organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 5′′-(4-chloro­benzyl­­idene)-4′-(4-chloro­phen­yl)-1′-methyltri­spiro[acenapthylene-1,2′-pyrrolidine-3′,1′′-cyclo­hexane-3′′,2′′′-[1,3]dioxane]-2(1H),6′′-dione

aResearch Department of Physics, S. D. N. B. Vaishnav College for Women, Chromepet, Chennai 600 044, India, and bDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India
*Correspondence e-mail: lakssdnbvc@gmail.com

Edited by C. Rizzoli, Universita degli Studi di Parma, Italy (Received 15 September 2015; accepted 26 September 2015; online 3 October 2015)

In the title compound, C36H29Cl2NO4, two spiro links connect the methyl-substituted pyrrolidine ring to the ace­naphthyl­ene and cyclo­hexa­none rings. The cyclo­hexa­none ring is further connected to the dioxalane ring by a third spiro junction. The five-membered ring of the ace­naphthylen-1-one ring system adopts a flattened envelope conformation, with the ketonic C atom as the flap, whereas the dioxalane and pyrrolidine rings each have a twist conformation. The cyclo­hexenone ring assumes a boat conformation. An intra­molecular C—H⋯O hydrogen-bond inter­action is present. In the crystal, mol­ecules are linked by non-classical C—H⋯O hydrogen bonds, forming chains extending parallel to the a axis.

1. Related literature

For the pharmacological properties of spiro compounds, see: Cravotto et al. (2001[Cravotto, G., Giovenzana, G. B., Pilati, T., Sisti, M. & Palmisano, G. (2001). J. Org. Chem. 66, 8447-8453.]); Raj et al. (2003[Raj, A. A., Raghunathan, R., SrideviKumari, M. R. & Raman, N. (2003). Bioorg. Med. Chem. 11, 407-419.]); Stylianakis et al. (2003[Stylianakis, I., Kolocouris, A., Kolocouris, N., Fytas, G., Foscolos, G. B., Padalko, E., Neyts, J. & De Clercq, E. (2003). Bioorg. Med. Chem. Lett. 13, 1699-1703.]). For the activities of ace­naphthyl­ene derivatives, see: Selvanayagam et al. (2004[Selvanayagam, S., Velmurugan, D., Ravikumar, K., Jayashankaran, J., Durga, R. R. & Raghunathan, R. (2004). Acta Cryst. E60, o2216-o2218.]); El-Ayaan et al. (2007[El-Ayaan, U., Abdel-Aziz, A. A.-M. & Al-Shihry, S. (2007). Eur. J. Med. Chem. 42, 1325-1333.]); McDavid & Daniels (1951[McDavids, J. E. & Daniels, T. C. (1951). J. Pharm. Sci. 40, 325-326.]); El-Ayaan & Abdel-Aziz (2005[El-Ayaan, U. & Abdel-Aziz, A. A.-M. (2005). Eur. J. Med. Chem. 40, 1214-1221.]); Smith et al. (1979[Smith, C. E., Williamson, W. R. N., Cashin, C. N. & Kitchen, E. A. (1979). J. Med. Chem. 22, 1464-1469.]); Chen et al. (2014[Chen, N. Y., Ren, L. P., Zou, M. M., Xu, Z. P., Shao, X. S., Xu, X. Y. & Li, Z. (2014). Chin. Chem. Lett. 25, 197-200.]). For the properties and pharmacological activities of dioxalane compounds, see: Narayanasamy et al. (2007[Narayanasamy, J., Pullagurla, M. R., Sharon, A., Wang, J., Schinazi, F. & Chu, C. K. (2007). Antiviral Res. 75, 198-209.]); Küçük et al. (2011[Küçük, H., Yusufoğlu, A., Mataracı, E. & Döşler, S. (2011). Molecules, 16, 6806-6815.]); Shirai et al. (1998[Shirai, R., Takayama, H., Nishikawa, A., Koiso, Y. & Hashimoto, Y. (1998). Bioorg. Med. Chem. Lett. 8, 1997-2000.]); Bera et al. (2003[Bera, S., Malik, L., Bhat, B., Carroll, S. S., MacCoss, M., Olsen, D. B., Tomassini, J. E. & Eldrup, A. B. (2003). Bioorg. Med. Chem. Lett. 13, 4455-4458.]); Aepkers & Wünsch (2005[Aepkers, M. & Wünsch, B. (2005). Bioorg. Med. Chem. 13, 6836-6849.]); Ozkanlı et al. (2003[Ozkanlı, F., Güney, A., Calıs, U. & Uzbay, T. (2003). Drug Res. 53, 758-762.]); Liang et al. (2006[Liang, Y., Narayanasamy, J., Schinazi, R. F. & Chu, C. K. (2006). Bioorg. Med. Chem. 14, 2178-2189.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C36H29Cl2NO4

  • Mr = 610.50

  • Triclinic [P \overline 1]

  • a = 8.9791 (4) Å

  • b = 10.3080 (5) Å

  • c = 15.7653 (6) Å

  • α = 88.679 (2)°

  • β = 83.263 (2)°

  • γ = 87.408 (2)°

  • V = 1447.39 (11) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.27 mm−1

  • T = 293 K

  • 0.35 × 0.30 × 0.25 mm

2.2. Data collection

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.708, Tmax = 0.746

  • 39174 measured reflections

  • 5104 independent reflections

  • 3981 reflections with I > 2σ(I)

  • Rint = 0.027

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.111

  • S = 1.06

  • 5104 reflections

  • 389 parameters

  • H-atom parameters constrained

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12A⋯O1 0.97 2.27 3.066 (3) 139
C22—H24⋯O2i 0.93 2.35 3.172 (3) 148
Symmetry code: (i) x+1, y, z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek,2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Spiro compounds frequently form a part of pharmacologically relevant alkaloids (Cravatto et al., 2001). Spiro pyrrolidines are an important class of compounds having anti­bacterial and anti­fungal activities against human pathogenic bacteria and dermatophytic fungi (Amal Raj et al., 2003), and are active against anti-influenza virus A. (Styliankis et al., 2003). Ace­naphthyl­ene derivatives are found to have high κ-opiod receptor affinity and selectivity (Selvanayagam et al., 2004). These derivatives have anti­tumor (Ayaan et al., 2007), anti­fungal (McDavid & Daniels, 1951), anti­microbial (Ayaan & Abdel-Aziz, 2005), anti-inflammatory (Smith et al., 1979) and insecticidal activities (Chen et al., 2014). Dioxalane compounds exihibit anti-HIV (Narayanasamy et al., 2007), anti­bacterial and anti­fungal (Kucuk et al., 2011), anti­neoplastic (Shirai et al., 1998), anti­viral (Bera et al., 2003), anaesthetic (Aepkers & Wünsch, 2005) and anti­convulsant activities (Ozkanlı et al., 2003). Dioxalane moieties play also a significant role in stabilizing the binding between the mutant HIV-1 RT and nucleoside triphosphate and act as nucleoside reverse transcriptase inhibitors (NRTIs) (Liang et al., 2006).

In the title compound (Fig. 1), the methyl substituted pyrrolidine ring (C7/C8/N/C9/C10/C11), is in twist conformation with puckering parameters q2 = 0.454 (2) Å, φ = 127.8 (3)° .The dioxalane ring (C13/O3/C17/C18/O4) has also a twist conformation (q2 = 0.202 (3) Å, φ = -127.6 (7)°), while the five-membered ring (C10/C26/C27/C32/C33) of the ace­naphthylen-1-one ring system adopts a flattened envelope conformation (q2 = 0.112 (2) Å, φ = 26.8 (11)°). The six-membered cyclo­hexanone ring (C11—C16) adopts a boat conformation (QT = 0.690 (2) Å, Θ = 99.72 (16)°, φ = 9.84 (16)°). The least-squares mean plane through the pyrrolidine ring forms dihedral angles of 120 (18), 90.55 (7) and 97.57 (8)° with the mean planes of the attached benzene ring, cyclo­hexanone ring and cyclo­penta­none ring, respectively. The mean planes through the cyclo­hexanone and dioxalane rings form a dihedral angle of 92.61 (10)°. The sum of bond angles around the nitro­gen atom of the pyrrolidine ring (338.4°) is in agreement with an sp3 hybridization. The molecular conformation is stabilized by an intra­molecular C—H···O hydrogen bond (Table 1). In the crystal (Fig. 2), molecules are linked by weak inter­molecular C—H···O hydrogen inter­actions (Table 1) to form chains extending parallel to the a axis.

Experimental top

An equimolar mixture of 7,9-bis­[(E)-aryl­idene-1,4-dioxo-spiro­[4,5]decane-8-one (1 mmol), acenapthe­quinone (1 mmol) and sarcosine in methanol (25-30 ml) was refluxed for 4 hours. After completion of the reaction as indicated by TLC, the solid precipitate was filtered and washed with methanol to give the pure tri­spiro­pyrrolidine derivative. Single crystals suitable for the X-ray diffraction analysis were obtained by slow evaporation of the solvent at room temperature.

Refinement top

All H atoms were placed in calculated positions, with C—H = 0.93–0.98 Å and refined using a riding-model approximation, with Uiso(H) = 1.2 Ueq(C) or 1.5 Ueq(C) for methyl H atoms. A rotating model was applied to the methyl groups.

Related literature top

For the pharmacological properties of spiro compounds, see: Cravotto et al. (2001); Raj et al. (2003); Stylianakis et al. (2003). For the activities of acenaphthylene derivatives, see: Selvanayagam et al. (2004); El-Ayaan et al. (2007); McDavid & Daniels (1951); El-Ayaan & Abdel-Aziz (2005); Smith et al. (1979); Chen et al. (2014). For the properties and pharmacological activities of dioxalane compounds, see: Narayanasamy et al. (2007); Küçük et al. (2011); Shirai et al. (1998); Bera et al. (2003); Aepkers & Wünsch (2005); Ozkanlı et al. (2003); Liang et al. (2006).

Structure description top

Spiro compounds frequently form a part of pharmacologically relevant alkaloids (Cravatto et al., 2001). Spiro pyrrolidines are an important class of compounds having anti­bacterial and anti­fungal activities against human pathogenic bacteria and dermatophytic fungi (Amal Raj et al., 2003), and are active against anti-influenza virus A. (Styliankis et al., 2003). Ace­naphthyl­ene derivatives are found to have high κ-opiod receptor affinity and selectivity (Selvanayagam et al., 2004). These derivatives have anti­tumor (Ayaan et al., 2007), anti­fungal (McDavid & Daniels, 1951), anti­microbial (Ayaan & Abdel-Aziz, 2005), anti-inflammatory (Smith et al., 1979) and insecticidal activities (Chen et al., 2014). Dioxalane compounds exihibit anti-HIV (Narayanasamy et al., 2007), anti­bacterial and anti­fungal (Kucuk et al., 2011), anti­neoplastic (Shirai et al., 1998), anti­viral (Bera et al., 2003), anaesthetic (Aepkers & Wünsch, 2005) and anti­convulsant activities (Ozkanlı et al., 2003). Dioxalane moieties play also a significant role in stabilizing the binding between the mutant HIV-1 RT and nucleoside triphosphate and act as nucleoside reverse transcriptase inhibitors (NRTIs) (Liang et al., 2006).

In the title compound (Fig. 1), the methyl substituted pyrrolidine ring (C7/C8/N/C9/C10/C11), is in twist conformation with puckering parameters q2 = 0.454 (2) Å, φ = 127.8 (3)° .The dioxalane ring (C13/O3/C17/C18/O4) has also a twist conformation (q2 = 0.202 (3) Å, φ = -127.6 (7)°), while the five-membered ring (C10/C26/C27/C32/C33) of the ace­naphthylen-1-one ring system adopts a flattened envelope conformation (q2 = 0.112 (2) Å, φ = 26.8 (11)°). The six-membered cyclo­hexanone ring (C11—C16) adopts a boat conformation (QT = 0.690 (2) Å, Θ = 99.72 (16)°, φ = 9.84 (16)°). The least-squares mean plane through the pyrrolidine ring forms dihedral angles of 120 (18), 90.55 (7) and 97.57 (8)° with the mean planes of the attached benzene ring, cyclo­hexanone ring and cyclo­penta­none ring, respectively. The mean planes through the cyclo­hexanone and dioxalane rings form a dihedral angle of 92.61 (10)°. The sum of bond angles around the nitro­gen atom of the pyrrolidine ring (338.4°) is in agreement with an sp3 hybridization. The molecular conformation is stabilized by an intra­molecular C—H···O hydrogen bond (Table 1). In the crystal (Fig. 2), molecules are linked by weak inter­molecular C—H···O hydrogen inter­actions (Table 1) to form chains extending parallel to the a axis.

An equimolar mixture of 7,9-bis­[(E)-aryl­idene-1,4-dioxo-spiro­[4,5]decane-8-one (1 mmol), acenapthe­quinone (1 mmol) and sarcosine in methanol (25-30 ml) was refluxed for 4 hours. After completion of the reaction as indicated by TLC, the solid precipitate was filtered and washed with methanol to give the pure tri­spiro­pyrrolidine derivative. Single crystals suitable for the X-ray diffraction analysis were obtained by slow evaporation of the solvent at room temperature.

For the pharmacological properties of spiro compounds, see: Cravotto et al. (2001); Raj et al. (2003); Stylianakis et al. (2003). For the activities of acenaphthylene derivatives, see: Selvanayagam et al. (2004); El-Ayaan et al. (2007); McDavid & Daniels (1951); El-Ayaan & Abdel-Aziz (2005); Smith et al. (1979); Chen et al. (2014). For the properties and pharmacological activities of dioxalane compounds, see: Narayanasamy et al. (2007); Küçük et al. (2011); Shirai et al. (1998); Bera et al. (2003); Aepkers & Wünsch (2005); Ozkanlı et al. (2003); Liang et al. (2006).

Refinement details top

All H atoms were placed in calculated positions, with C—H = 0.93–0.98 Å and refined using a riding-model approximation, with Uiso(H) = 1.2 Ueq(C) or 1.5 Ueq(C) for methyl H atoms. A rotating model was applied to the methyl groups.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek,2009); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with displacement ellipsoids drawn at the 30% probability level. H atoms are shown as small spheres of arbitrary radius.
[Figure 2] Fig. 2. Partial crystal packing of the title compound showing the formation of a molecular chain parallel to the a axis via C—H···O hydrogen bonds (dashed lines).
5''-(4-Chlorobenzylidene)-4'-(4-chlorophenyl)-1'-methyltrispiro[acenapthylene-1,2'-pyrrolidine-3',1''-cyclohexane-3'',2'''-[1,3]dioxane]-2(1H),6''-dione top
Crystal data top
C36H29Cl2NO4V = 1447.39 (11) Å3
Mr = 610.50Z = 2
Triclinic, P1F(000) = 636
Hall symbol: -P 1Dx = 1.401 Mg m3
a = 8.9791 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.3080 (5) Åθ = 1.3–25.0°
c = 15.7653 (6) ŵ = 0.27 mm1
α = 88.679 (2)°T = 293 K
β = 83.263 (2)°Block, colourless
γ = 87.408 (2)°0.35 × 0.30 × 0.25 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
5104 independent reflections
Radiation source: fine-focus sealed tube3981 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
bruker axs kappa apex2 CCD Diffractometer scansθmax = 25.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1010
Tmin = 0.708, Tmax = 0.746k = 1212
39174 measured reflectionsl = 1818
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.111 w = 1/[σ2(Fo2) + (0.0381P)2 + 1.0322P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
5104 reflectionsΔρmax = 0.47 e Å3
389 parametersΔρmin = 0.33 e Å3
Crystal data top
C36H29Cl2NO4γ = 87.408 (2)°
Mr = 610.50V = 1447.39 (11) Å3
Triclinic, P1Z = 2
a = 8.9791 (4) ÅMo Kα radiation
b = 10.3080 (5) ŵ = 0.27 mm1
c = 15.7653 (6) ÅT = 293 K
α = 88.679 (2)°0.35 × 0.30 × 0.25 mm
β = 83.263 (2)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
5104 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
3981 reflections with I > 2σ(I)
Tmin = 0.708, Tmax = 0.746Rint = 0.027
39174 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.111H-atom parameters constrained
S = 1.06Δρmax = 0.47 e Å3
5104 reflectionsΔρmin = 0.33 e Å3
389 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.45365 (8)0.89061 (6)0.09442 (5)0.0637 (2)
Cl21.57635 (8)0.32960 (7)0.57298 (5)0.0672 (2)
O11.1573 (2)0.16684 (18)0.11243 (12)0.0626 (5)
O20.75080 (16)0.36814 (16)0.33228 (9)0.0459 (4)
O30.93988 (18)0.60388 (15)0.22420 (10)0.0488 (4)
O41.14319 (18)0.59140 (16)0.12382 (10)0.0513 (4)
N10.8362 (2)0.16901 (18)0.09369 (12)0.0424 (4)
C30.5243 (3)0.7341 (2)0.11282 (16)0.0455 (6)
C40.5993 (3)0.6655 (2)0.04656 (15)0.0503 (6)
H20.61400.70310.00780.060*
C50.6531 (3)0.5403 (2)0.06081 (15)0.0473 (6)
H30.70220.49340.01540.057*
C20.5025 (3)0.6802 (2)0.19309 (16)0.0507 (6)
H40.45080.72690.23790.061*
C10.5579 (3)0.5557 (2)0.20679 (15)0.0454 (5)
H50.54310.51920.26150.055*
C60.6351 (2)0.4832 (2)0.14162 (14)0.0400 (5)
C70.6956 (2)0.3479 (2)0.16184 (14)0.0393 (5)
H70.62990.31550.21110.047*
C80.6974 (3)0.2474 (2)0.09179 (16)0.0508 (6)
H8A0.61120.19350.10270.061*
H8B0.69500.29010.03650.061*
C90.8264 (3)0.0346 (2)0.06982 (17)0.0550 (6)
H9A0.92220.01010.07170.082*
H9B0.79830.03180.01300.082*
H9C0.75240.00660.10900.082*
C100.8921 (2)0.1864 (2)0.17486 (13)0.0375 (5)
C110.8580 (2)0.3381 (2)0.18748 (13)0.0353 (5)
C120.9679 (2)0.4220 (2)0.12925 (13)0.0384 (5)
H12A1.04270.36560.09730.046*
H12B0.91310.47050.08860.046*
C131.0458 (2)0.5155 (2)0.17975 (14)0.0396 (5)
C170.9409 (4)0.7206 (3)0.1776 (2)0.0748 (9)
H14A0.92910.79400.21560.090*
H14B0.86030.72560.14160.090*
C181.0865 (4)0.7201 (3)0.1258 (2)0.0809 (10)
H15A1.07550.75210.06850.097*
H15B1.15390.77510.15080.097*
C141.1287 (2)0.4436 (2)0.24586 (14)0.0413 (5)
H16A1.19700.37720.21880.050*
H16B1.18670.50330.27390.050*
C151.0139 (2)0.3824 (2)0.31022 (13)0.0348 (5)
C160.8631 (2)0.36672 (19)0.28166 (13)0.0350 (5)
C231.4171 (3)0.3371 (2)0.51992 (15)0.0436 (5)
C201.1664 (2)0.3461 (2)0.43347 (13)0.0367 (5)
C251.1547 (3)0.3680 (2)0.52061 (14)0.0433 (5)
H211.06040.38540.55030.052*
C241.2791 (3)0.3647 (2)0.56416 (14)0.0470 (6)
H221.26970.38070.62240.056*
C191.0309 (2)0.3480 (2)0.39060 (13)0.0375 (5)
H230.94470.32170.42390.045*
C221.4334 (3)0.3129 (2)0.43433 (15)0.0470 (6)
H241.52780.29290.40550.056*
C211.3083 (3)0.3183 (2)0.39151 (14)0.0447 (5)
H251.31920.30310.33320.054*
C261.0622 (3)0.1453 (2)0.17153 (15)0.0446 (5)
C271.0841 (3)0.0720 (2)0.25048 (16)0.0470 (6)
C281.2105 (3)0.0226 (3)0.2827 (2)0.0642 (7)
H281.30580.03570.25470.077*
C291.1902 (4)0.0486 (3)0.3599 (2)0.0792 (10)
H291.27470.08150.38340.095*
C301.0535 (4)0.0715 (3)0.4015 (2)0.0762 (9)
H301.04640.11980.45230.091*
C310.9216 (3)0.0235 (2)0.36937 (17)0.0576 (7)
C320.9431 (3)0.0500 (2)0.29316 (15)0.0453 (6)
C330.8251 (3)0.1058 (2)0.25144 (14)0.0421 (5)
C340.6825 (3)0.0812 (2)0.28446 (18)0.0566 (7)
H340.60130.11250.25730.068*
C350.6596 (4)0.0064 (3)0.3614 (2)0.0721 (8)
H350.56170.00990.38420.086*
C360.7742 (4)0.0422 (3)0.40321 (19)0.0705 (8)
H360.75400.08810.45450.085*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0657 (4)0.0445 (4)0.0836 (5)0.0004 (3)0.0236 (4)0.0104 (3)
Cl20.0661 (4)0.0741 (5)0.0669 (4)0.0023 (4)0.0323 (3)0.0069 (3)
O10.0480 (10)0.0648 (12)0.0705 (12)0.0030 (9)0.0100 (9)0.0047 (9)
O20.0358 (9)0.0582 (10)0.0420 (9)0.0058 (7)0.0034 (7)0.0005 (7)
O30.0541 (10)0.0360 (8)0.0530 (10)0.0022 (7)0.0066 (8)0.0032 (7)
O40.0497 (10)0.0475 (10)0.0544 (10)0.0141 (8)0.0064 (8)0.0109 (8)
N10.0462 (11)0.0384 (10)0.0442 (10)0.0019 (8)0.0114 (8)0.0042 (8)
C30.0378 (12)0.0440 (13)0.0563 (14)0.0015 (10)0.0132 (11)0.0049 (11)
C40.0476 (14)0.0594 (15)0.0446 (13)0.0017 (12)0.0111 (11)0.0145 (12)
C50.0461 (13)0.0559 (15)0.0391 (12)0.0047 (11)0.0057 (10)0.0017 (11)
C20.0523 (15)0.0515 (14)0.0471 (14)0.0076 (11)0.0053 (11)0.0009 (11)
C10.0447 (13)0.0499 (14)0.0408 (12)0.0022 (11)0.0042 (10)0.0068 (10)
C60.0339 (11)0.0451 (13)0.0421 (12)0.0023 (9)0.0095 (9)0.0018 (10)
C70.0347 (11)0.0410 (12)0.0429 (12)0.0040 (9)0.0074 (9)0.0033 (10)
C80.0517 (14)0.0466 (14)0.0576 (15)0.0014 (11)0.0205 (12)0.0053 (11)
C90.0609 (16)0.0458 (14)0.0605 (16)0.0031 (12)0.0145 (13)0.0113 (12)
C100.0365 (11)0.0355 (11)0.0409 (12)0.0018 (9)0.0058 (9)0.0004 (9)
C110.0344 (11)0.0356 (11)0.0357 (11)0.0033 (9)0.0035 (9)0.0012 (9)
C120.0387 (12)0.0406 (12)0.0353 (11)0.0027 (9)0.0023 (9)0.0048 (9)
C130.0370 (12)0.0391 (12)0.0409 (12)0.0065 (9)0.0035 (9)0.0036 (9)
C170.088 (2)0.0403 (15)0.090 (2)0.0014 (14)0.0106 (17)0.0142 (14)
C180.088 (2)0.0489 (17)0.099 (2)0.0113 (15)0.0167 (19)0.0204 (16)
C140.0362 (12)0.0484 (13)0.0398 (12)0.0099 (10)0.0041 (9)0.0014 (10)
C150.0344 (11)0.0324 (11)0.0374 (11)0.0025 (9)0.0022 (9)0.0037 (9)
C160.0356 (12)0.0300 (11)0.0389 (11)0.0037 (9)0.0019 (9)0.0039 (9)
C230.0511 (14)0.0352 (12)0.0470 (13)0.0038 (10)0.0159 (11)0.0054 (10)
C200.0424 (12)0.0326 (11)0.0353 (11)0.0032 (9)0.0049 (9)0.0021 (9)
C250.0494 (14)0.0416 (13)0.0373 (12)0.0056 (10)0.0010 (10)0.0001 (10)
C240.0655 (16)0.0419 (13)0.0341 (12)0.0033 (11)0.0102 (11)0.0022 (10)
C190.0376 (12)0.0375 (12)0.0359 (11)0.0014 (9)0.0014 (9)0.0016 (9)
C220.0406 (13)0.0551 (15)0.0444 (13)0.0027 (11)0.0019 (10)0.0046 (11)
C210.0441 (13)0.0570 (15)0.0329 (11)0.0014 (11)0.0037 (10)0.0014 (10)
C260.0425 (13)0.0394 (13)0.0519 (14)0.0008 (10)0.0051 (11)0.0094 (10)
C270.0523 (15)0.0344 (12)0.0560 (14)0.0063 (10)0.0149 (12)0.0091 (10)
C280.0631 (18)0.0515 (16)0.081 (2)0.0129 (13)0.0268 (15)0.0117 (14)
C290.091 (3)0.0611 (19)0.091 (2)0.0178 (17)0.046 (2)0.0050 (17)
C300.110 (3)0.0517 (17)0.072 (2)0.0041 (17)0.037 (2)0.0113 (14)
C310.085 (2)0.0345 (13)0.0558 (15)0.0017 (13)0.0175 (14)0.0042 (11)
C320.0600 (15)0.0276 (11)0.0503 (13)0.0005 (10)0.0154 (11)0.0041 (10)
C330.0483 (13)0.0315 (11)0.0467 (13)0.0038 (10)0.0060 (10)0.0002 (9)
C340.0519 (15)0.0457 (14)0.0708 (17)0.0119 (12)0.0000 (13)0.0096 (12)
C350.072 (2)0.0567 (17)0.083 (2)0.0164 (15)0.0100 (16)0.0156 (15)
C360.101 (2)0.0453 (16)0.0631 (18)0.0112 (16)0.0022 (17)0.0142 (13)
Geometric parameters (Å, º) top
Cl1—C31.738 (2)C17—H14A0.9700
Cl2—C231.737 (2)C17—H14B0.9700
O1—C261.211 (3)C18—H15A0.9700
O2—C161.210 (2)C18—H15B0.9700
O3—C171.395 (3)C14—C151.508 (3)
O3—C131.421 (3)C14—H16A0.9700
O4—C181.399 (3)C14—H16B0.9700
O4—C131.415 (2)C15—C191.332 (3)
N1—C101.446 (3)C15—C161.493 (3)
N1—C91.453 (3)C23—C221.368 (3)
N1—C81.457 (3)C23—C241.370 (3)
C3—C21.367 (3)C20—C211.386 (3)
C3—C41.367 (3)C20—C251.388 (3)
C4—C51.380 (3)C20—C191.459 (3)
C4—H20.9300C25—C241.377 (3)
C5—C61.386 (3)C25—H210.9300
C5—H30.9300C24—H220.9300
C2—C11.377 (3)C19—H230.9300
C2—H40.9300C22—C211.375 (3)
C1—C61.384 (3)C22—H240.9300
C1—H50.9300C21—H250.9300
C6—C71.515 (3)C26—C271.469 (3)
C7—C81.529 (3)C27—C281.370 (3)
C7—C111.556 (3)C27—C321.388 (3)
C7—H70.9800C28—C291.404 (4)
C8—H8A0.9700C28—H280.9300
C8—H8B0.9700C29—C301.350 (5)
C9—H9A0.9600C29—H290.9300
C9—H9B0.9600C30—C311.407 (4)
C9—H9C0.9600C30—H300.9300
C10—C331.529 (3)C31—C361.388 (4)
C10—C261.562 (3)C31—C321.404 (3)
C10—C111.592 (3)C32—C331.406 (3)
C11—C161.527 (3)C33—C341.358 (3)
C11—C121.547 (3)C34—C351.422 (4)
C12—C131.510 (3)C34—H340.9300
C12—H12A0.9700C35—C361.357 (4)
C12—H12B0.9700C35—H350.9300
C13—C141.512 (3)C36—H360.9300
C17—C181.457 (4)
C17—O3—C13107.85 (18)O4—C18—H15A110.3
C18—O4—C13108.50 (19)C17—C18—H15A110.3
C10—N1—C9114.85 (18)O4—C18—H15B110.3
C10—N1—C8108.72 (17)C17—C18—H15B110.3
C9—N1—C8114.42 (19)H15A—C18—H15B108.6
C2—C3—C4120.7 (2)C15—C14—C13107.91 (17)
C2—C3—Cl1119.65 (19)C15—C14—H16A110.1
C4—C3—Cl1119.61 (18)C13—C14—H16A110.1
C3—C4—C5119.6 (2)C15—C14—H16B110.1
C3—C4—H2120.2C13—C14—H16B110.1
C5—C4—H2120.2H16A—C14—H16B108.4
C4—C5—C6121.2 (2)C19—C15—C16117.20 (18)
C4—C5—H3119.4C19—C15—C14126.80 (19)
C6—C5—H3119.4C16—C15—C14115.89 (17)
C3—C2—C1119.1 (2)O2—C16—C15121.13 (19)
C3—C2—H4120.4O2—C16—C11121.43 (19)
C1—C2—H4120.4C15—C16—C11117.25 (17)
C2—C1—C6122.0 (2)C22—C23—C24121.6 (2)
C2—C1—H5119.0C22—C23—Cl2118.41 (19)
C6—C1—H5119.0C24—C23—Cl2119.95 (18)
C1—C6—C5117.3 (2)C21—C20—C25117.6 (2)
C1—C6—C7119.03 (19)C21—C20—C19122.78 (19)
C5—C6—C7123.7 (2)C25—C20—C19119.6 (2)
C6—C7—C8116.47 (19)C24—C25—C20121.6 (2)
C6—C7—C11116.03 (17)C24—C25—H21119.2
C8—C7—C11104.16 (18)C20—C25—H21119.2
C6—C7—H7106.5C23—C24—C25118.6 (2)
C8—C7—H7106.5C23—C24—H22120.7
C11—C7—H7106.5C25—C24—H22120.7
N1—C8—C7106.23 (18)C15—C19—C20128.7 (2)
N1—C8—H8A110.5C15—C19—H23115.6
C7—C8—H8A110.5C20—C19—H23115.6
N1—C8—H8B110.5C23—C22—C21119.1 (2)
C7—C8—H8B110.5C23—C22—H24120.5
H8A—C8—H8B108.7C21—C22—H24120.5
N1—C9—H9A109.5C22—C21—C20121.4 (2)
N1—C9—H9B109.5C22—C21—H25119.3
H9A—C9—H9B109.5C20—C21—H25119.3
N1—C9—H9C109.5O1—C26—C27126.6 (2)
H9A—C9—H9C109.5O1—C26—C10125.3 (2)
H9B—C9—H9C109.5C27—C26—C10108.02 (19)
N1—C10—C33117.84 (18)C28—C27—C32120.2 (2)
N1—C10—C26111.85 (17)C28—C27—C26132.2 (3)
C33—C10—C26101.27 (17)C32—C27—C26107.5 (2)
N1—C10—C11100.67 (16)C27—C28—C29117.2 (3)
C33—C10—C11112.28 (17)C27—C28—H28121.4
C26—C10—C11113.53 (17)C29—C28—H28121.4
C16—C11—C12111.26 (17)C30—C29—C28123.0 (3)
C16—C11—C7112.58 (17)C30—C29—H29118.5
C12—C11—C7112.80 (17)C28—C29—H29118.5
C16—C11—C10107.85 (16)C29—C30—C31121.1 (3)
C12—C11—C10112.76 (17)C29—C30—H30119.4
C7—C11—C1098.95 (16)C31—C30—H30119.4
C13—C12—C11112.03 (17)C36—C31—C32116.7 (3)
C13—C12—H12A109.2C36—C31—C30127.7 (3)
C11—C12—H12A109.2C32—C31—C30115.6 (3)
C13—C12—H12B109.2C27—C32—C31122.9 (2)
C11—C12—H12B109.2C27—C32—C33113.3 (2)
H12A—C12—H12B107.9C31—C32—C33123.8 (2)
O4—C13—O3106.47 (17)C34—C33—C32117.9 (2)
O4—C13—C12109.99 (17)C34—C33—C10133.5 (2)
O3—C13—C12110.72 (18)C32—C33—C10108.6 (2)
O4—C13—C14111.57 (18)C33—C34—C35118.7 (3)
O3—C13—C14107.20 (17)C33—C34—H34120.7
C12—C13—C14110.77 (18)C35—C34—H34120.7
O3—C17—C18105.4 (2)C36—C35—C34122.9 (3)
O3—C17—H14A110.7C36—C35—H35118.6
C18—C17—H14A110.7C34—C35—H35118.6
O3—C17—H14B110.7C35—C36—C31119.9 (3)
C18—C17—H14B110.7C35—C36—H36120.0
H14A—C17—H14B108.8C31—C36—H36120.0
O4—C18—C17106.9 (2)
C2—C3—C4—C50.2 (4)C14—C15—C16—C1133.9 (3)
Cl1—C3—C4—C5178.79 (18)C12—C11—C16—O2142.6 (2)
C3—C4—C5—C61.3 (4)C7—C11—C16—O214.9 (3)
C4—C3—C2—C10.4 (4)C10—C11—C16—O293.2 (2)
Cl1—C3—C2—C1179.47 (19)C12—C11—C16—C1542.2 (2)
C3—C2—C1—C60.1 (4)C7—C11—C16—C15169.89 (17)
C2—C1—C6—C50.9 (3)C10—C11—C16—C1582.0 (2)
C2—C1—C6—C7178.8 (2)C21—C20—C25—C241.0 (3)
C4—C5—C6—C11.6 (3)C19—C20—C25—C24178.7 (2)
C4—C5—C6—C7178.0 (2)C22—C23—C24—C250.2 (3)
C1—C6—C7—C8146.4 (2)Cl2—C23—C24—C25179.04 (17)
C5—C6—C7—C834.0 (3)C20—C25—C24—C230.9 (3)
C1—C6—C7—C1190.4 (2)C16—C15—C19—C20176.2 (2)
C5—C6—C7—C1189.2 (3)C14—C15—C19—C207.9 (4)
C10—N1—C8—C718.2 (2)C21—C20—C19—C1533.0 (4)
C9—N1—C8—C7148.1 (2)C25—C20—C19—C15149.5 (2)
C6—C7—C8—N1141.39 (19)C24—C23—C22—C211.1 (4)
C11—C7—C8—N112.3 (2)Cl2—C23—C22—C21179.93 (18)
C9—N1—C10—C3347.3 (3)C23—C22—C21—C200.9 (4)
C8—N1—C10—C3382.3 (2)C25—C20—C21—C220.1 (3)
C9—N1—C10—C2669.4 (2)C19—C20—C21—C22177.7 (2)
C8—N1—C10—C26160.95 (18)N1—C10—C26—O140.2 (3)
C9—N1—C10—C11169.71 (18)C33—C10—C26—O1166.5 (2)
C8—N1—C10—C1140.1 (2)C11—C10—C26—O172.9 (3)
C6—C7—C11—C1682.6 (2)N1—C10—C26—C27137.47 (19)
C8—C7—C11—C16148.03 (18)C33—C10—C26—C2711.1 (2)
C6—C7—C11—C1244.4 (3)C11—C10—C26—C27109.4 (2)
C8—C7—C11—C1285.0 (2)O1—C26—C27—C287.9 (4)
C6—C7—C11—C10163.76 (18)C10—C26—C27—C28174.5 (2)
C8—C7—C11—C1034.4 (2)O1—C26—C27—C32169.1 (2)
N1—C10—C11—C16162.25 (16)C10—C26—C27—C328.5 (2)
C33—C10—C11—C1636.0 (2)C32—C27—C28—C290.6 (4)
C26—C10—C11—C1678.1 (2)C26—C27—C28—C29177.3 (3)
N1—C10—C11—C1274.5 (2)C27—C28—C29—C301.2 (5)
C33—C10—C11—C12159.28 (18)C28—C29—C30—C310.4 (5)
C26—C10—C11—C1245.2 (2)C29—C30—C31—C36177.8 (3)
N1—C10—C11—C744.92 (18)C29—C30—C31—C320.9 (4)
C33—C10—C11—C781.3 (2)C28—C27—C32—C310.8 (4)
C26—C10—C11—C7164.59 (17)C26—C27—C32—C31176.7 (2)
C16—C11—C12—C133.0 (2)C28—C27—C32—C33179.3 (2)
C7—C11—C12—C13124.57 (19)C26—C27—C32—C331.9 (3)
C10—C11—C12—C13124.37 (19)C36—C31—C32—C27177.4 (2)
C18—O4—C13—O37.6 (3)C30—C31—C32—C271.5 (4)
C18—O4—C13—C12112.5 (2)C36—C31—C32—C331.1 (4)
C18—O4—C13—C14124.2 (2)C30—C31—C32—C33180.0 (2)
C17—O3—C13—O419.2 (3)C27—C32—C33—C34174.9 (2)
C17—O3—C13—C12100.4 (2)C31—C32—C33—C343.7 (4)
C17—O3—C13—C14138.7 (2)C27—C32—C33—C105.6 (3)
C11—C12—C13—O4179.10 (17)C31—C32—C33—C10175.8 (2)
C11—C12—C13—O361.7 (2)N1—C10—C33—C3448.3 (4)
C11—C12—C13—C1457.1 (2)C26—C10—C33—C34170.6 (3)
C13—O3—C17—C1822.7 (3)C11—C10—C33—C3467.9 (3)
C13—O4—C18—C176.3 (3)N1—C10—C33—C32132.3 (2)
O3—C17—C18—O417.9 (4)C26—C10—C33—C3210.0 (2)
O4—C13—C14—C15171.50 (17)C11—C10—C33—C32111.4 (2)
O3—C13—C14—C1555.3 (2)C32—C33—C34—C353.2 (4)
C12—C13—C14—C1565.6 (2)C10—C33—C34—C35176.1 (2)
C13—C14—C15—C19156.5 (2)C33—C34—C35—C360.4 (4)
C13—C14—C15—C1619.5 (3)C34—C35—C36—C312.2 (5)
C19—C15—C16—O225.5 (3)C32—C31—C36—C351.9 (4)
C14—C15—C16—O2150.9 (2)C30—C31—C36—C35176.9 (3)
C19—C15—C16—C11149.76 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12A···O10.972.273.066 (3)139
C22—H24···O2i0.932.353.172 (3)148
Symmetry code: (i) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12A···O10.972.273.066 (3)139
C22—H24···O2i0.932.353.172 (3)148
Symmetry code: (i) x+1, y, z.
 

Acknowledgements

The authors thank the single-crystal XRD facility, SAIF IIT Madras, Chennai, for the data collection.

References

First citationAepkers, M. & Wünsch, B. (2005). Bioorg. Med. Chem. 13, 6836–6849.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBera, S., Malik, L., Bhat, B., Carroll, S. S., MacCoss, M., Olsen, D. B., Tomassini, J. E. & Eldrup, A. B. (2003). Bioorg. Med. Chem. Lett. 13, 4455–4458.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2004). APEX, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, N. Y., Ren, L. P., Zou, M. M., Xu, Z. P., Shao, X. S., Xu, X. Y. & Li, Z. (2014). Chin. Chem. Lett. 25, 197–200.  Web of Science CrossRef CAS Google Scholar
First citationCravotto, G., Giovenzana, G. B., Pilati, T., Sisti, M. & Palmisano, G. (2001). J. Org. Chem. 66, 8447–8453.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationEl-Ayaan, U. & Abdel-Aziz, A. A.-M. (2005). Eur. J. Med. Chem. 40, 1214–1221.  Web of Science PubMed CAS Google Scholar
First citationEl-Ayaan, U., Abdel-Aziz, A. A.-M. & Al-Shihry, S. (2007). Eur. J. Med. Chem. 42, 1325–1333.  Web of Science PubMed CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKüçük, H., Yusufoğlu, A., Mataracı, E. & Döşler, S. (2011). Molecules, 16, 6806–6815.  Web of Science PubMed Google Scholar
First citationLiang, Y., Narayanasamy, J., Schinazi, R. F. & Chu, C. K. (2006). Bioorg. Med. Chem. 14, 2178–2189.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMcDavids, J. E. & Daniels, T. C. (1951). J. Pharm. Sci. 40, 325–326.  CrossRef Google Scholar
First citationNarayanasamy, J., Pullagurla, M. R., Sharon, A., Wang, J., Schinazi, F. & Chu, C. K. (2007). Antiviral Res. 75, 198–209.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOzkanlı, F., Güney, A., Calıs, U. & Uzbay, T. (2003). Drug Res. 53, 758–762.  Google Scholar
First citationRaj, A. A., Raghunathan, R., SrideviKumari, M. R. & Raman, N. (2003). Bioorg. Med. Chem. 11, 407–419.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSelvanayagam, S., Velmurugan, D., Ravikumar, K., Jayashankaran, J., Durga, R. R. & Raghunathan, R. (2004). Acta Cryst. E60, o2216–o2218.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShirai, R., Takayama, H., Nishikawa, A., Koiso, Y. & Hashimoto, Y. (1998). Bioorg. Med. Chem. Lett. 8, 1997–2000.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSmith, C. E., Williamson, W. R. N., Cashin, C. N. & Kitchen, E. A. (1979). J. Med. Chem. 22, 1464–1469.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStylianakis, I., Kolocouris, A., Kolocouris, N., Fytas, G., Foscolos, G. B., Padalko, E., Neyts, J. & De Clercq, E. (2003). Bioorg. Med. Chem. Lett. 13, 1699–1703.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds