organic compounds
N′-diphenylmethylidene-5-methyl-1H-pyrazole-3-carbohydrazide
ofaLaboratory of Medicinal Chemistry, Faculty of Medicine and Pharmacy, University Mohammed V, Rabat, Morocco, bLCAE, Department of Chemistry, Faculty of Sciences, University Mohamed I, Oujda, Morocco, and cLaboratoire de Chimie du Solide Appliquée, Faculté des Sciences, Université Mohammed V, Avenue Ibn Battouta, BP 1014, Rabat, Morocco
*Correspondence e-mail: k_karrouchi@yahoo.fr
In the title compound, C18H16N4O, the planes of the phenyl rings are approximately perpendicular to each other [dihedral angle = 78.07 (8)°] and form dihedral angles of 56.43 (8) and 24.59 (8)° with the pyrazole ring. In the crystal, molecules are linked by N—H⋯O hydrogen bonds to form one-dimensional chains parallel to the [010] direction.
Keywords: crystal structure; pyrazole derivatives; biological activity; agrochemical applications; pharmaceutical applications.
CCDC reference: 1432912
1. Related literature
For the biological activities of pyrazole derivatives, see: Zhang et al. (2015); Özdemir et al. (2015); El-Sabbagh et al. (2009); Farag et al. (2010); Karrouchi et al. (2014); Mert et al. (2014); Alegaon et al. (2014). For the applications in agrochemical and pharmaceutical industries of pyrazole derivatives, see: Patel et al. (2004). For the structure of a related compound, see: Karrouchi et al. (2013).
2. Experimental
2.1. Crystal data
|
2.2. Data collection
|
2.3. Refinement
|
Data collection: APEX2 (Bruker, 2009); cell SAINT-Plus (Bruker, 2009); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009) and publCIF (Westrip, 2010).
Supporting information
CCDC reference: 1432912
https://doi.org/10.1107/S2056989015020071/rz5174sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989015020071/rz5174Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989015020071/rz5174Isup3.cml
To a solution of 5-methyl-1H-pyrazole-3-carbohydrazide (1 mmol) in 10 ml of ethanol, an equimolar amount of the benzophenon was added in the presence of acetic acid. The mixture was maintained under reflux for 2 h, then the precipitate formed was filtered out washed with ethanol and recrystallized from ethanol. Single crystals of the title compound were obtained on slow evaporation of the solvent (yield 87%; m. p. 595 K).
IR (KBr, ν(cm-1)): 3241 (NH), 1655 (C=O), 1592 (N=CH). 1H-NMR (300 MHz, DMSO-d6, δ (p.p.m.)): δ = 2.19 (s, 3H, –CH3), 6.46 (s, 1H, Pz—H), 7.37–7.56 (m, 10H, Ar—H), 9.80 (s, 1H, N=CH), 11.23 (s, 1H, CONH), 12.99 (s, 1H, Pz—NH). MS: m/z = 304.9 (M—H+).
The H atoms were located in a difference Fourier map and treated as riding, with C—H = 0.93-0.96 Å, N—H = 0.86 Å, and with Uiso(H) = 1.2 Ueq (C, N) or 1.5 Ueq for methyl H atoms. The reflection (0 0 2) affected by the beamstop was removed during the last cycles of refinement.
Compounds containing the pyrazole moiety are known to exhibit a wide range of biological properties such as anticancer (Zhang et al., 2015), anticonvulsant (Özdemir et al., 2015), antiviral (El-Sabbagh et al., 2009), anti-tumor (Farag et al., 2010), analgesic, sedative (Karrouchi et al., 2014), antimicrobial (Mert et al., 2014), and anti-inflammatory activities (Alegaon et al., 2014). In addition, pyrazoles have a wide variety of applications in the agrochemical and pharmaceutical industries (Patel et al., 2004). Recently we have reported the synthesis of substituted pyrazoles (Karrouchi et al., 2013). As an extension of our work on the structural characterization of pyrazoles, the title compound was prepared and analysed by single-crystal X-ray diffraction.
The molecule of the title compound is build up from two phenyl rings linked to a pyrazole ring through the carbohydrazide group as shown in Fig. 1. The phenyl rings C7–C12 and C13–C18) are nearly approximately as indicated by the dihedral angle of 78.07 (8)° between them, and form makes dihedral angles of 56.43 (8)° and 24.59 (8)°, respectively, with the pyrazole ring. In the crystal, the molecules held together by N1–H1N···O1 hydrogen bonds and form one-dimensional chains along the [0 1 0] direction.
For the biological activities of pyrazole derivatives, see: Zhang et al. (2015); Özdemir et al. (2015); El-Sabbagh et al. (2009); Farag et al. (2010); Karrouchi et al. (2014); Mert et al. (2014); Alegaon et al. (2014). For the applications in agrochemical and pharmaceutical industries of pyrazole derivatives, see: Patel et al. (2004). For the structure of a related compound, see: Karrouchi et al. (2013).
Data collection: APEX2 (Bruker, 2009); cell
SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009) and publCIF (Westrip,2010).C18H16N4O | F(000) = 1280 |
Mr = 304.35 | Dx = 1.284 Mg m−3 |
Orthorhombic, Pbca | Melting point: 595 K |
a = 11.0299 (2) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 14.1131 (2) Å | µ = 0.08 mm−1 |
c = 20.2211 (3) Å | T = 296 K |
V = 3147.74 (9) Å3 | Block, colourless |
Z = 8 | 0.40 × 0.32 × 0.25 mm |
Bruker X8 APEX diffractometer | 3117 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.029 |
Graphite monochromator | θmax = 27.9°, θmin = 2.6° |
φ and ω scans | h = −14→13 |
31259 measured reflections | k = −18→17 |
3766 independent reflections | l = −26→26 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.047 | H-atom parameters constrained |
wR(F2) = 0.136 | w = 1/[σ2(Fo2) + (0.0655P)2 + 1.2766P] where P = (Fo2 + 2Fc2)/3 |
S = 1.04 | (Δ/σ)max < 0.001 |
3766 reflections | Δρmax = 0.33 e Å−3 |
208 parameters | Δρmin = −0.26 e Å−3 |
C18H16N4O | V = 3147.74 (9) Å3 |
Mr = 304.35 | Z = 8 |
Orthorhombic, Pbca | Mo Kα radiation |
a = 11.0299 (2) Å | µ = 0.08 mm−1 |
b = 14.1131 (2) Å | T = 296 K |
c = 20.2211 (3) Å | 0.40 × 0.32 × 0.25 mm |
Bruker X8 APEX diffractometer | 3117 reflections with I > 2σ(I) |
31259 measured reflections | Rint = 0.029 |
3766 independent reflections |
R[F2 > 2σ(F2)] = 0.047 | 0 restraints |
wR(F2) = 0.136 | H-atom parameters constrained |
S = 1.04 | Δρmax = 0.33 e Å−3 |
3766 reflections | Δρmin = −0.26 e Å−3 |
208 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.95160 (17) | 0.23308 (11) | 0.22978 (11) | 0.0559 (5) | |
H1A | 1.0236 | 0.2614 | 0.2119 | 0.084* | |
H1B | 0.9735 | 0.1873 | 0.2628 | 0.084* | |
H1C | 0.9073 | 0.2024 | 0.1950 | 0.084* | |
C2 | 0.87443 (13) | 0.30798 (9) | 0.26034 (8) | 0.0351 (3) | |
C3 | 0.88909 (13) | 0.40388 (9) | 0.26613 (7) | 0.0349 (3) | |
H3 | 0.9538 | 0.4403 | 0.2512 | 0.042* | |
C4 | 0.78552 (12) | 0.43513 (8) | 0.29934 (7) | 0.0292 (3) | |
C5 | 0.75426 (13) | 0.53261 (9) | 0.31897 (7) | 0.0304 (3) | |
C6 | 0.50855 (13) | 0.62906 (9) | 0.40692 (7) | 0.0320 (3) | |
C7 | 0.40970 (13) | 0.55750 (9) | 0.40017 (7) | 0.0338 (3) | |
C8 | 0.42278 (16) | 0.46563 (11) | 0.42431 (8) | 0.0444 (4) | |
H8 | 0.4945 | 0.4480 | 0.4451 | 0.053* | |
C9 | 0.33011 (19) | 0.40042 (13) | 0.41756 (10) | 0.0567 (5) | |
H9 | 0.3398 | 0.3393 | 0.4339 | 0.068* | |
C10 | 0.22390 (18) | 0.42554 (14) | 0.38688 (10) | 0.0576 (5) | |
H10 | 0.1616 | 0.3816 | 0.3825 | 0.069* | |
C11 | 0.20965 (16) | 0.51595 (14) | 0.36252 (10) | 0.0537 (4) | |
H11 | 0.1379 | 0.5327 | 0.3414 | 0.064* | |
C12 | 0.30150 (15) | 0.58207 (12) | 0.36924 (8) | 0.0439 (4) | |
H12 | 0.2908 | 0.6432 | 0.3530 | 0.053* | |
C13 | 0.48843 (13) | 0.71522 (9) | 0.44807 (7) | 0.0332 (3) | |
C14 | 0.56815 (15) | 0.79196 (10) | 0.44439 (8) | 0.0413 (4) | |
H14 | 0.6288 | 0.7925 | 0.4124 | 0.050* | |
C15 | 0.55768 (17) | 0.86695 (11) | 0.48774 (10) | 0.0505 (4) | |
H15 | 0.6118 | 0.9174 | 0.4852 | 0.061* | |
C16 | 0.46712 (17) | 0.86744 (12) | 0.53494 (9) | 0.0514 (4) | |
H16 | 0.4611 | 0.9176 | 0.5646 | 0.062* | |
C17 | 0.38608 (17) | 0.79383 (13) | 0.53797 (9) | 0.0498 (4) | |
H17 | 0.3243 | 0.7948 | 0.5692 | 0.060* | |
C18 | 0.39577 (14) | 0.71784 (11) | 0.49463 (8) | 0.0414 (3) | |
H18 | 0.3400 | 0.6685 | 0.4968 | 0.050* | |
N1 | 0.76763 (11) | 0.28765 (8) | 0.28919 (7) | 0.0368 (3) | |
H1N | 0.7385 | 0.2312 | 0.2914 | 0.044* | |
N2 | 0.71101 (11) | 0.36377 (8) | 0.31412 (7) | 0.0355 (3) | |
N3 | 0.64218 (11) | 0.54067 (8) | 0.34657 (7) | 0.0366 (3) | |
HN3 | 0.5896 | 0.4961 | 0.3424 | 0.044* | |
N4 | 0.61501 (11) | 0.62165 (8) | 0.38121 (6) | 0.0346 (3) | |
O1 | 0.82345 (10) | 0.59943 (7) | 0.31103 (6) | 0.0420 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0517 (10) | 0.0332 (8) | 0.0829 (13) | 0.0055 (7) | 0.0233 (9) | −0.0125 (8) |
C2 | 0.0336 (7) | 0.0267 (6) | 0.0450 (8) | 0.0025 (5) | 0.0051 (6) | −0.0028 (5) |
C3 | 0.0334 (7) | 0.0265 (6) | 0.0447 (8) | −0.0014 (5) | 0.0091 (6) | −0.0007 (5) |
C4 | 0.0298 (6) | 0.0212 (6) | 0.0367 (7) | 0.0000 (5) | 0.0014 (5) | −0.0006 (5) |
C5 | 0.0323 (7) | 0.0209 (6) | 0.0381 (7) | 0.0011 (5) | 0.0014 (5) | −0.0014 (5) |
C6 | 0.0332 (7) | 0.0264 (6) | 0.0364 (7) | 0.0032 (5) | 0.0001 (5) | −0.0003 (5) |
C7 | 0.0340 (7) | 0.0313 (6) | 0.0362 (7) | 0.0004 (5) | 0.0043 (6) | −0.0032 (5) |
C8 | 0.0480 (9) | 0.0376 (8) | 0.0475 (9) | −0.0026 (7) | 0.0017 (7) | 0.0059 (6) |
C9 | 0.0650 (12) | 0.0432 (9) | 0.0618 (11) | −0.0147 (8) | 0.0084 (9) | 0.0086 (8) |
C10 | 0.0510 (11) | 0.0598 (11) | 0.0621 (11) | −0.0240 (9) | 0.0113 (9) | −0.0067 (9) |
C11 | 0.0384 (9) | 0.0655 (11) | 0.0573 (10) | −0.0062 (8) | −0.0015 (8) | −0.0080 (9) |
C12 | 0.0398 (8) | 0.0410 (8) | 0.0510 (9) | 0.0025 (6) | −0.0023 (7) | −0.0015 (7) |
C13 | 0.0332 (7) | 0.0274 (6) | 0.0391 (7) | 0.0062 (5) | −0.0015 (6) | −0.0017 (5) |
C14 | 0.0401 (8) | 0.0320 (7) | 0.0519 (9) | 0.0034 (6) | 0.0059 (7) | −0.0040 (6) |
C15 | 0.0500 (10) | 0.0332 (7) | 0.0682 (11) | −0.0008 (7) | −0.0002 (8) | −0.0120 (7) |
C16 | 0.0571 (10) | 0.0424 (9) | 0.0549 (10) | 0.0092 (8) | −0.0010 (8) | −0.0187 (7) |
C17 | 0.0507 (10) | 0.0510 (9) | 0.0477 (9) | 0.0078 (7) | 0.0097 (8) | −0.0103 (7) |
C18 | 0.0391 (8) | 0.0378 (7) | 0.0473 (8) | 0.0017 (6) | 0.0065 (7) | −0.0044 (6) |
N1 | 0.0342 (6) | 0.0183 (5) | 0.0580 (8) | −0.0004 (4) | 0.0070 (6) | −0.0042 (5) |
N2 | 0.0318 (6) | 0.0208 (5) | 0.0540 (7) | −0.0002 (4) | 0.0077 (5) | −0.0035 (5) |
N3 | 0.0325 (6) | 0.0226 (5) | 0.0547 (7) | −0.0017 (4) | 0.0064 (5) | −0.0095 (5) |
N4 | 0.0341 (6) | 0.0237 (5) | 0.0459 (7) | 0.0029 (4) | 0.0022 (5) | −0.0067 (5) |
O1 | 0.0402 (6) | 0.0216 (5) | 0.0643 (7) | −0.0040 (4) | 0.0108 (5) | −0.0039 (4) |
C1—C2 | 1.491 (2) | C10—C11 | 1.377 (3) |
C1—H1A | 0.9600 | C10—H10 | 0.9300 |
C1—H1B | 0.9600 | C11—C12 | 1.384 (2) |
C1—H1C | 0.9600 | C11—H11 | 0.9300 |
C2—N1 | 1.3455 (19) | C12—H12 | 0.9300 |
C2—C3 | 1.3681 (18) | C13—C18 | 1.390 (2) |
C3—C4 | 1.3966 (19) | C13—C14 | 1.397 (2) |
C3—H3 | 0.9300 | C14—C15 | 1.379 (2) |
C4—N2 | 1.3339 (16) | C14—H14 | 0.9300 |
C4—C5 | 1.4727 (17) | C15—C16 | 1.382 (3) |
C5—O1 | 1.2238 (16) | C15—H15 | 0.9300 |
C5—N3 | 1.3611 (18) | C16—C17 | 1.372 (3) |
C6—N4 | 1.2883 (19) | C16—H16 | 0.9300 |
C6—C13 | 1.4901 (18) | C17—C18 | 1.389 (2) |
C6—C7 | 1.4924 (19) | C17—H17 | 0.9300 |
C7—C12 | 1.391 (2) | C18—H18 | 0.9300 |
C7—C8 | 1.393 (2) | N1—N2 | 1.3411 (15) |
C8—C9 | 1.382 (2) | N1—H1N | 0.8600 |
C8—H8 | 0.9300 | N3—N4 | 1.3736 (15) |
C9—C10 | 1.372 (3) | N3—HN3 | 0.8600 |
C9—H9 | 0.9300 | ||
C2—C1—H1A | 109.5 | C10—C11—C12 | 120.42 (17) |
C2—C1—H1B | 109.5 | C10—C11—H11 | 119.8 |
H1A—C1—H1B | 109.5 | C12—C11—H11 | 119.8 |
C2—C1—H1C | 109.5 | C11—C12—C7 | 120.26 (16) |
H1A—C1—H1C | 109.5 | C11—C12—H12 | 119.9 |
H1B—C1—H1C | 109.5 | C7—C12—H12 | 119.9 |
N1—C2—C3 | 106.10 (12) | C18—C13—C14 | 118.57 (13) |
N1—C2—C1 | 121.89 (13) | C18—C13—C6 | 120.63 (13) |
C3—C2—C1 | 132.01 (14) | C14—C13—C6 | 120.61 (13) |
C2—C3—C4 | 104.89 (12) | C15—C14—C13 | 120.56 (15) |
C2—C3—H3 | 127.6 | C15—C14—H14 | 119.7 |
C4—C3—H3 | 127.6 | C13—C14—H14 | 119.7 |
N2—C4—C3 | 111.92 (11) | C14—C15—C16 | 120.23 (16) |
N2—C4—C5 | 120.04 (12) | C14—C15—H15 | 119.9 |
C3—C4—C5 | 128.03 (12) | C16—C15—H15 | 119.9 |
O1—C5—N3 | 123.76 (12) | C17—C16—C15 | 119.89 (15) |
O1—C5—C4 | 122.58 (12) | C17—C16—H16 | 120.1 |
N3—C5—C4 | 113.66 (11) | C15—C16—H16 | 120.1 |
N4—C6—C13 | 115.30 (12) | C16—C17—C18 | 120.41 (16) |
N4—C6—C7 | 125.03 (12) | C16—C17—H17 | 119.8 |
C13—C6—C7 | 119.64 (12) | C18—C17—H17 | 119.8 |
C12—C7—C8 | 118.58 (14) | C17—C18—C13 | 120.29 (15) |
C12—C7—C6 | 119.94 (13) | C17—C18—H18 | 119.9 |
C8—C7—C6 | 121.48 (14) | C13—C18—H18 | 119.9 |
C9—C8—C7 | 120.57 (16) | N2—N1—C2 | 113.57 (11) |
C9—C8—H8 | 119.7 | N2—N1—H1N | 123.2 |
C7—C8—H8 | 119.7 | C2—N1—H1N | 123.2 |
C10—C9—C8 | 120.26 (17) | C4—N2—N1 | 103.52 (11) |
C10—C9—H9 | 119.9 | C5—N3—N4 | 118.48 (11) |
C8—C9—H9 | 119.9 | C5—N3—HN3 | 120.8 |
C9—C10—C11 | 119.91 (16) | N4—N3—HN3 | 120.8 |
C9—C10—H10 | 120.0 | C6—N4—N3 | 118.18 (12) |
C11—C10—H10 | 120.0 |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1N···O1i | 0.86 | 2.02 | 2.8740 (15) | 172 |
Symmetry code: (i) −x+3/2, y−1/2, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1N···O1i | 0.86 | 2.02 | 2.8740 (15) | 172 |
Symmetry code: (i) −x+3/2, y−1/2, z. |
Acknowledgements
The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements and the University Mohammed V, Rabat, Morocco, for financial support.
References
Alegaon, S. G., Alagawadi, K. R., Garg, M. K., Dushyant, K. & Vinod, D. (2014). Bioorg. Chem. 54, 51–59. CrossRef CAS PubMed Google Scholar
Bruker (2009). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
El-Sabbagh, O. I., Baraka, M. M., Ibrahim, S. M., Pannecouque, C., Andrei, G., Snoeck, R., Balzarini, J. & Rashad, A. A. (2009). Eur. J. Med. Chem. 44, 3746–3753. Web of Science PubMed CAS Google Scholar
Farag, A. M., Ali, K. A., El-Debss, T. M., Mayhoub, A. S., Amr, A. G., Abdel-Hafez, N. A. & Abdulla, M. M. (2010). Eur. J. Med. Chem. 45, 5887–5898. CrossRef CAS PubMed Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Karrouchi, K., Charkaoui, Y., Benlafya, K., Ramli, Y., Taoufik, J., Radi, S. & Ansar, M. (2013). J. Chem. Pharm. Res. 5, 1–6. CAS Google Scholar
Karrouchi, K., Doudach, L., Chemlal, L., Karim, M., Taoufik, J., Cherrah, Y., Radi, S., Faouzi, M. E. A. & Ansar, M. (2014). Int. J. Pharm. 4, 79–87. Google Scholar
Mert, S., Kasımoğulları, R., İça, T., Çolak, F., Altun, A. & Ok, S. (2014). Eur. J. Med. Chem. 78, 86–96. CrossRef CAS PubMed Google Scholar
Özdemir, Z., Karakurt, A., Çali, Ü., Günal, S., Işik, Ş., Şahin, Z. S. & Dalkara, S. (2015). Med. Chem. 11, 41–49. Google Scholar
Patel, M. V., Bell, R., Majest, S., Henry, R. & Kolasa, T. (2004). J. Org. Chem. 69, 7058–7065. Web of Science CSD CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zhang, H., Zhu, P., Liu, J., Lin, Y., Yao, H., Jiang, J., Ye, W., Wu, X. & Xu, J. (2015). Bioorg. Med. Chem. Lett. 25, 728–732. CrossRef CAS PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Compounds containing the pyrazole moiety are known to exhibit a wide range of biological properties such as anticancer (Zhang et al., 2015), anticonvulsant (Özdemir et al., 2015), antiviral (El-Sabbagh et al., 2009), anti-tumor (Farag et al., 2010), analgesic, sedative (Karrouchi et al., 2014), antimicrobial (Mert et al., 2014), and anti-inflammatory activities (Alegaon et al., 2014). In addition, pyrazoles have a wide variety of applications in the agrochemical and pharmaceutical industries (Patel et al., 2004). Recently we have reported the synthesis of substituted pyrazoles (Karrouchi et al., 2013). As an extension of our work on the structural characterization of pyrazoles, the title compound was prepared and analysed by single-crystal X-ray diffraction.
The molecule of the title compound is build up from two phenyl rings linked to a pyrazole ring through the carbohydrazide group as shown in Fig. 1. The phenyl rings C7–C12 and C13–C18) are nearly approximately as indicated by the dihedral angle of 78.07 (8)° between them, and form makes dihedral angles of 56.43 (8)° and 24.59 (8)°, respectively, with the pyrazole ring. In the crystal, the molecules held together by N1–H1N···O1 hydrogen bonds and form one-dimensional chains along the [0 1 0] direction.