organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of (E)-4-meth­­oxy-2-{[(5-methyl­pyridin-2-yl)imino]­meth­yl}phenol

aSchool of Chemical Sciences, 11800, USM Pulau Pinang, Malaysia
*Correspondence e-mail: farook@usm.my

Edited by C. Rizzoli, Universita degli Studi di Parma, Italy (Received 11 September 2015; accepted 28 September 2015; online 3 October 2015)

The mol­ecule of the title Schiff base compound, C14H14N2O2, displays an E conformation with respect the imine C=N double bond. The mol­ecule is approximately planar, with the dihedral angle formed by the planes of the pyridine and benzene rings being 5.72 (6)°. There is an intra­molecular hydrogen bond involving the phenolic H and imine N atoms.

1. Related literature

For the structure of related N-heterocyclic Schiff base compounds, see: Sahebalzamani et al. (2011[Sahebalzamani, H., Khaligh, N., Ghammamy, S., Salimi, F. & Mehrani, K. (2011). Molecules, 16, 7715-7724.]); Rawat & Singh (2015[Rawat, P. & Singh, R. N. (2015). J. Mol. Struct. 1097, 214-225.]); Thakar et al. (2015[Thakar, A. S., Friedrich, H. B., Joshi, K. T. & Maguire, G. E. M. (2015). S. Afr. J. Chem. 68, 39-44.]); Salam et al. (2011[Salam, M. A., Affan, M. A., Ahmad, F. B., Ng, S. W. & Tiekink, E. R. T. (2011). Acta Cryst. E67, o955.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C14H14N2O2

  • Mr = 242.27

  • Monoclinic P 21 /n

  • a = 12.7082 (12) Å

  • b = 4.7446 (4) Å

  • c = 21.124 (2) Å

  • β = 105.525 (2)°

  • V = 1227.21 (19) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 294 K

  • 0.41 × 0.35 × 0.12 mm

2.2. Data collection

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SABABS; Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.030, Tmax = 0.262

  • 10950 measured reflections

  • 2848 independent reflections

  • 1910 reflections with I > 2σ(I)

  • Rint = 0.028

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.151

  • S = 1.07

  • 2848 reflections

  • 170 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H1O2⋯N2 0.95 (2) 1.76 (3) 2.6276 (19) 150 (2)

Data collection: APEX2 (Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. A71, 3-8.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The molecule of the title compound (Fig. 1) has an E configuration about the imine CN double bond, as indicated by the value of 179.11(12° of the C5-N2-C6-C7 torsion angle. The molecule is is almost planar, with a dihedral angle between the pyridine and benzene rings of 5.72 (6)°. The molecular conformation is stabilized by an intramolecular O—H···N hydrogen bond (Table 1) occurring between the phenolic hydrogen and imine nitrogen atoms. In the crystal, packing is stabilized only by van der Waals interactions.

Related literature top

For the structure of related N-heterocyclic Schiff base compounds, see: Sahebalzamani et al. (2011); Rawat & Singh (2015); Thakar et al. (2015); Salam et al. (2011).

Experimental top

2-Hydroxy-5-methoxybenzaldehyde (5 mmol, 0.761 g) and 2-amino-5-methylpyridin (5 mmol, 0.541 g) were dissolved in ethanol in separate beakers, then the amine solution was added drop wise with stirring to the aldehyde in the round bottomed flask. Acetic acid was added and the solution was refluxed for 4 h under Ar atmosphere (Fig. 3). The solid product obtained was dried under reduced pressure overnight, then recrystallized with dichloromethane, diethyl ether and excess n-hexane, filtered, washed again with diethyl ether/n-hexane (1:3 v/v) and dried out over 24 h under reduced pressure in a desiccator. Purple single crystals of the title compound were grown on evaporation of an ethanol solution. M. p.: 380-381 K. Yield: 85%. Anal. calc. for C14H14N2O2 (FW: 242.28 g/mol): C, 69.43; H, 5.77; N, 11.55%. Found: C, 69.93; H, 5.69; N, 11.54%. IR (KBr pellets µmax/cm-1): 3427 ν(N—H), 2952 and 1384 ν(CH3), 1618 ν(CN), 1497 ν(CC, ar.), 1210 ν(C—O), 1035 ν(C—N).

Refinement top

The phenolic hydrogen atom was located in a difference Fourier map and refined freely. All other H atoms were calculated geometrically and refined using a riding model, with C—H = 0.93 Å, and with Uiso(H) = 1.2 Ueq(C) or 1.5 Ueq(C) for methyl H atoms. A rotating model was used for all methyl group. The H atoms of the methyl carbon attached to the pyridine ring are disordered over two sets of sites with an occupancy ratio of 0.61 (2):0.39 (2).

Structure description top

The molecule of the title compound (Fig. 1) has an E configuration about the imine CN double bond, as indicated by the value of 179.11(12° of the C5-N2-C6-C7 torsion angle. The molecule is is almost planar, with a dihedral angle between the pyridine and benzene rings of 5.72 (6)°. The molecular conformation is stabilized by an intramolecular O—H···N hydrogen bond (Table 1) occurring between the phenolic hydrogen and imine nitrogen atoms. In the crystal, packing is stabilized only by van der Waals interactions.

For the structure of related N-heterocyclic Schiff base compounds, see: Sahebalzamani et al. (2011); Rawat & Singh (2015); Thakar et al. (2015); Salam et al. (2011).

Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at the 30% probability level. The dashed line indicates an intramolecular hydrogen bond.
[Figure 2] Fig. 2. Packing of the title compound compound viewed down the b axis.
[Figure 3] Fig. 3. Synthesis of the title compound.
(I) top
Crystal data top
C14H14N2O2F(000) = 512
Mr = 242.27Dx = 1.311 Mg m3
Monoclinic, P21/nMelting point: 380 K
a = 12.7082 (12) ÅMo Kα radiation, λ = 0.71073 Å
b = 4.7446 (4) Åθ = 1.7–27.6°
c = 21.124 (2) ŵ = 0.09 mm1
β = 105.525 (2)°T = 294 K
V = 1227.21 (19) Å3Block, purple
Z = 40.41 × 0.35 × 0.12 mm
Data collection top
Bruker APEXII CCD
diffractometer
1910 reflections with I > 2σ(I)
φ and ω scansRint = 0.028
Absorption correction: multi-scan
(SABABS; Bruker, 2014)
θmax = 27.6°, θmin = 1.7°
Tmin = 0.030, Tmax = 0.262h = 1614
10950 measured reflectionsk = 66
2848 independent reflectionsl = 2727
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.044H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.151 w = 1/[σ2(Fo2) + (0.0755P)2 + 0.121P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
2848 reflectionsΔρmax = 0.17 e Å3
170 parametersΔρmin = 0.18 e Å3
Crystal data top
C14H14N2O2V = 1227.21 (19) Å3
Mr = 242.27Z = 4
Monoclinic, P21/nMo Kα radiation
a = 12.7082 (12) ŵ = 0.09 mm1
b = 4.7446 (4) ÅT = 294 K
c = 21.124 (2) Å0.41 × 0.35 × 0.12 mm
β = 105.525 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
2848 independent reflections
Absorption correction: multi-scan
(SABABS; Bruker, 2014)
1910 reflections with I > 2σ(I)
Tmin = 0.030, Tmax = 0.262Rint = 0.028
10950 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.151H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.17 e Å3
2848 reflectionsΔρmin = 0.18 e Å3
170 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.11027 (10)0.5504 (3)0.07471 (7)0.0866 (5)
O20.52254 (10)0.4026 (3)0.24106 (6)0.0762 (4)
N10.57565 (9)0.2914 (3)0.07413 (6)0.0527 (3)
N20.55236 (9)0.0280 (3)0.15589 (6)0.0495 (3)
C10.63754 (12)0.4827 (3)0.05470 (8)0.0543 (4)
H1A0.61010.56320.01340.065*
C20.73934 (11)0.5698 (3)0.09138 (7)0.0476 (4)
C30.77704 (12)0.4503 (4)0.15259 (8)0.0558 (4)
H3A0.84460.50330.17970.067*
C40.71504 (12)0.2527 (4)0.17389 (7)0.0548 (4)
H4A0.74030.17070.21520.066*
C50.61512 (10)0.1780 (3)0.13323 (7)0.0445 (3)
C60.45685 (12)0.0882 (3)0.12034 (8)0.0521 (4)
H6A0.43090.00230.08010.063*
C70.38731 (11)0.2931 (3)0.14055 (7)0.0487 (4)
C80.42234 (12)0.4410 (3)0.19963 (7)0.0536 (4)
C90.35180 (14)0.6348 (4)0.21589 (8)0.0630 (5)
H9A0.37500.73800.25450.076*
C100.24841 (14)0.6764 (3)0.17591 (9)0.0621 (4)
H10A0.20210.80530.18800.074*
C110.21273 (13)0.5282 (4)0.11786 (9)0.0593 (4)
C120.28284 (12)0.3399 (4)0.10047 (8)0.0583 (4)
H12A0.25960.24220.06100.070*
C130.80422 (14)0.7829 (4)0.06515 (9)0.0651 (5)
H13A0.86530.84430.09990.098*0.61 (2)
H13B0.83020.69890.03080.098*0.61 (2)
H13C0.75870.94160.04790.098*0.61 (2)
H13D0.87630.71100.06920.098*0.39 (2)
H13E0.76890.81910.01970.098*0.39 (2)
H13F0.80900.95470.08970.098*0.39 (2)
C140.03899 (15)0.7589 (5)0.08715 (13)0.0898 (7)
H14A0.02740.75880.05230.135*
H14B0.07320.94040.08950.135*
H14C0.02270.71920.12810.135*
H1O20.5562 (19)0.261 (5)0.2213 (13)0.120 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0597 (7)0.0913 (10)0.1072 (10)0.0322 (7)0.0198 (7)0.0079 (8)
O20.0739 (8)0.0858 (10)0.0632 (7)0.0210 (7)0.0084 (6)0.0106 (7)
N10.0450 (6)0.0544 (7)0.0554 (7)0.0084 (6)0.0076 (5)0.0070 (6)
N20.0510 (7)0.0454 (7)0.0547 (7)0.0090 (5)0.0186 (5)0.0028 (6)
C10.0491 (8)0.0565 (9)0.0558 (8)0.0042 (7)0.0113 (6)0.0122 (7)
C20.0453 (7)0.0406 (7)0.0595 (8)0.0022 (6)0.0182 (6)0.0003 (7)
C30.0449 (7)0.0614 (10)0.0567 (8)0.0126 (7)0.0057 (6)0.0021 (8)
C40.0527 (8)0.0620 (10)0.0461 (7)0.0114 (7)0.0067 (6)0.0049 (7)
C50.0448 (7)0.0409 (7)0.0494 (7)0.0047 (6)0.0151 (6)0.0012 (6)
C60.0520 (8)0.0489 (8)0.0578 (8)0.0094 (7)0.0187 (7)0.0000 (7)
C70.0524 (8)0.0419 (7)0.0576 (8)0.0073 (6)0.0247 (7)0.0058 (7)
C80.0619 (9)0.0489 (8)0.0553 (8)0.0079 (7)0.0248 (7)0.0076 (7)
C90.0803 (11)0.0557 (9)0.0618 (9)0.0118 (9)0.0342 (9)0.0001 (8)
C100.0730 (10)0.0500 (9)0.0774 (11)0.0155 (8)0.0448 (9)0.0074 (8)
C110.0554 (9)0.0545 (9)0.0749 (10)0.0134 (7)0.0293 (8)0.0078 (8)
C120.0557 (8)0.0558 (9)0.0663 (9)0.0131 (8)0.0213 (7)0.0019 (8)
C130.0633 (9)0.0536 (9)0.0842 (11)0.0102 (8)0.0297 (9)0.0057 (9)
C140.0614 (10)0.0771 (13)0.1362 (19)0.0267 (10)0.0357 (11)0.0035 (13)
Geometric parameters (Å, º) top
O1—C111.379 (2)C7—C121.388 (2)
O1—C141.413 (2)C7—C81.397 (2)
O2—C81.3505 (19)C8—C91.390 (2)
O2—H1O20.95 (3)C9—C101.373 (2)
N1—C51.3282 (18)C9—H9A0.9300
N1—C11.3356 (18)C10—C111.381 (2)
N2—C61.2771 (18)C10—H10A0.9300
N2—C51.4231 (17)C11—C121.379 (2)
C1—C21.381 (2)C12—H12A0.9300
C1—H1A0.9300C13—H13A0.9600
C2—C31.375 (2)C13—H13B0.9600
C2—C131.501 (2)C13—H13C0.9600
C3—C41.376 (2)C13—H13D0.9600
C3—H3A0.9300C13—H13E0.9600
C4—C51.3754 (19)C13—H13F0.9600
C4—H4A0.9300C14—H14A0.9600
C6—C71.4526 (19)C14—H14B0.9600
C6—H6A0.9300C14—H14C0.9600
C11—O1—C14118.00 (16)C10—C9—H9A119.4
C8—O2—H1O2105.5 (15)C8—C9—H9A119.4
C5—N1—C1117.31 (12)C9—C10—C11120.38 (14)
C6—N2—C5119.06 (13)C9—C10—H10A119.8
N1—C1—C2124.82 (14)C11—C10—H10A119.8
N1—C1—H1A117.6C12—C11—O1115.88 (16)
C2—C1—H1A117.6C12—C11—C10118.98 (16)
C3—C2—C1116.25 (13)O1—C11—C10125.14 (14)
C3—C2—C13122.49 (14)C11—C12—C7121.46 (16)
C1—C2—C13121.26 (14)C11—C12—H12A119.3
C2—C3—C4120.18 (13)C7—C12—H12A119.3
C2—C3—H3A119.9C2—C13—H13A109.5
C4—C3—H3A119.9C2—C13—H13B109.5
C5—C4—C3119.02 (14)H13A—C13—H13B109.5
C5—C4—H4A120.5C2—C13—H13C109.5
C3—C4—H4A120.5H13A—C13—H13C109.5
N1—C5—C4122.41 (13)H13B—C13—H13C109.5
N1—C5—N2119.32 (12)C2—C13—H13D109.5
C4—C5—N2118.27 (13)C2—C13—H13E109.5
N2—C6—C7122.28 (14)H13D—C13—H13E109.5
N2—C6—H6A118.9C2—C13—H13F109.5
C7—C6—H6A118.9H13D—C13—H13F109.5
C12—C7—C8119.25 (13)H13E—C13—H13F109.5
C12—C7—C6119.06 (14)O1—C14—H14A109.5
C8—C7—C6121.69 (14)O1—C14—H14B109.5
O2—C8—C9119.18 (15)H14A—C14—H14B109.5
O2—C8—C7122.08 (13)O1—C14—H14C109.5
C9—C8—C7118.74 (15)H14A—C14—H14C109.5
C10—C9—C8121.17 (16)H14B—C14—H14C109.5
C5—N1—C1—C20.3 (2)C12—C7—C8—O2179.28 (14)
N1—C1—C2—C31.0 (2)C6—C7—C8—O20.2 (2)
N1—C1—C2—C13178.93 (14)C12—C7—C8—C91.1 (2)
C1—C2—C3—C40.9 (2)C6—C7—C8—C9179.78 (13)
C13—C2—C3—C4178.97 (14)O2—C8—C9—C10178.66 (14)
C2—C3—C4—C50.3 (2)C7—C8—C9—C101.7 (2)
C1—N1—C5—C40.5 (2)C8—C9—C10—C110.9 (2)
C1—N1—C5—N2179.64 (12)C14—O1—C11—C12174.24 (16)
C3—C4—C5—N10.5 (2)C14—O1—C11—C106.3 (3)
C3—C4—C5—N2179.64 (13)C9—C10—C11—C120.6 (2)
C6—N2—C5—N13.8 (2)C9—C10—C11—O1178.92 (15)
C6—N2—C5—C4176.11 (13)O1—C11—C12—C7178.37 (14)
C5—N2—C6—C7179.11 (12)C10—C11—C12—C71.2 (3)
N2—C6—C7—C12177.58 (14)C8—C7—C12—C110.3 (2)
N2—C6—C7—C81.5 (2)C6—C7—C12—C11178.81 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H1O2···N20.95 (2)1.76 (3)2.6276 (19)150 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H1O2···N20.95 (2)1.76 (3)2.6276 (19)150 (2)
 

Acknowledgements

The research was financially supported by the Third World Academy of Science (TWAS) and the RU grant 1001/PKIMIA/811269 from the Universiti Sains Malaysia.

References

First citationBruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationRawat, P. & Singh, R. N. (2015). J. Mol. Struct. 1097, 214–225.  Web of Science CrossRef CAS Google Scholar
First citationSahebalzamani, H., Khaligh, N., Ghammamy, S., Salimi, F. & Mehrani, K. (2011). Molecules, 16, 7715–7724.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSalam, M. A., Affan, M. A., Ahmad, F. B., Ng, S. W. & Tiekink, E. R. T. (2011). Acta Cryst. E67, o955.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationThakar, A. S., Friedrich, H. B., Joshi, K. T. & Maguire, G. E. M. (2015). S. Afr. J. Chem. 68, 39–44.  Web of Science CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds