 1 − z) = 2.67 Å] (see Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯N5i 0.86 2.21 2.988 (3) 150
N6—H6⋯S1ii 0.86 2.65 3.500 (2) 167
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) [x-{\script{3\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].
[Figure 2]
Figure 2
The chain structure of the title complex formed by N—H⋯N and N—H⋯S hydrogen bonds. The chain direction is parallel to [10[\overline1]].

4. Synthesis and crystallization

[Butane-2,3-dione bis­(4-methyl­thio­semicarbazonato)]zinc (0.194 g, 0.60 mmol) was dissolved in DMSO (2 ml). Pyridine (0.06 ml, 0.059 g, 0.70 mol) was added to the solution and left to stir overnight. Water (5 ml) was added to solution. The crystalline precipitate was recovered via filtration, washed with ethanol (1 × 10 ml) and diethyl ether (5 × 10 ml). The solid was dried in air. A yellow solid (0.125 g) was recovered (52% yield).

5. Spectroscopic data

1H NMR (DMSO-d6, 400 MHz): δ 8.49 (2H, m, H(2,6) pyrid­yl), 7.79 (2H, m, H(4) pyrid­yl), 7.39 (2H, m, H(3,5) pyrid­yl), 7.18 (2H, s, H3C-NH), 2.79 (6H, m, HN-CH3), 2.26 (6H, s, N=C—CH3). 13C {1H} NMR (DMSO-d6, 100 MHz): δ 149.72 (C(2,6) pyrid­yl), 137.57 (C(4) pyrid­yl), 124.90 (C(3,5) pyrid­yl), 29.81 (HN—CH3), 14.47 (N=C—CH3). IR (cm−1) 3273 (w), 3217 (w), 3001 (w), 2938 (w), 1603 (w), 1530 (m), 1510 (m), 1476 (m), 1447 (m), 1396 (m), 1337 (m), 1250 (s), 1213 (s), 1157 (m), 1072 (s), 1040 (s), 1013 (m), 974 (m), 839 (m), 760 (m), 694 (s), 648 (m), 635 (m), 590 (m), 446 (s). Raman (632.81 nm): cm−1 = 3285 (w), 1613 (w), 1544 (s), 1513 (s), 1478 (m), 1377 (w), 1337 (w), 1285 (m), 1254 (m), 1217 (w), 1190 (w), 1037 (w), 1013 (w), 989 (w),841 (w), 795 (w), 726 (w), 592 (w), 538 (w), 448 (w), 375 (w), 334 (w), 289 (w). Found for Zn1C13H19N7S2: C, 38.8; H, 4.6; N, 24.3. Calculated for Zn1C13H19N7S2: C, 38.8; H, 4.75; N, 24.3%. UV–Vis: λmax/nm (DMSO) 314 (/dm3 mol−1 cm−1 12 600) and 434 (12 800).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Hydrogen atoms were included in idealized positions and refined as riding: N—H = 0.86 Å, C—H = 0.93 (aromatic) or 0.96 (meth­yl) Å; Uiso(H) = 1.2Ueq(C,N) or 1.5Ueq(Cmeth­yl). Methyl H atoms were generated in idealized positions and refined as rotating groups. [please check added text]

Table 2
Experimental details

Crystal data
Chemical formula [Zn(C8H14N6S2)(C5H5N)]
Mr 402.84
Crystal system, space group Monoclinic, P21/n
Temperature (K) 150
a, b, c (Å) 10.1466 (2), 13.9076 (3), 12.7775 (3)
β (°) 104.756 (2)
V3) 1743.64 (7)
Z 4
Radiation type Cu Kα
μ (mm−1) 4.27
Crystal size (mm) 0.26 × 0.04 × 0.02
 
Data collection
Diffractometer Agilent SuperNova Dual Source diffractometer with an Atlas detector
Absorption correction Multi-scan (CrysAlis PRO; Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England.])
Tmin, Tmax 0.775, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 12050, 3445, 3020
Rint 0.041
(sin θ/λ)max−1) 0.622
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.074, 1.04
No. of reflections 3445
No. of parameters 212
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.36, −0.42
Computer programs: (CrysAlis PRO; Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Data collection: (CrysAlis PRO; Agilent, 2014); cell refinement: (CrysAlis PRO; Agilent, 2014); data reduction: (CrysAlis PRO; Agilent, 2014); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

[Butane-2,3-dione bis(4-methylthiosemicarbazonato)-κ4S,N1,N1',S'](pyridine-κN)zinc(II) top
Crystal data top
[Zn(C8H14N6S2)(C5H5N)]F(000) = 832
Mr = 402.84Dx = 1.535 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54184 Å
a = 10.1466 (2) ÅCell parameters from 6492 reflections
b = 13.9076 (3) Åθ = 4.8–73.0°
c = 12.7775 (3) ŵ = 4.27 mm1
β = 104.756 (2)°T = 150 K
V = 1743.64 (7) Å3Needle, clear yellow
Z = 40.26 × 0.04 × 0.02 mm
Data collection top
Agilent SuperNova Dual Source
diffractometer with an Atlas detector
3445 independent reflections
Radiation source: sealed X-ray tube, SuperNova (Cu) X-ray Source3020 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.041
Detector resolution: 5.2031 pixels mm-1θmax = 73.6°, θmin = 4.8°
ω scansh = 712
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2014)
k = 1617
Tmin = 0.775, Tmax = 1.000l = 1515
12050 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.031H-atom parameters constrained
wR(F2) = 0.074 w = 1/[σ2(Fo2) + (0.032P)2 + 1.1359P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
3445 reflectionsΔρmax = 0.36 e Å3
212 parametersΔρmin = 0.42 e Å3
0 restraints
Special details top

Experimental. Absorption correction: CrysAlisPro, Agilent Technologies, Version 1.171.37.34 (release 22-05-2014 CrysAlis171 .NET) (compiled May 22 2014,16:03:01) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.30020 (3)0.73515 (2)0.47000 (2)0.01926 (9)
S10.44685 (5)0.79566 (4)0.36852 (4)0.02284 (12)
S20.14259 (6)0.85069 (4)0.50133 (4)0.02449 (13)
N10.68465 (19)0.71828 (14)0.37359 (15)0.0248 (4)
H10.68130.76000.32330.030*
N20.59011 (19)0.65189 (13)0.50031 (15)0.0235 (4)
N30.47831 (18)0.65526 (13)0.54215 (14)0.0203 (4)
N40.26884 (18)0.68075 (13)0.61711 (14)0.0213 (4)
N50.15519 (18)0.70523 (13)0.65027 (14)0.0215 (4)
N60.02309 (19)0.80647 (14)0.62535 (15)0.0257 (4)
H60.04110.77580.67850.031*
N70.17142 (18)0.64416 (13)0.35929 (14)0.0213 (4)
C10.8028 (2)0.65595 (18)0.4039 (2)0.0301 (5)
H1A0.86620.67250.36240.045*
H1B0.77480.59030.38980.045*
H1C0.84570.66380.47960.045*
C20.5800 (2)0.71402 (15)0.42040 (17)0.0214 (4)
C30.4771 (2)0.60479 (15)0.62697 (16)0.0211 (4)
C40.5913 (3)0.54130 (19)0.6841 (2)0.0344 (6)
H4A0.56470.47520.67120.052*
H4B0.61270.55420.76040.052*
H4C0.67000.55370.65750.052*
C50.3557 (2)0.61910 (15)0.66955 (16)0.0200 (4)
C60.3438 (2)0.56830 (17)0.76987 (17)0.0251 (4)
H6A0.40860.59470.83140.038*
H6B0.36180.50100.76390.038*
H6C0.25330.57660.77880.038*
C70.0907 (2)0.78126 (15)0.59668 (17)0.0215 (4)
C80.1183 (2)0.88087 (17)0.57441 (18)0.0269 (5)
H8A0.16950.85910.50460.040*
H8B0.06890.93810.56620.040*
H8C0.17940.89460.61880.040*
C90.1317 (2)0.67116 (17)0.25522 (18)0.0264 (5)
H90.16500.72870.23500.032*
C100.0434 (2)0.61722 (18)0.17651 (19)0.0313 (5)
H100.01770.63810.10500.038*
C110.0057 (2)0.53150 (17)0.2068 (2)0.0301 (5)
H110.06520.49370.15580.036*
C120.0346 (2)0.50294 (17)0.3136 (2)0.0301 (5)
H120.00300.44550.33560.036*
C130.1226 (2)0.56104 (16)0.38725 (18)0.0247 (4)
H130.14920.54170.45920.030*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.01595 (15)0.02595 (15)0.01686 (14)0.00116 (10)0.00599 (10)0.00201 (10)
S10.0201 (3)0.0283 (3)0.0226 (2)0.00170 (19)0.0101 (2)0.00528 (19)
S20.0234 (3)0.0268 (3)0.0264 (3)0.0057 (2)0.0122 (2)0.0057 (2)
N10.0194 (9)0.0345 (10)0.0227 (9)0.0000 (7)0.0097 (7)0.0049 (7)
N20.0193 (9)0.0316 (10)0.0219 (8)0.0020 (7)0.0095 (7)0.0024 (7)
N30.0158 (9)0.0268 (9)0.0191 (8)0.0023 (7)0.0060 (7)0.0020 (7)
N40.0202 (9)0.0270 (9)0.0186 (8)0.0011 (7)0.0081 (7)0.0002 (7)
N50.0149 (9)0.0318 (9)0.0201 (8)0.0022 (7)0.0088 (7)0.0010 (7)
N60.0182 (9)0.0365 (10)0.0246 (9)0.0064 (8)0.0098 (7)0.0051 (8)
N70.0159 (9)0.0259 (9)0.0221 (8)0.0001 (7)0.0050 (7)0.0005 (7)
C10.0169 (11)0.0405 (13)0.0358 (12)0.0037 (9)0.0118 (9)0.0010 (10)
C20.0176 (10)0.0268 (10)0.0209 (10)0.0029 (8)0.0069 (8)0.0028 (8)
C30.0178 (10)0.0270 (10)0.0192 (9)0.0017 (8)0.0060 (8)0.0019 (8)
C40.0292 (13)0.0448 (14)0.0331 (12)0.0165 (11)0.0149 (10)0.0157 (11)
C50.0179 (10)0.0257 (10)0.0165 (9)0.0013 (8)0.0047 (8)0.0002 (8)
C60.0185 (11)0.0355 (12)0.0210 (10)0.0003 (9)0.0047 (8)0.0051 (9)
C70.0183 (11)0.0295 (11)0.0171 (9)0.0006 (8)0.0055 (8)0.0036 (8)
C80.0209 (11)0.0346 (12)0.0263 (11)0.0062 (9)0.0077 (9)0.0014 (9)
C90.0230 (12)0.0300 (11)0.0247 (11)0.0010 (9)0.0034 (9)0.0025 (9)
C100.0255 (12)0.0408 (13)0.0242 (11)0.0011 (10)0.0004 (9)0.0004 (9)
C110.0203 (11)0.0334 (12)0.0346 (12)0.0013 (9)0.0032 (9)0.0096 (10)
C120.0240 (12)0.0258 (11)0.0410 (13)0.0018 (9)0.0094 (10)0.0021 (10)
C130.0197 (11)0.0274 (11)0.0280 (11)0.0017 (9)0.0080 (8)0.0037 (9)
Geometric parameters (Å, º) top
Zn1—S12.3635 (6)C1—H1C0.9600
Zn1—S22.3718 (6)C3—C41.491 (3)
Zn1—N32.1218 (18)C3—C51.482 (3)
Zn1—N42.1241 (17)C4—H4A0.9600
Zn1—N72.0900 (18)C4—H4B0.9600
S1—C21.760 (2)C4—H4C0.9600
S2—C71.738 (2)C5—C61.495 (3)
N1—H10.8600C6—H6A0.9600
N1—C11.450 (3)C6—H6B0.9600
N1—C21.347 (3)C6—H6C0.9600
N2—N31.372 (3)C8—H8A0.9600
N2—C21.321 (3)C8—H8B0.9600
N3—C31.294 (3)C8—H8C0.9600
N4—N51.369 (2)C9—H90.9300
N4—C51.288 (3)C9—C101.385 (3)
N5—C71.337 (3)C10—H100.9300
N6—H60.8600C10—C111.385 (4)
N6—C71.344 (3)C11—H110.9300
N6—C81.452 (3)C11—C121.379 (4)
N7—C91.341 (3)C12—H120.9300
N7—C131.341 (3)C12—C131.382 (3)
C1—H1A0.9600C13—H130.9300
C1—H1B0.9600
S1—Zn1—S2113.40 (2)C5—C3—C4120.98 (18)
N3—Zn1—S180.75 (5)C3—C4—H4A109.5
N3—Zn1—S2144.85 (5)C3—C4—H4B109.5
N3—Zn1—N474.45 (7)C3—C4—H4C109.5
N4—Zn1—S1150.39 (5)H4A—C4—H4B109.5
N4—Zn1—S280.36 (5)H4A—C4—H4C109.5
N7—Zn1—S1102.52 (5)H4B—C4—H4C109.5
N7—Zn1—S2101.09 (5)N4—C5—C3114.89 (18)
N7—Zn1—N3107.07 (7)N4—C5—C6124.51 (19)
N7—Zn1—N4100.05 (7)C3—C5—C6120.51 (18)
C2—S1—Zn195.38 (7)C5—C6—H6A109.5
C7—S2—Zn194.57 (7)C5—C6—H6B109.5
C1—N1—H1118.4C5—C6—H6C109.5
C2—N1—H1118.4H6A—C6—H6B109.5
C2—N1—C1123.16 (19)H6A—C6—H6C109.5
C2—N2—N3111.67 (18)H6B—C6—H6C109.5
N2—N3—Zn1123.07 (13)N5—C7—S2127.03 (16)
C3—N3—Zn1117.35 (14)N5—C7—N6114.16 (19)
C3—N3—N2119.53 (18)N6—C7—S2118.75 (17)
N5—N4—Zn1120.87 (13)N6—C8—H8A109.5
C5—N4—Zn1117.43 (14)N6—C8—H8B109.5
C5—N4—N5121.53 (18)N6—C8—H8C109.5
C7—N5—N4112.29 (17)H8A—C8—H8B109.5
C7—N6—H6117.1H8A—C8—H8C109.5
C7—N6—C8125.71 (19)H8B—C8—H8C109.5
C8—N6—H6117.1N7—C9—H9118.5
C9—N7—Zn1118.66 (15)N7—C9—C10122.9 (2)
C13—N7—Zn1123.45 (15)C10—C9—H9118.5
C13—N7—C9117.86 (19)C9—C10—H10120.8
N1—C1—H1A109.5C11—C10—C9118.4 (2)
N1—C1—H1B109.5C11—C10—H10120.8
N1—C1—H1C109.5C10—C11—H11120.4
H1A—C1—H1B109.5C12—C11—C10119.1 (2)
H1A—C1—H1C109.5C12—C11—H11120.4
H1B—C1—H1C109.5C11—C12—H12120.6
N1—C2—S1114.89 (16)C11—C12—C13118.9 (2)
N2—C2—S1127.89 (17)C13—C12—H12120.6
N2—C2—N1117.2 (2)N7—C13—C12122.8 (2)
N3—C3—C4124.0 (2)N7—C13—H13118.6
N3—C3—C5114.89 (18)C12—C13—H13118.6
Zn1—S1—C2—N1173.89 (15)N4—N5—C7—N6178.74 (18)
Zn1—S1—C2—N27.9 (2)N5—N4—C5—C3176.54 (18)
Zn1—S2—C7—N517.1 (2)N5—N4—C5—C60.1 (3)
Zn1—S2—C7—N6165.88 (16)N7—C9—C10—C110.1 (4)
Zn1—N3—C3—C4177.10 (18)C1—N1—C2—S1179.04 (17)
Zn1—N3—C3—C56.8 (2)C1—N1—C2—N22.6 (3)
Zn1—N4—N5—C715.4 (2)C2—N2—N3—Zn18.8 (2)
Zn1—N4—C5—C38.2 (2)C2—N2—N3—C3174.17 (19)
Zn1—N4—C5—C6175.37 (16)C4—C3—C5—N4175.3 (2)
Zn1—N7—C9—C10178.02 (18)C4—C3—C5—C61.3 (3)
Zn1—N7—C13—C12178.17 (17)C5—N4—N5—C7169.43 (19)
N2—N3—C3—C40.1 (3)C8—N6—C7—S27.9 (3)
N2—N3—C3—C5175.95 (18)C8—N6—C7—N5174.7 (2)
N3—N2—C2—S11.0 (3)C9—N7—C13—C120.2 (3)
N3—N2—C2—N1179.17 (18)C9—C10—C11—C120.0 (4)
N3—C3—C5—N40.9 (3)C10—C11—C12—C130.2 (3)
N3—C3—C5—C6177.50 (19)C11—C12—C13—N70.4 (3)
N4—N5—C7—S24.1 (3)C13—N7—C9—C100.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···N5i0.862.212.988 (3)150
N6—H6···S1ii0.862.653.500 (2)167
Symmetry codes: (i) x+1/2, y+3/2, z1/2; (ii) x3/2, y+1/2, z1/2.
 

References

First citationAgilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationAphaiwong, A., Moloney, M. G. & Christlieb, M. (2012). J. Mater. Chem. 22, 24627–24636.  Web of Science CrossRef CAS Google Scholar
First citationBetts, H. M., Barnard, P. J., Bayly, S. R., Dilworth, J. R., Gee, A. D. & Holland, J. P. (2008). Angew. Chem. Int. Ed. 47, 8416–8419.  Web of Science CSD CrossRef CAS Google Scholar
First citationBlower, P. J., Castle, T. C., Cowley, A. R., Dilworth, J. R., Donnelly, P. S., Labisbal, E., Sowrey, F. E., Teat, S. J. & Went, M. J. (2003). Dalton Trans. pp. 4416–4425.  Web of Science CSD CrossRef Google Scholar
First citationBrown, O. C. (2015). PhD thesis, University of Kent, England.  Google Scholar
First citationDearling, J. L. J., Lewis, J. S., Mullen, G. E. D., Welch, M. J. & Blower, P. J. (2002). J. Biol. Inorg. Chem. 7, 249–259.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHolland, J. P., Aigbirhio, F. I., Betts, H. M., Bonnitcha, P. D., Burke, P., Christlieb, M., Churchill, G. C., Cowley, A. R., Dilworth, J. R., Donnelly, P. S., Green, J. C., Peach, J. M., Vasudevan, S. R. & Warren, J. E. (2007). Inorg. Chem. 46, 465–485.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds