research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of cyclo-tris­­(μ-3,4,5,6-tetra­fluoro-o-phenyl­ene-κ2C1:C2)trimercury–tetra­cyano­ethyl­ene (1/1)

aDepartment of Chemistry & Biology, New Mexico Highlands University, 803 University Ave., Las Vegas, NM 87701, USA, and bInorganic Chemistry Department, Peoples' Friendship University of Russia, 6 Miklukho-Maklay St, Moscow, 117198, Russian Federation
*Correspondence e-mail: tvtimofeeva@nmhu.edu

Edited by P. Roussel, ENSCL, France (Received 8 August 2015; accepted 13 October 2015; online 24 October 2015)

The title compound, [Hg3(C6F4)3]·C6N4, contains one mol­ecule of tetra­cyano­ethyl­ene B per one mol­ecule of mercury macrocycle A, i.e., A•B, and crystallizes in the monoclinic space group C2/c. Macrocycle A and mol­ecule B both occupy special positions on a twofold rotation axis and the inversion centre, respectively. The supra­molecular unit [A•B] is built by the simultaneous coordination of one of the nitrile N atoms of B to the three mercury atoms of the macrocycle A. The Hg⋯N distances range from 2.990 (4) to 3.030 (4) Å and are very close to those observed in the related adducts of the macrocycle A with other nitrile derivatives. The mol­ecule of B is almost perpendicular to the mean plane of the macrocycle A at the dihedral angle of 88.20 (5)°. The donor–acceptor Hg⋯N inter­actions do not affect the C≡N bond lengths [1.136 (6) and 1.140 (6) Å]. The trans nitrile group of B coordinates to another macrocycle A, forming an infinite mixed-stack [A•B] architecture toward [101]. The remaining N atoms of two nitrile groups of B are not engaged in any donor–acceptor inter­actions. In the crystal, the mixed stacks are held together by inter­molecular C—F⋯C≡N secondary inter­actions [2.846 (5)–2.925 (5) Å].

1. Chemical context

Trimeric perfluoro-o-phenyl­ene mercury (A) is a versatile Lewis acid that is applied for complexation with different substrates, in particular, for the obtaining of charge-transfer complexes based on donor–acceptor inter­molecular inter­actions (Hasegawa et al., 2004[Hasegawa, T., Mattenberger, K., Takeya, J. & Batlogg, B. (2004). Phys. Rev. B, 69, 245115.]). Importantly, some physical properties of the guest substrates can change upon complexation. For example, unusual optical properties of the organic mol­ecules in supra­molecular complexes with macrocycle A have previously been observed (Haneline et al., 2002[Haneline, M. R., Tsunoda, M. & Gabbaï, F. P. (2002). J. Am. Chem. Soc. 124, 3737-3742.]; Elbjeirami et al., 2007[Elbjeirami, O., Burress, C. N., Gabbaï, F. P. & Omary, M. A. (2007). J. Phys. Chem. C111, 9522-9529.]; Filatov et al., 2009[Filatov, A. S., Jackson, E. A., Scott, L. T. & Petrukhina, M. A. (2009). Angew. Chem. Int. Ed. 48, 8473-8476.], 2011[Filatov, A. S., Greene, A. K., Jackson, E. A., Scott, L. T. & Petrukhina, M. A. (2011). J. Organomet. Chem. 696, 2877-2881.]). Moreover, using complexation with A, the stabilization of different organic (di­phenyl­polyynes; Taylor & Gabbaï, 2006[Taylor, T. J. & Gabbaï, F. P. (2006). Organometallics, 25, 2143-2147.]; Taylor et al., 2008[Taylor, T. J., Elbjeirami, O., Burress, C. N., Tsunoda, M., Bodine, M. I., Omary, M. A. & Gabbaï, F. P. (2008). J. Inorg. Organomet. Polym. 18, 175-179.]) and metal-organic (nickelocene; Haneline & Gabbaï, 2004a[Haneline, M. R. & Gabbaï, F. P. (2004a). Angew. Chem. Int. Ed. 43, 5471-5474.]) mol­ecules was achieved under ambient conditions. In this paper, a complex of A with tetra­cyano­ethyl­ene (B) – an unstable dienophilic (σ-electron donor and π-electron acceptor) compound – [Hg3(C6F4)3]·C6N4, (I), was prepared and studied by X-ray diffraction analysis to get a deeper understanding of the complexation process.

2. Structural commentary

Complex (I) contains one mol­ecule of tetra­cyano­ethyl­ene B per one mol­ecule of the mercury macrocycle A, i.e., C18F12Hg3·C6N4 (A•B), and crystallizes in the monoclinic space group C2/c. Both macrocycle A and the mol­ecule of B occupy special positions on a twofold rotation axis and inversion centre, respectively. The supra­molecular unit of (I) is built by the simultaneous coordination of the nitrile N1 nitro­gen atom of B to the three mercury atoms of the macrocycle A (Fig. 1[link]). The Hg⋯N distances range from 2.990 (4) to 3.030 (4) Å and are very close to those observed in related adducts of macrocycle A with other nitrile derivatives: aceto­nitrile [2.93 (1)–2.99 (1) Å], acrylo­nitrile [2.87 (1)–2.96 (1) Å] and benzo­nitrile [2.97 (1)–3.13 (1) Å] (Tikhonova et al., 2000[Tikhonova, I. A., Dolgushin, F. M., Yanovsky, A. I., Starikova, Z. A., Petrovskii, P. V., Furin, G. G. & Shur, V. B. (2000). J. Organomet. Chem. 613, 60-67.]) and 7,7,8,8-tetra­cyano­quinodi­methane (II) [3.102 (11)–3.134 (11) Å] (Haneline & Gabbaï, 2004b[Haneline, M. R. & Gabbaï, F. P. (2004b). C. R. Chim. 7, 871-876.]). Thus, the N1 nitro­gen atom is essentially equidistant to the three Lewis acidic sites of the macrocycle A. The mol­ecule of B is almost perpendicular to the mean plane of macrocycle A, making a dihedral angle of 88.20 (5)°. It is very important to point out that the donor–acceptor Hg⋯N inter­actions do not affect the C≡N bond lengths [1.136 (6) and 1.140 (6) Å].

[Scheme 1]
[Figure 1]
Figure 1
The supra­molecular unit of complex (I) (A•B). Displacement ellipsoids are drawn at the 50% probability level. Dashed lines indicate the inter­molecular secondary Hg⋯N inter­actions. [Symmetry codes: (i) 1 − x, y, [{1\over 2}] − z; (ii) [{3\over 2}] − x, [{3\over 2}] − y, 1 − z.]

Taking into account the intrinsic Ci symmetry of B, the trans nitrile group of this mol­ecule coordinates to another macrocycle A, forming an infinite mixed-stack [A•B] architecture (Fig. 2[link]). The remaining nitro­gen atoms of the two nitrile groups of B are not engaged in any donor–acceptor inter­actions.

[Figure 2]
Figure 2
The infinite mixed-stack [A•B] architecture of (I). Dashed lines indicate the inter­molecular secondary Hg⋯N inter­actions.

3. Supra­molecular features

In the crystal, the mixed stacks toward [101] are held together by inter­molecular C—F⋯C≡N secondary inter­actions [F2⋯C11iii 2.864 (5), F5⋯C12iv 2.846 (5) and F6⋯C11v 2.925 (5) Å; symmetry codes: (iii) −[{1\over 2}] + x, [{1\over 2}] + y, z; (iv) 1 − x, 1 − y, 1 − z; (v) −[{1\over 2}] + x, −[{1\over 2}] + y, z] (Fig. 3[link]).

[Figure 3]
Figure 3
Crystal packing of complex (I) along the b axis, showing the infinite mixed stacks toward [101]. Dashed lines indicate the inter­molecular secondary Hg⋯N and F⋯C inter­actions.

4. Comparison with compound (II)

It is inter­esting to note that the crystal structures of (I) and (II) are very similar. In both complexes, the guest mol­ecules of tetra­cyano­ethyl­ene B and tetra­cyano­quinodi­methane C are arranged perpendicularly to macrocycle A, with the same coordination mode of the trans nitrile groups to the three mercury atoms (Fig. 4[link]). However, the supra­molecular unit in (I) is A•B (a 1:1 ratio), whereas that in (II) is A•C•A (a 2:1 ratio) (Fig. 4[link]). Beside the mol­ecules of C, complex (II) includes the additional solvate CS2 (D) mol­ecules. The mol­ecules of D participate in the construction of the supra­molecular architecture of (II), resulting in infinite mixed stacks [A•C•A•1.5D] (Fig. 4[link]). Remarkably, the total number of donor–acceptor inter­molecular inter­actions within the infinite mixed stacks of (I) and (II) is equal ([12 Hg⋯N] and [6 Hg⋯N + 6 Hg⋯S], respectively).

[Figure 4]
Figure 4
The supra­molecular structure of complex (II) ([A•C•A•1.5D]). Dashed lines indicate the inter­molecular secondary Hg⋯N inter­actions.

5. TGA analysis

Despite complexes (I) and (II) being structural analogs, they are substanti­ally different in their chemical stability. The crystalline complex (II) decomposes over a few days, while complex (I) is stable in the solid state for several months under ambient conditions. As free B decomposes rapidly upon reaction with moisture to produce toxic hydrogen cyanide, the high chemical stability of complex (I) is surprising. Moreover, the thermal stability of complex (I) has been studied by thermogravimetric analysis (TGA) which revealed that, upon complexation, tetra­cyano­ethyl­ene is stable to higher temperatures (Fig. 5[link]). So, the free compound B starts to decompose at 363 K, but, being incorporated into the supra­molecular complex (I), B is stable up to 393 K. Complex (I) decomposes in two different steps. The first step of a 18.3% weight loss is attributed to molecule B because the much lower decomposition temperature of this molecule compared to macrocycle A. Consequently, the second weight loss of 81.7% is attributed to decomposition of macrocycle A. The complete decomposition of the free B is complete at 445 K; however, its final decomposition temperature is equal to 467 K within the supra­molecular complex (I). Final decomposition of complex (I) occurs at 573 K, and is likely due decomposition of macrocycle A.

[Figure 5]
Figure 5
TGA diagram of free B (in red) and complex (I) (in blue).

It is known that tetra­cyano­ethyl­ene is used not only as a component of charge-transfer complexes for organic electronics, but also in the preparation of organic magnets (Kao et al., 2012[Kao, C.-Y., Yoo, J.-W., Min, Y. & Epstein, A. J. (2012). Appl. Mater. Interfaces, 4, 137-141.]). Consequently, the increase of its thermal stability attracts special attention in the manufacturing of organic materials. The complexation method described here could help to solve this problem.

6. Synthesis and crystallization

Trimeric per­fluoro-o-phenyl­ene mercury was synthesized according to the procedure described previously (Sartori & Golloch, 1968[Sartori, P. & Golloch, A. (1968). Chem. Ber. 101, 2004-2009.]), and purified by recrystallization in di­chloro­methane (Filatov et al., 2009[Filatov, A. S., Jackson, E. A., Scott, L. T. & Petrukhina, M. A. (2009). Angew. Chem. Int. Ed. 48, 8473-8476.]). Tetra­cyano­ethyl­ene was acquired from TCI America. All solvents were HPLC grade and used without any further purification. Thermogravimetric analysis was performed with a Hitachi STA7200 SII NanoTechnology instrument (an aluminum crucible (45 mL) was used; heating rate was 10 K min−1).

Stoichiometric amounts of trimeric per­fluoro-o-phenyl­ene mercury (63.8 mg, 59.6 mmol) and tetra­cyano­ethyl­ene (7.7 mg, 59.6 mmol) were dissolved in di­chloro­methane in separate tubes using ultrasonication. The contents of the tubes were mixed carefully, and then left for slow evaporation of the solvents. Complex (I) was obtained as yellow prismatic crystals, m.p. = 499–500 K.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link]. There is a high positive residual density of 1.19–1.78 e Å−3 near the Hg1 and Hg2 atoms due to considerable absorption effects which could not be completely corrected.

Table 1
Experimental details

Crystal data
Chemical formula [Hg3(C6F4)3]·C6N4
Mr 1174.05
Crystal system, space group Monoclinic, C2/c
Temperature (K) 100
a, b, c (Å) 10.5658 (11), 13.8297 (15), 16.7166 (18)
β (°) 90.575 (1)
V3) 2442.5 (5)
Z 4
Radiation type Mo Kα
μ (mm−1) 18.93
Crystal size (mm) 0.15 × 0.15 × 0.10
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2003[Bruker (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.150, 0.250
No. of measured, independent and observed [I > 2σ(I)] reflections 13813, 3560, 3404
Rint 0.036
(sin θ/λ)max−1) 0.703
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.023, 0.055, 1.06
No. of reflections 3560
No. of parameters 195
Δρmax, Δρmin (e Å−3) 1.78, −1.70
Computer programs: APEX2 (Bruker, 2005[Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2001[Bruker (2001). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

cyclo-Tris(µ-3,4,5,6-tetrafluoro-o-phenylene-κ2C1:C2)trimercury–tetracyanoethylene (1/1) top
Crystal data top
[Hg3(C6F4)3]·C6N4F(000) = 2080
Mr = 1174.05Dx = 3.193 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 10.5658 (11) ÅCell parameters from 9624 reflections
b = 13.8297 (15) Åθ = 4.4–32.7°
c = 16.7166 (18) ŵ = 18.93 mm1
β = 90.575 (1)°T = 100 K
V = 2442.5 (5) Å3Prism, light-yellow
Z = 40.15 × 0.15 × 0.10 mm
Data collection top
Bruker APEXII CCD
diffractometer
3404 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.036
φ and ω scansθmax = 30.0°, θmin = 4.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
h = 1414
Tmin = 0.150, Tmax = 0.250k = 1919
13813 measured reflectionsl = 2323
3560 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullPrimary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.023Secondary atom site location: difference Fourier map
wR(F2) = 0.055 w = 1/[σ2(Fo2) + (0.0191P)2 + 19.1P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.002
3560 reflectionsΔρmax = 1.78 e Å3
195 parametersΔρmin = 1.70 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Hg10.50000.83281 (2)0.25000.01573 (6)
Hg20.36631 (2)0.60249 (2)0.31557 (2)0.01493 (5)
F10.3423 (3)0.9966 (2)0.33993 (17)0.0259 (6)
F20.1469 (3)0.98904 (19)0.44275 (17)0.0267 (6)
F30.0409 (3)0.8182 (2)0.48130 (17)0.0253 (5)
F40.1388 (3)0.65100 (19)0.42523 (17)0.0247 (5)
F50.3016 (3)0.38265 (19)0.35217 (16)0.0240 (5)
F60.4034 (3)0.21483 (18)0.30301 (17)0.0238 (5)
C10.3490 (4)0.8248 (3)0.3293 (3)0.0186 (7)
C20.2968 (4)0.9087 (3)0.3601 (3)0.0198 (8)
C30.1952 (4)0.9069 (3)0.4121 (3)0.0199 (8)
C40.1415 (4)0.8193 (3)0.4332 (3)0.0191 (8)
C50.1927 (4)0.7350 (3)0.4030 (2)0.0177 (7)
C60.2958 (4)0.7350 (3)0.3517 (2)0.0153 (7)
C70.4474 (4)0.4743 (3)0.2765 (2)0.0161 (7)
C80.4008 (4)0.3863 (3)0.3008 (2)0.0173 (7)
C90.4501 (4)0.2987 (3)0.2762 (3)0.0189 (8)
N10.6254 (4)0.6785 (3)0.3521 (2)0.0213 (7)
N20.9176 (4)0.5836 (3)0.5355 (3)0.0289 (8)
C100.7588 (4)0.7081 (3)0.4799 (2)0.0165 (7)
C110.6861 (4)0.6895 (3)0.4081 (2)0.0174 (7)
C120.8478 (4)0.6369 (3)0.5080 (2)0.0198 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Hg10.01452 (9)0.01481 (10)0.01793 (10)0.0000.00398 (7)0.000
Hg20.01430 (7)0.01349 (8)0.01709 (8)0.00109 (4)0.00400 (5)0.00000 (5)
F10.0273 (13)0.0178 (12)0.0327 (14)0.0010 (10)0.0092 (11)0.0003 (10)
F20.0296 (14)0.0186 (13)0.0321 (14)0.0050 (10)0.0088 (11)0.0055 (10)
F30.0209 (12)0.0275 (14)0.0277 (13)0.0033 (10)0.0111 (10)0.0001 (11)
F40.0243 (13)0.0192 (12)0.0308 (14)0.0003 (10)0.0110 (10)0.0012 (10)
F50.0237 (13)0.0204 (13)0.0281 (13)0.0003 (10)0.0139 (10)0.0032 (10)
F60.0251 (13)0.0132 (12)0.0333 (14)0.0026 (9)0.0073 (11)0.0029 (10)
C10.0174 (18)0.0188 (19)0.0195 (18)0.0010 (14)0.0016 (14)0.0010 (14)
C20.0200 (19)0.0171 (19)0.0225 (19)0.0003 (14)0.0045 (15)0.0001 (15)
C30.0190 (18)0.0184 (19)0.0223 (19)0.0091 (14)0.0018 (15)0.0041 (15)
C40.0142 (17)0.023 (2)0.0206 (18)0.0024 (14)0.0054 (14)0.0003 (15)
C50.0181 (18)0.0180 (18)0.0171 (17)0.0014 (14)0.0023 (14)0.0010 (14)
C60.0142 (16)0.0158 (18)0.0161 (17)0.0034 (13)0.0031 (13)0.0007 (13)
C70.0148 (17)0.0149 (17)0.0186 (17)0.0038 (13)0.0053 (14)0.0002 (14)
C80.0159 (17)0.0188 (19)0.0173 (17)0.0026 (14)0.0035 (14)0.0019 (14)
C90.0177 (18)0.0161 (18)0.0228 (19)0.0020 (14)0.0001 (15)0.0018 (15)
N10.0216 (17)0.0193 (17)0.0231 (17)0.0011 (13)0.0044 (13)0.0001 (13)
N20.028 (2)0.028 (2)0.031 (2)0.0051 (16)0.0072 (16)0.0016 (16)
C100.0143 (16)0.0169 (18)0.0184 (17)0.0012 (13)0.0030 (13)0.0010 (14)
C110.0182 (18)0.0166 (18)0.0174 (17)0.0001 (14)0.0036 (14)0.0011 (14)
C120.0196 (18)0.0195 (19)0.0205 (18)0.0001 (15)0.0030 (14)0.0006 (15)
Geometric parameters (Å, º) top
Hg1—C12.087 (4)C2—C31.389 (6)
Hg1—N13.030 (4)C3—C41.385 (6)
Hg2—C62.071 (4)C4—C51.382 (6)
Hg2—C72.077 (4)C5—C61.394 (5)
Hg2—N12.990 (4)C7—C81.375 (6)
F1—C21.351 (5)C7—C7i1.429 (7)
F2—C31.348 (5)C8—C91.384 (6)
F3—C41.340 (4)C9—C9i1.377 (8)
F4—C51.347 (5)N1—C111.140 (6)
F5—C81.363 (5)N2—C121.136 (6)
F6—C91.339 (5)C10—C10ii1.355 (8)
C1—C21.387 (6)C10—C121.437 (6)
C1—C61.415 (6)C10—C111.441 (6)
C1—Hg1—C1i173.9 (2)C1—C6—Hg2123.7 (3)
C6—Hg2—C7176.24 (16)C8—C7—C7i117.8 (2)
C2—C1—C6118.4 (4)C8—C7—Hg2120.8 (3)
C2—C1—Hg1120.0 (3)C7i—C7—Hg2121.39 (11)
C6—C1—Hg1121.6 (3)F5—C8—C7119.9 (3)
F1—C2—C1121.1 (4)F5—C8—C9116.7 (4)
F1—C2—C3116.8 (4)C7—C8—C9123.4 (4)
C1—C2—C3122.1 (4)F6—C9—C9i120.0 (2)
F2—C3—C4118.9 (4)F6—C9—C8121.2 (4)
F2—C3—C2121.4 (4)C9i—C9—C8118.8 (2)
C4—C3—C2119.7 (4)C11—N1—Hg2136.2 (3)
F3—C4—C5121.7 (4)C11—N1—Hg1127.4 (3)
F3—C4—C3119.5 (4)Hg2—N1—Hg174.82 (9)
C5—C4—C3118.9 (4)C10ii—C10—C12121.1 (5)
F4—C5—C4117.3 (4)C10ii—C10—C11119.4 (5)
F4—C5—C6120.3 (4)C12—C10—C11119.5 (4)
C4—C5—C6122.4 (4)N1—C11—C10176.9 (5)
C5—C6—C1118.6 (4)N2—C12—C10175.2 (5)
C5—C6—Hg2117.7 (3)
C6—C1—C2—F1179.0 (4)F4—C5—C6—C1179.4 (4)
Hg1—C1—C2—F10.2 (6)C4—C5—C6—C10.6 (6)
C6—C1—C2—C30.3 (6)F4—C5—C6—Hg22.5 (5)
Hg1—C1—C2—C3179.1 (3)C4—C5—C6—Hg2177.5 (3)
F1—C2—C3—F21.9 (6)C2—C1—C6—C50.7 (6)
C1—C2—C3—F2178.8 (4)Hg1—C1—C6—C5178.1 (3)
F1—C2—C3—C4177.9 (4)C2—C1—C6—Hg2177.2 (3)
C1—C2—C3—C41.4 (7)Hg1—C1—C6—Hg24.0 (5)
F2—C3—C4—F32.0 (6)C7i—C7—C8—F5179.2 (4)
C2—C3—C4—F3177.8 (4)Hg2—C7—C8—F51.1 (5)
F2—C3—C4—C5178.7 (4)C7i—C7—C8—C90.4 (7)
C2—C3—C4—C51.5 (6)Hg2—C7—C8—C9179.3 (3)
F3—C4—C5—F41.2 (6)F5—C8—C9—F61.2 (6)
C3—C4—C5—F4179.5 (4)C7—C8—C9—F6178.4 (4)
F3—C4—C5—C6178.8 (4)F5—C8—C9—C9i179.5 (5)
C3—C4—C5—C60.5 (6)C7—C8—C9—C9i0.8 (8)
Symmetry codes: (i) x+1, y, z+1/2; (ii) x+3/2, y+3/2, z+1.
 

Acknowledgements

Funding from the US National Science Foundation (PREM DMR-0934212 and EPSCoR IIA-1301346) is gratefully acknowledged.

References

First citationBruker (2001). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationElbjeirami, O., Burress, C. N., Gabbaï, F. P. & Omary, M. A. (2007). J. Phys. Chem. C111, 9522–9529.  Google Scholar
First citationFilatov, A. S., Greene, A. K., Jackson, E. A., Scott, L. T. & Petrukhina, M. A. (2011). J. Organomet. Chem. 696, 2877–2881.  CSD CrossRef CAS Google Scholar
First citationFilatov, A. S., Jackson, E. A., Scott, L. T. & Petrukhina, M. A. (2009). Angew. Chem. Int. Ed. 48, 8473–8476.  CSD CrossRef CAS Google Scholar
First citationHaneline, M. R. & Gabbaï, F. P. (2004a). Angew. Chem. Int. Ed. 43, 5471–5474.  CSD CrossRef CAS Google Scholar
First citationHaneline, M. R. & Gabbaï, F. P. (2004b). C. R. Chim. 7, 871–876.  CSD CrossRef CAS Google Scholar
First citationHaneline, M. R., Tsunoda, M. & Gabbaï, F. P. (2002). J. Am. Chem. Soc. 124, 3737–3742.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationHasegawa, T., Mattenberger, K., Takeya, J. & Batlogg, B. (2004). Phys. Rev. B, 69, 245115.  CrossRef Google Scholar
First citationKao, C.-Y., Yoo, J.-W., Min, Y. & Epstein, A. J. (2012). Appl. Mater. Interfaces, 4, 137–141.  CrossRef CAS Google Scholar
First citationSartori, P. & Golloch, A. (1968). Chem. Ber. 101, 2004–2009.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTaylor, T. J., Elbjeirami, O., Burress, C. N., Tsunoda, M., Bodine, M. I., Omary, M. A. & Gabbaï, F. P. (2008). J. Inorg. Organomet. Polym. 18, 175–179.  CSD CrossRef CAS Google Scholar
First citationTaylor, T. J. & Gabbaï, F. P. (2006). Organometallics, 25, 2143–2147.  CrossRef CAS Google Scholar
First citationTikhonova, I. A., Dolgushin, F. M., Yanovsky, A. I., Starikova, Z. A., Petrovskii, P. V., Furin, G. G. & Shur, V. B. (2000). J. Organomet. Chem. 613, 60–67.  CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds