research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of (4R,5S,6R)-6-azido-5-benz­yl­oxy-3,3,4-tri­fluoro­azepan-1-ium 2,2,2-tri­fluoro­acetate from synchrotron data

aDepartment of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW 2109, Australia, and bMark Wainwright Analytical Centre, The University of New South Wales, Sydney, 2052 NSW, Australia
*Correspondence e-mail: fei.liu@mq.edu.au

Edited by J. Simpson, University of Otago, New Zealand (Received 28 August 2015; accepted 14 October 2015; online 24 October 2015)

The structure of the title compound, C15H16F6N4O3, was determined using synchrotron radiation on an extremely small crystal (0.015 × 0.01 × 0.01 mm). Although the diffraction was weak, leading to high residuals and a poor data-to-parameter ratio, the data allowed ready solution and refinement to reveal the entire structure. The solid-state structure is in accordance with the absolute configuration assigned based on that of the known starting material. The compound comprises a highly substituted seven-membered N-heterocyclic cation and a tri­fluoro­methane­sulfonate counter-anion. The title compound crystallizes with two independent cations (A and B) and anions (C and D) in the asymmetric unit. Two geminal F atoms, a single F atom, a benzyl ether and an azide group are substituted on consecutive C atoms between the NH2 and CH2 units of the azepan-1-ium ring system. The seven-membered rings adopt different conformations with the principal differences occurring in the CF2CHFCH2 segments of the ring systems. The geminal F atoms on the quaternary C atom exhibit essentially identical bond angles [109 (2) and 106 (2)°] in the two independent mol­ecules. The two mol­ecules associate as a dimeric unit via two C—H⋯F inter­actions. An extensive series of N—H⋯O, N—H⋯F, C—H⋯O, C—H⋯N, C—H⋯F and C—H⋯π contacts generate a three-dimensional network with cations and anions linked into ABCD repeat columns along a.

1. Chemical context

Fluorine is virtually absent in naturally occurring bioactive mol­ecules. However, about 20% of pharmaceuticals and 30% of agrochemicals have at least one fluorine atom (Müller et al., 2007[Müller, K., Faeh, C. & Diederich, F. (2007). Science, 317, 1881-1886.]; Isanbor & O'Hagan, 2006[Isanbor, C. & O'Hagan, D. (2006). J. Fluor. Chem. 127, 303-319.]). Because fluorine is the most electronegative atom, it is small and forms very strong C—F bonds. The replacement of hydrogen by the bioisosteric fluorine in pharmacophores can lead to improved physical, chemical and biological properties (Ritter, 2012[Ritter, S. K. (2012). Chem. Eng. News, 90, 10-17.]; Bégué & Bonnet-Delpon, 2006[Bégué, J.-P. & Bonnet-Delpon, D. (2006). J. Fluor. Chem. 127, 992-1012.]; Kirk, 2006[Kirk, K. L. (2006). J. Fluor. Chem. 127, 1013-1029.]).

Substituted azepane rings are prevalent in many bioactive natural compounds (Wipf & Spencer, 2005[Wipf, P. & Spencer, S. R. (2005). J. Am. Chem. Soc. 127, 225-235.]; Núñez-Villanueva et al., 2011[Núñez-Villanueva, D., Bonache, M. A. N., Infantes, L., García-López, M. T., Martín-Martínez, M. & González-Muñiz, R. (2011). J. Org. Chem. 76, 6592-6603.]). Recently, substituted azepane rings and related compounds (imino­cyclitols or imino­sugars) have attracted considerable attention from medicinal chemists because of their great potential as glycosidase inhibitors (Stütz, 1999[Stütz, A. E. (1999). In Iminosugars as Glycosidase Inhibitors: Nojirimycin and Beyond. Weinheim: Wiley-VCH.]) and anti­diabetic (Pa­inter et al., 2004[Painter, G. F., Eldridge, P. J. & Falshaw, A. (2004). Bioorg. Med. Chem. 12, 225-232.]), anti­cancer (Zitzmann et al., 1999[Zitzmann, N., Mehta, A. S., Carrouée, S., Butters, T. D., Platt, F. M., McCauley, J., Blumberg, B. S., Dwek, R. A. & Block, T. M. (1999). Proc. Natl Acad. Sci. 96, 11878-11882.]) and anti­viral agents (Laver et al., 1999[Laver, W. G., Bischofberger, N. & Webster, R. G. (1999). Sci. Am. 280, 78-87.]) and are also effective against HIV (Sinnott, 1990[Sinnott, M. L. (1990). Chem. Rev. 90, 1171-1202.]). The conformational control of such flexible ring structures is important to their bioactivity.

We have previously reported stereospecific de­oxy­fluorin­ation reactions of substituted seven-membered N-heterocycles such as azepanes (Patel & Liu, 2013[Patel, A. R. & Liu, F. (2013). Tetrahedron, 69, 744-752.], 2015[Patel, A. R. & Liu, F. (2015). Aust. J. Chem. 68, 50-56.]; Patel et al., 2013[Patel, A. R., Ball, G., Hunter, L. & Liu, F. (2013). Org. Biomol. Chem. 11, 3781-3785.], 2014[Patel, A. R., Hunter, L., Bhadbhade, M. M. & Liu, F. (2014). Eur. J. Org. Chem. pp. 2584-2593.]). The fluorine atoms that were added were found to regulate the conformational preferences of the N-heterocycle rings, and these fluorine-directed conformational changes were analysed by NMR techniques in solution in conjunction with computational modelling. Solution conformation analysis of the trifluorinated azepane was found to be difficult, and its direct solid-state structural analysis was also not feasible without having to add various substituents (Patel et al., 2014[Patel, A. R., Hunter, L., Bhadbhade, M. M. & Liu, F. (2014). Eur. J. Org. Chem. pp. 2584-2593.]). Incorporation of benz­yloxy and azide substituents in the 5- and 6-positions of the seven-membered ring led to crystal formation. However, the crystals were extremely small (0.015 × 0.01 × 0.01 mm) and diffraction data were obtained on the title trifluorinated azepane compound, C15H16F6N4O3 (1), directly using synchrotron radiation.

[Scheme 1]

2. Structural commentary

The compound crystallizes in a chiral space group (monoclinic, P21) with two sets of cations and anions (mol­ecule A and B) in the asymmetric unit. Each cation has the same stereochemistry. An ORTEP view of the cation in mol­ecule A, Fig. 1[link], depicts the absolute configuration and atom-labelling scheme. The B cation and anion are labelled similarly but with trailing B characters after the atom numbers. The absolute configuration was assigned based on that of the known starting material.

[Figure 1]
Figure 1
One of the two mol­ecules (A) in the asymmetric unit, showing the atom numbering. Displacement ellipsoids are drawn at the 50% probability level.

An alternative ORTEP view, Fig. 2[link], shows the asymmetric unit with association between A and B mol­ecules via two C—H⋯F inter­actions to form dimers. The asymmetric unit is completed by the two triflate anions C and D. These are variously linked in an A to C and B to D fashion by N—H⋯O, N—H⋯F, C—H⋯O and C—H⋯F hydrogen bonds, Table 1[link].

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the mid-points of the C10A—C11A and C10B—C11B bonds, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N1A—H1AA⋯O1Di 0.91 1.89 2.75 (2) 156
N1A—H1AB⋯O2Dii 0.91 1.79 2.677 (19) 163
N1B—H1BA⋯O1Ciii 0.91 1.76 2.66 (2) 170
N1B—H1BB⋯O2Civ 0.91 1.85 2.75 (2) 167
N1A—H1AA⋯O1C 0.91 2.57 2.88 (3) 101
N1A—H1AB⋯O1C 0.91 2.57 2.88 (3) 101
N1B—H1BB⋯O2Dv 0.91 2.63 2.94 (3) 101
N1B—H1BA⋯O2Dv 0.91 2.70 2.94 (3) 96
N1A—H1AB⋯F3Di 0.91 2.60 3.010 (16) 108
N1B—H1BB⋯F3Civ 0.91 2.55 2.954 (17) 108
C4A—H4AA⋯O1C 0.99 2.47 3.12 (3) 122
C6A—H6A⋯O1Di 1.00 2.42 3.14 (3) 129
C4B—H4BA⋯O2Dv 0.99 2.39 3.08 (3) 126
C6B—H6B⋯O2Ciii 1.00 2.37 3.22 (3) 142
C12B—H12B⋯N4Avi 0.95 2.71 3.42 (4) 133
C4A—H4AA⋯F3B 0.99 2.50 3.29 (3) 137
C4A—H4AA⋯F3Cv 0.99 2.69 3.27 (3) 118
C5A—H5AA⋯F1A 0.99 2.59 3.18 (2) 118
C5A—H5AB⋯F3Di 0.99 2.70 3.31 (2) 120
C6A—H6A⋯F3A 1.00 2.35 2.88 (2) 112
C4B—H4BA⋯F2A 0.99 2.55 3.39 (3) 142
C4B—H4BA⋯F3D 0.99 2.85 3.34 (3) 111
C5B—H5BA⋯F2B 0.99 2.51 2.95 (2) 107
C7B—H7BA⋯F1B 0.99 2.59 3.15 (5) 116
C7B—H7BACg1v 0.99 2.87 3.73 (4) 146
C7A—H7AACg2v 0.99 2.64 3.46 (4) 140
Symmetry codes: (i) x, y, z-1; (ii) x+1, y, z-1; (iii) x, y, z+1; (iv) x+1, y, z+1; (v) x+1, y, z; (vi) [-x, y+{\script{1\over 2}}, -z+1].
[Figure 2]
Figure 2
A view of the complete asymmetric unit consisting of two mol­ecules of (1) and two tri­fluoro­methane­sulfonate anions. In this and subsequent figures, hydrogen bonds are drawn as dashed lines.

The two mol­ecules differ significantly in their seven-membered ring conformations, in particular around C2 and C3 with significantly different torsion angles, Fig. 3[link], where the mol­ecules are involved in making dimeric contacts. Torsion angles within the two rings are shown in Fig. 3[link].

[Figure 3]
Figure 3
Conformations and torsion angles of the seven-membered rings of mol­ecules A and B.

3. Ring conformation analysis

A computational analysis of ring conformations of compound (1) was carried out using protocols reported earlier (Patel et al., 2013[Patel, A. R., Ball, G., Hunter, L. & Liu, F. (2013). Org. Biomol. Chem. 11, 3781-3785.], 2014[Patel, A. R., Hunter, L., Bhadbhade, M. M. & Liu, F. (2014). Eur. J. Org. Chem. pp. 2584-2593.]). Conformers were first generated by the stochastic method and minimized in the MMFF94x force field with chloro­form as the solvent to produce nine conformational clusters within 3–5 kcal mol−1 in energy that are distinct in their azepane-ring conformations, Fig. 4[link]. Representative conformers were then subjected to DFT geometry optimization [SV(P) basis set at the B3LYP level in COSMO solvent chloro­form]. Two of the nine ring geometries (geometries vi and vii, Fig. 4[link]) found by this computational analysis matched to geometries A and B of compound (1) in the unit cell, respectively. Hence the X-ray structure reported here for (1) validates our conformational analysis methodology as reported earlier (Patel et al., 2013[Patel, A. R., Ball, G., Hunter, L. & Liu, F. (2013). Org. Biomol. Chem. 11, 3781-3785.], 2014[Patel, A. R., Hunter, L., Bhadbhade, M. M. & Liu, F. (2014). Eur. J. Org. Chem. pp. 2584-2593.]).

[Figure 4]
Figure 4
Nine conformations of compound (1) found by computational analysis. The number in parenthesis is the relative energy in kcal mol−1.

4. Supra­molecular features

In the crystal structure, C anions form chains along the a-axis direction through F3C⋯O1C contacts at a distance of 2.78 (2) Å. Each anion further connects to an A cation with O1C accepting three interactions and N1A as a bifurcated donor, leading to the formation of N1A—H1AA⋯O1C, N1A—H1AB⋯O1C and C4A—H4AA⋯O1C hydrogen bonds and generating R21(4) and R21(5) ring motifs, respectively (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). These contacts generate columns of A mol­ecules along a. These columns are further supported by weak C7A—H7AACg2 contacts (Cg2 is the mid-point of the C10A—C11A bond of the C8A–C13A phenyl ring), Fig. 5[link]. Similarly, B cations are linked to D anions with O2D accepting three interactions and forming N1B—-H1BA⋯O2D, N1B—H1BB⋯O2D and C4B—H4BA⋯O2D hydrogen bonds. Unlike the AC system however, a C4B—H4BA⋯F1D hydrogen bond completes the BD cation–anion contacts. These generate R21(4) and R12(5) ring motifs respectively. Weak C7B—H7BACg1 contacts (Cg1 is the midpoint of the C10B–C11B bond of the C8B–C13B phenyl ring) link adjacent B mol­ecules, also forming columns of B cations and D anions along the a-axis direction, Fig. 6[link]. Contacts between the A and B cations are limited to very weak C12B—H12B⋯N4A hydrogen bonds linking adjacent columns of A and B cations, Fig. 7[link]. This eclectic mixture of contacts generates columns with an ABCD repeat unit in the direction of the a axis, Fig. 8[link]. Additional N—H⋯O, C—H⋯O and C—H⋯F contacts result in a three-dimensional network of cations and anions stacked along c.

[Figure 5]
Figure 5
Inter­molecular contacts between A cations and C anions viewed along c. Midpoints of the C10A—C11A bonds are shown as coloured spheres.
[Figure 6]
Figure 6
Inter­molecular contacts between B cations and D anions viewed along c. Midpoints of the C10B—C11B bonds are shown as coloured spheres.
[Figure 7]
Figure 7
Inter­molecular contacts between the A and B cations viewed along c. Mid-points of the C10A—C11A and C10B—C11B bonds are shown as coloured spheres.
[Figure 8]
Figure 8
Packing of mol­ecules in the unit cell viewed along c. Mol­ecules A (green) and B (blue), tri­fluoro­methane­sulfonate anions C (red) and D (yellow). Hydrogen-bonding contacts are shown as dashed lines.

5. Database survey

A survey of the Cambridge Structural Database (Version 5.36, with three updates) (Groom & Allen, 2014[Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662-671.]) reveals the crystal structures of 11 unsubstituted azepanium (hexa­methyl­eneiminium) cations with a variety of counter-anions, see for example: Verlooy et al. (2010[Verlooy, P. L. H., Robeyns, K., Van Meervelt, L., Lebedev, O. I., Van Tendeloo, G., Martens, J. A. & Kirschhock, C. E. A. (2010). Microporous Mesoporous Mater. 130, 14-20.]); Bakshi et al. (1994[Bakshi, P. K., Linden, A., Vincent, B. R., Roe, S. P., Adhikesavalu, D., Cameron, T. S. & Knop, O. (1994). Can. J. Chem. 72, 1273-1293.]); Moritani et al. (1987[Moritani, Y., Sasahara, N., Kashino, S. & Haisa, M. (1987). Acta Cryst. C43, 154-158.]); Kashino et al. (1981[Kashino, S., Sasahara, N., Kataoka, S.-I. & Haisa, M. (1981). Bull. Chem. Soc. Jpn, 54, 962-966.]); Cameron & Scheeren (1977[Cameron, T. S. & Scheeren, H. W. (1977). J. Chem. Soc. Chem. Commun. pp. 939-941.]). Two of these salts also form co-crystals, Moritani & Kashino (2002[Moritani, Y. & Kashino, S. (2002). Bull. Chem. Soc. Jpn, 75, 1235-1239.]); Misaki et al. (1989[Misaki, S., Kashino, S. & Haisa, M. (1989). Acta Cryst. C45, 917-921.]). However the structure of (3R,4R,5S,6S)-4,5,6-trihy­droxy-3-methyl azepanium chloride is the only one to be reported of a substituted azepanium salt, Li et al. (2008[Li, H., Liu, T., Zhang, Y., Favre, S., Bello, C., Vogel, P., Butters, T. D., Oikonomakos, N. G., Marrot, J. & Blériot, Y. (2008). ChemBioChem, 9, 253-260.]), highlighting the novelty of the present report.

6. Synthesis and crystallization

(4R,5S,6R)-6-Azido-5-benz­yloxy-3,3,4-tri­fluoro­azepane-1-carb­oxy­lic acid-tert-butyl ester (10 mg, 25.0 µ mol) was dissolved in tri­fluoro­acetic acid (TFA, 500 µL) at 298 K. The solution was allowed to stir for 5 min before the TFA was evaporated under an N2 flow. The reaction flask was kept under high vacuum (0.005 torr, 298 K) for 3 h to remove traces of TFA. A colorless, oily residue was obtained which was recrystallized from di­chloro­methane to give colorless needles characterized as (1) (10.0 mg, 97%). 1H NMR (600 MHz, CDCl3) δ 7.44–7.34 (m, 5H), 4.93 (dd, J = 44.19 (1JHF), 14.7 Hz, 1H), 4.80 (d, J = 11.44 Hz, 1H), 4.73 (d, J = 11.44 Hz, 1H), 4.08 (dd, J = 8.71, 8.68 Hz, 1H), 3.89–3.82 (m, 1H), 3.67–3.57 (m, 2H), 3.48 (d, J = 14.0 Hz, 1H), 3.10 (dd, J = 14.0, 9.70 Hz, 1H); 13C NMR (150 MHz, CDCl3) δ 135.7, 129.0, 128.5, 128.5, 118.4 (dd, 1JCF = 247.66 Hz, 2JCF = 28.07 Hz), 90.2 (ddd, 1JCF = 186.03 Hz, 2JCF = 34.98 Hz, 2JCF = 27.82 Hz), 79.6 (dd, 2JCF = 24.93 Hz, 3JCF = 7.20 Hz), 73.9, 60.6, 45.8 (dd, 2JCF = 39.76 Hz, 2JCF = 25.66 Hz), 45.6.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All H atoms were refined using a riding model, with N—H = 0.91 Å, C—H = 0.95 Å for aromatic, 1.00 Å for methine and 0.99 Å for methyl­ene, all with Uiso(H) = 1.2Ueq(N/C). Because of the lower reflections-to-parameter ratio, anisotropic displacement parameters of several atoms in the least-squares refinement had to be restrained using the RIGU command. These were applied to azide groups, atoms in the seven-membered and a few atoms in phenyl rings.

Table 2
Experimental details

Crystal data
Chemical formula C13H16F3N4O+·C2F3O2
Mr 414.32
Crystal system, space group Monoclinic, P21
Temperature (K) 100
a, b, c (Å) 5.8780 (12), 34.503 (7), 8.8120 (18)
β (°) 92.42 (3)
V3) 1785.6 (6)
Z 4
Radiation type Synchrotron, λ = 0.7293 Å
μ (mm−1) 0.16
Crystal size (mm) 0.015 × 0.01 × 0.01
 
Data collection
Diffractometer Bruker APEXII CCD
No. of measured, independent and observed [I > 2σ(I)] reflections 13709, 3642, 2175
Rint 0.386
θmax (°) 21.5
(sin θ/λ)max−1) 0.502
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.116, 0.261, 0.97
No. of reflections 3642
No. of parameters 505
No. of restraints 193
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.56, −0.41
Computer programs: XDS (Kabsch, 2010[Kabsch, W. (2010). Acta Cryst. D66, 125-132.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]).

Supporting information


Computing details top

Data collection: XDS (Kabsch, 2010); cell refinement: XDS (Kabsch, 2010); data reduction: XDS (Kabsch, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

(4R,5S,6R)-6-Azido-5-benzyloxy-3,3,4-trifluoroazepan-1-ium 2,2,2-trifluoroacetate top
Crystal data top
C13H16F3N4O+·C2F3O2Z = 4
Mr = 414.32F(000) = 848
Monoclinic, P21Dx = 1.541 Mg m3
a = 5.8780 (12) ÅSynchrotron radiation, λ = 0.7293 Å
b = 34.503 (7) ŵ = 0.16 mm1
c = 8.8120 (18) ÅT = 100 K
β = 92.42 (3)°Plate, colourless
V = 1785.6 (6) Å30.02 × 0.01 × 0.01 mm
Data collection top
Bruker APEXII CCD
diffractometer
Rint = 0.386
ω scansθmax = 21.5°, θmin = 2.4°
13709 measured reflectionsh = 55
3642 independent reflectionsk = 3434
2175 reflections with I > 2σ(I)l = 88
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.116 w = 1/[σ2(Fo2) + (0.0001P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.261(Δ/σ)max < 0.001
S = 0.97Δρmax = 0.56 e Å3
3642 reflectionsΔρmin = 0.41 e Å3
505 parametersAbsolute structure: Flack x determined using 390 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
193 restraintsAbsolute structure parameter: 2.2 (10)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O1A0.606 (3)0.3889 (6)0.6446 (15)0.067 (5)
F1A1.1433 (19)0.4338 (5)0.6460 (13)0.062 (4)
F2A0.923 (2)0.4956 (5)0.7835 (11)0.080 (5)
F3A0.615 (2)0.4787 (4)0.6578 (10)0.050 (3)
N1A0.835 (3)0.4880 (5)0.3749 (14)0.035 (4)
H1AA0.68420.49430.36860.042*
H1AB0.90390.50180.30200.042*
N2A0.627 (4)0.3894 (7)0.3202 (19)0.066 (6)
N3A0.444 (5)0.3736 (8)0.351 (2)0.069 (7)
N4A0.278 (4)0.3579 (9)0.373 (2)0.090 (9)
C1A0.794 (3)0.4058 (7)0.571 (2)0.042 (5)
H1A0.90330.38480.54540.051*
C2A0.913 (4)0.4343 (7)0.668 (2)0.044 (5)
H2A0.89380.42580.77510.053*
C3A0.844 (3)0.4777 (7)0.6604 (17)0.034 (4)
C4A0.928 (3)0.5013 (7)0.5242 (17)0.039 (5)
H4AA0.88690.52890.53790.046*
H4AB1.09670.49980.52470.046*
C5A0.855 (3)0.4469 (7)0.337 (2)0.042 (5)
H5AA1.01210.43810.36250.050*
H5AB0.82430.44330.22700.050*
C6A0.691 (3)0.4228 (7)0.423 (2)0.043 (5)
H6A0.55230.43840.44460.051*
C7A0.678 (4)0.3547 (9)0.737 (3)0.070 (8)
H7AA0.79740.36180.81420.084*
H7AB0.73590.33390.67160.084*
C8A0.465 (4)0.3422 (9)0.810 (2)0.062 (6)
C9A0.373 (5)0.3642 (11)0.921 (3)0.081 (7)
H9A0.43460.38870.94910.097*
C10A0.178 (5)0.3483 (11)0.994 (3)0.082 (7)
H10A0.10490.36301.06920.098*
C11A0.099 (5)0.3121 (10)0.955 (3)0.079 (7)
H11A0.02170.30101.00910.095*
C12A0.182 (5)0.2932 (11)0.848 (3)0.084 (7)
H12A0.11020.26990.81480.101*
C13A0.375 (5)0.3053 (11)0.778 (3)0.080 (7)
H13A0.44780.28870.70910.096*
O1B0.613 (3)0.6932 (5)0.8311 (16)0.060 (4)
F1B0.916 (3)0.6548 (5)0.6524 (12)0.079 (5)
F2B1.1956 (19)0.6200 (4)0.8697 (11)0.055 (4)
F3B1.005 (2)0.5828 (5)0.7138 (11)0.067 (4)
N1B0.961 (3)0.5980 (6)1.1146 (16)0.036 (4)
H1BA0.87660.58501.18250.044*
H1BB1.10990.59221.13640.044*
N2B0.682 (3)0.6932 (7)1.1396 (17)0.060 (6)
N3B0.485 (4)0.7051 (7)1.1158 (18)0.067 (6)
N4B0.313 (4)0.7214 (9)1.101 (2)0.081 (8)
C1B0.792 (4)0.6723 (7)0.891 (2)0.045 (5)
H1B0.93060.68920.89600.054*
C2B0.830 (4)0.6396 (7)0.7792 (19)0.046 (5)
H2B0.67670.62850.74980.055*
C3B0.983 (4)0.6055 (7)0.836 (2)0.045 (5)
C4B0.898 (4)0.5830 (8)0.9578 (18)0.044 (5)
H4BA0.95600.55620.94940.052*
H4BB0.73000.58190.94570.052*
C5B0.930 (4)0.6390 (8)1.137 (2)0.048 (5)
H5BA1.07150.65201.10790.058*
H5BB0.91600.64331.24710.058*
C6B0.734 (4)0.6602 (8)1.057 (2)0.050 (5)
H6B0.59770.64281.05170.060*
C7B0.666 (5)0.7294 (11)0.765 (4)0.098 (12)
H7BA0.78930.72570.69330.117*
H7BB0.72280.74730.84600.117*
C8B0.471 (4)0.7466 (9)0.686 (2)0.064 (6)
C9B0.369 (5)0.7277 (11)0.557 (3)0.090 (9)
H9B0.42880.70440.51750.109*
C10B0.176 (5)0.7452 (10)0.492 (3)0.080 (8)
H10B0.10560.73280.40580.097*
C11B0.078 (5)0.7791 (10)0.541 (3)0.078 (7)
H11B0.05430.78950.49080.094*
C12B0.180 (4)0.7969 (11)0.665 (3)0.082 (8)
H12B0.11410.82000.70200.098*
C13B0.375 (5)0.7826 (10)0.737 (3)0.076 (7)
H13B0.44600.79630.82040.092*
O1C0.709 (3)0.5680 (5)0.3297 (14)0.052 (5)
O2C0.420 (2)0.5922 (6)0.1855 (13)0.055 (5)
F1C0.440 (2)0.5625 (5)0.5606 (11)0.074 (5)
F2C0.414 (2)0.6230 (5)0.5063 (14)0.077 (5)
F3C0.1583 (19)0.5832 (5)0.4231 (9)0.071 (5)
C1C0.382 (3)0.5872 (8)0.447 (2)0.042 (6)
C2C0.519 (4)0.5805 (6)0.306 (2)0.033 (5)
O1D0.378 (2)0.4904 (5)1.2965 (13)0.047 (4)
O2D0.090 (2)0.5162 (5)1.1558 (11)0.045 (4)
F1D0.366 (2)0.5249 (4)0.9285 (10)0.054 (3)
F2D0.375 (2)0.4654 (5)0.9654 (12)0.071 (4)
F3D0.638 (2)0.5015 (5)1.0584 (11)0.066 (4)
C1D0.420 (3)0.4990 (8)1.0293 (18)0.037 (4)
C2D0.281 (4)0.5034 (7)1.1753 (19)0.036 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O1A0.045 (10)0.100 (17)0.058 (9)0.007 (10)0.001 (7)0.006 (10)
F1A0.035 (8)0.079 (12)0.070 (7)0.005 (7)0.004 (5)0.024 (8)
F2A0.097 (10)0.120 (15)0.022 (6)0.010 (10)0.007 (5)0.020 (7)
F3A0.060 (8)0.051 (10)0.042 (6)0.004 (7)0.013 (5)0.006 (6)
N1A0.036 (9)0.043 (10)0.026 (6)0.004 (7)0.002 (5)0.004 (6)
N2A0.077 (14)0.070 (17)0.050 (10)0.010 (12)0.007 (9)0.024 (11)
N3A0.078 (15)0.075 (18)0.053 (11)0.007 (12)0.012 (10)0.010 (11)
N4A0.090 (16)0.11 (2)0.068 (12)0.036 (14)0.005 (11)0.046 (13)
C1A0.033 (12)0.050 (11)0.044 (8)0.005 (8)0.002 (7)0.004 (7)
C2A0.058 (13)0.046 (10)0.028 (8)0.006 (8)0.001 (8)0.007 (7)
C3A0.035 (12)0.047 (10)0.020 (8)0.009 (8)0.003 (7)0.005 (7)
C4A0.055 (12)0.036 (11)0.024 (6)0.008 (9)0.000 (6)0.006 (7)
C5A0.046 (11)0.043 (10)0.037 (9)0.002 (8)0.002 (7)0.006 (7)
C6A0.042 (11)0.043 (12)0.043 (8)0.006 (8)0.004 (7)0.003 (8)
C7A0.067 (17)0.07 (2)0.077 (15)0.031 (16)0.012 (12)0.042 (16)
C8A0.075 (14)0.075 (16)0.034 (10)0.012 (11)0.018 (9)0.019 (9)
C9A0.091 (16)0.091 (17)0.060 (13)0.011 (12)0.005 (10)0.002 (11)
C10A0.094 (16)0.098 (17)0.053 (12)0.011 (12)0.000 (10)0.013 (12)
C11A0.093 (15)0.088 (17)0.056 (12)0.016 (12)0.014 (10)0.032 (11)
C12A0.086 (16)0.097 (17)0.070 (14)0.002 (12)0.012 (10)0.013 (12)
C13A0.090 (16)0.084 (17)0.066 (13)0.002 (11)0.008 (10)0.004 (11)
O1B0.068 (10)0.048 (13)0.062 (8)0.003 (9)0.020 (7)0.015 (9)
F1B0.128 (12)0.080 (13)0.030 (6)0.003 (10)0.007 (7)0.019 (7)
F2B0.045 (8)0.072 (11)0.049 (6)0.009 (7)0.012 (5)0.017 (7)
F3B0.100 (11)0.077 (12)0.027 (6)0.002 (9)0.018 (6)0.001 (7)
N1B0.030 (9)0.043 (10)0.036 (7)0.004 (7)0.003 (6)0.004 (6)
N2B0.067 (11)0.072 (17)0.040 (9)0.004 (11)0.004 (9)0.023 (10)
N3B0.062 (12)0.085 (19)0.053 (10)0.007 (11)0.008 (10)0.006 (11)
N4B0.067 (12)0.10 (2)0.078 (13)0.017 (12)0.000 (10)0.019 (14)
C1B0.044 (12)0.052 (12)0.038 (8)0.014 (9)0.013 (7)0.008 (7)
C2B0.058 (12)0.050 (11)0.028 (8)0.022 (8)0.005 (7)0.014 (7)
C3B0.060 (12)0.051 (12)0.024 (8)0.017 (9)0.012 (7)0.007 (8)
C4B0.052 (12)0.047 (11)0.031 (7)0.005 (9)0.003 (7)0.010 (7)
C5B0.056 (11)0.050 (10)0.037 (9)0.004 (9)0.008 (8)0.001 (8)
C6B0.051 (11)0.057 (14)0.042 (8)0.008 (9)0.006 (7)0.008 (8)
C7B0.09 (2)0.09 (3)0.11 (2)0.034 (19)0.037 (16)0.08 (2)
C8B0.065 (13)0.081 (17)0.046 (10)0.005 (11)0.004 (9)0.020 (10)
C9B0.098 (15)0.098 (18)0.073 (13)0.031 (13)0.027 (11)0.004 (12)
C10B0.091 (15)0.092 (18)0.057 (12)0.018 (12)0.010 (10)0.019 (11)
C11B0.072 (15)0.087 (18)0.075 (13)0.008 (12)0.007 (10)0.018 (11)
C12B0.069 (14)0.100 (18)0.076 (13)0.013 (12)0.003 (10)0.004 (12)
C13B0.071 (14)0.093 (18)0.064 (12)0.008 (11)0.003 (10)0.008 (11)
O1C0.036 (9)0.077 (14)0.043 (7)0.014 (9)0.007 (6)0.002 (8)
O2C0.035 (8)0.108 (16)0.022 (7)0.011 (9)0.005 (6)0.003 (8)
F1C0.063 (8)0.130 (16)0.028 (6)0.010 (9)0.010 (5)0.020 (8)
F2C0.085 (10)0.091 (15)0.055 (7)0.010 (10)0.010 (6)0.027 (9)
F3C0.044 (9)0.151 (17)0.019 (5)0.010 (8)0.003 (5)0.004 (7)
C1C0.028 (14)0.08 (2)0.020 (10)0.002 (12)0.002 (9)0.012 (13)
C2C0.047 (15)0.016 (14)0.038 (12)0.010 (11)0.004 (11)0.002 (10)
O1D0.035 (8)0.070 (13)0.037 (7)0.006 (8)0.013 (6)0.012 (8)
O2D0.028 (9)0.087 (14)0.020 (6)0.020 (8)0.009 (5)0.006 (7)
F1D0.060 (7)0.089 (9)0.013 (5)0.004 (6)0.003 (4)0.016 (5)
F2D0.099 (10)0.078 (10)0.038 (6)0.001 (7)0.015 (6)0.016 (6)
F3D0.040 (6)0.116 (13)0.043 (6)0.008 (6)0.003 (5)0.019 (7)
C1D0.039 (9)0.059 (10)0.012 (8)0.006 (7)0.000 (7)0.001 (7)
C2D0.030 (13)0.050 (17)0.027 (11)0.012 (12)0.000 (9)0.001 (10)
Geometric parameters (Å, º) top
O1A—C1A1.43 (3)N1B—H1BB0.9100
O1A—C7A1.48 (3)N1B—C4B1.51 (2)
F1A—C2A1.37 (2)N1B—C5B1.44 (3)
F2A—C3A1.31 (2)N2B—N3B1.24 (3)
F3A—C3A1.34 (2)N2B—C6B1.39 (3)
N1A—H1AA0.9100N3B—N4B1.16 (3)
N1A—H1AB0.9100C1B—H1B1.0000
N1A—C4A1.48 (2)C1B—C2B1.52 (3)
N1A—C5A1.46 (3)C1B—C6B1.57 (3)
N2A—N3A1.25 (3)C2B—H2B1.0000
N2A—C6A1.50 (3)C2B—C3B1.55 (3)
N3A—N4A1.14 (3)C3B—C4B1.43 (3)
C1A—H1A1.0000C4B—H4BA0.9900
C1A—C2A1.46 (3)C4B—H4BB0.9900
C1A—C6A1.53 (3)C5B—H5BA0.9900
C2A—H2A1.0000C5B—H5BB0.9900
C2A—C3A1.55 (3)C5B—C6B1.51 (3)
C3A—C4A1.55 (3)C6B—H6B1.0000
C4A—H4AA0.9900C7B—H7BA0.9900
C4A—H4AB0.9900C7B—H7BB0.9900
C5A—H5AA0.9900C7B—C8B1.45 (4)
C5A—H5AB0.9900C8B—C9B1.42 (4)
C5A—C6A1.50 (3)C8B—C13B1.45 (4)
C6A—H6A1.0000C9B—H9B0.9500
C7A—H7AA0.9900C9B—C10B1.38 (4)
C7A—H7AB0.9900C10B—H10B0.9500
C7A—C8A1.50 (4)C10B—C11B1.38 (4)
C8A—C9A1.37 (4)C11B—H11B0.9500
C8A—C13A1.40 (4)C11B—C12B1.37 (4)
C9A—H9A0.9500C12B—H12B0.9500
C9A—C10A1.44 (4)C12B—C13B1.38 (4)
C10A—H10A0.9500C13B—H13B0.9500
C10A—C11A1.37 (4)O1C—C2C1.21 (2)
C11A—H11A0.9500O2C—C2C1.26 (2)
C11A—C12A1.26 (4)F1C—C1C1.35 (3)
C12A—H12A0.9500F2C—C1C1.35 (3)
C12A—C13A1.38 (4)F3C—C1C1.33 (2)
C13A—H13A0.9500C1C—C2C1.53 (3)
O1B—C1B1.36 (3)O1D—C2D1.27 (2)
O1B—C7B1.42 (3)O2D—C2D1.21 (2)
F1B—C2B1.35 (2)F1D—C1D1.29 (3)
F2B—C3B1.37 (2)F2D—C1D1.31 (3)
F3B—C3B1.34 (2)F3D—C1D1.30 (2)
N1B—H1BA0.9100C1D—C2D1.56 (3)
C1A—O1A—C7A111.5 (17)O1B—C1B—H1B108.8
H1AA—N1A—H1AB107.1O1B—C1B—C2B105.9 (15)
C4A—N1A—H1AA107.8O1B—C1B—C6B107.8 (18)
C4A—N1A—H1AB107.8C2B—C1B—H1B108.8
C5A—N1A—H1AA107.8C2B—C1B—C6B116.6 (19)
C5A—N1A—H1AB107.8C6B—C1B—H1B108.8
C5A—N1A—C4A118.2 (17)F1B—C2B—C1B108.4 (18)
N3A—N2A—C6A113.7 (18)F1B—C2B—H2B107.3
N4A—N3A—N2A177 (3)F1B—C2B—C3B108.9 (18)
O1A—C1A—H1A108.8C1B—C2B—H2B107.3
O1A—C1A—C2A111.7 (16)C1B—C2B—C3B117.1 (15)
O1A—C1A—C6A104.8 (15)C3B—C2B—H2B107.3
C2A—C1A—H1A108.8F2B—C3B—C2B107.8 (18)
C2A—C1A—C6A113.8 (19)F2B—C3B—C4B112.1 (15)
C6A—C1A—H1A108.8F3B—C3B—F2B105.8 (18)
F1A—C2A—C1A111.1 (18)F3B—C3B—C2B105.2 (14)
F1A—C2A—H2A106.5F3B—C3B—C4B110 (2)
F1A—C2A—C3A105.3 (17)C4B—C3B—C2B116 (2)
C1A—C2A—H2A106.5N1B—C4B—H4BA108.5
C1A—C2A—C3A120.3 (17)N1B—C4B—H4BB108.5
C3A—C2A—H2A106.5C3B—C4B—N1B115 (2)
F2A—C3A—F3A108.7 (15)C3B—C4B—H4BA108.5
F2A—C3A—C2A109.5 (16)C3B—C4B—H4BB108.5
F2A—C3A—C4A106.2 (18)H4BA—C4B—H4BB107.5
F3A—C3A—C2A106.6 (17)N1B—C5B—H5BA107.1
F3A—C3A—C4A109.1 (15)N1B—C5B—H5BB107.1
C4A—C3A—C2A116.6 (17)N1B—C5B—C6B120.7 (19)
N1A—C4A—C3A114.0 (17)H5BA—C5B—H5BB106.8
N1A—C4A—H4AA108.8C6B—C5B—H5BA107.1
N1A—C4A—H4AB108.8C6B—C5B—H5BB107.1
C3A—C4A—H4AA108.8N2B—C6B—C1B109 (2)
C3A—C4A—H4AB108.8N2B—C6B—C5B109.3 (18)
H4AA—C4A—H4AB107.7N2B—C6B—H6B108.8
N1A—C5A—H5AA109.4C1B—C6B—H6B108.8
N1A—C5A—H5AB109.4C5B—C6B—C1B111.8 (19)
N1A—C5A—C6A111.3 (16)C5B—C6B—H6B108.8
H5AA—C5A—H5AB108.0O1B—C7B—H7BA109.2
C6A—C5A—H5AA109.4O1B—C7B—H7BB109.2
C6A—C5A—H5AB109.4O1B—C7B—C8B112 (2)
N2A—C6A—C1A107.4 (19)H7BA—C7B—H7BB107.9
N2A—C6A—H6A110.0C8B—C7B—H7BA109.2
C1A—C6A—H6A110.0C8B—C7B—H7BB109.2
C5A—C6A—N2A105.6 (16)C9B—C8B—C7B120 (3)
C5A—C6A—C1A113.6 (16)C9B—C8B—C13B119 (2)
C5A—C6A—H6A110.0C13B—C8B—C7B121 (3)
O1A—C7A—H7AA111.0C8B—C9B—H9B121.9
O1A—C7A—H7AB111.0C10B—C9B—C8B116 (3)
O1A—C7A—C8A103.9 (18)C10B—C9B—H9B121.9
H7AA—C7A—H7AB109.0C9B—C10B—H10B117.2
C8A—C7A—H7AA111.0C11B—C10B—C9B126 (3)
C8A—C7A—H7AB111.0C11B—C10B—H10B117.2
C9A—C8A—C7A121 (3)C10B—C11B—H11B121.4
C9A—C8A—C13A119 (3)C12B—C11B—C10B117 (3)
C13A—C8A—C7A119 (3)C12B—C11B—H11B121.4
C8A—C9A—H9A121.5C11B—C12B—H12B118.8
C8A—C9A—C10A117 (3)C11B—C12B—C13B122 (3)
C10A—C9A—H9A121.5C13B—C12B—H12B118.8
C9A—C10A—H10A120.0C8B—C13B—H13B120.5
C11A—C10A—C9A120 (3)C12B—C13B—C8B119 (3)
C11A—C10A—H10A120.0C12B—C13B—H13B120.5
C10A—C11A—H11A119.4F1C—C1C—F2C105.5 (15)
C12A—C11A—C10A121 (3)F1C—C1C—C2C112.4 (19)
C12A—C11A—H11A119.4F2C—C1C—C2C112.3 (19)
C11A—C12A—H12A119.0F3C—C1C—F1C105.9 (17)
C11A—C12A—C13A122 (4)F3C—C1C—F2C106.2 (19)
C13A—C12A—H12A119.0F3C—C1C—C2C114.0 (15)
C8A—C13A—H13A120.2O1C—C2C—O2C130.8 (17)
C12A—C13A—C8A120 (3)O1C—C2C—C1C115.5 (17)
C12A—C13A—H13A120.2O2C—C2C—C1C113.4 (19)
C1B—O1B—C7B116.5 (19)F1D—C1D—F2D106.0 (14)
H1BA—N1B—H1BB107.4F1D—C1D—F3D107.8 (18)
C4B—N1B—H1BA108.4F1D—C1D—C2D112.2 (18)
C4B—N1B—H1BB108.4F2D—C1D—C2D109.7 (19)
C5B—N1B—H1BA108.4F3D—C1D—F2D108.8 (19)
C5B—N1B—H1BB108.4F3D—C1D—C2D112.2 (15)
C5B—N1B—C4B115.7 (16)O1D—C2D—C1D115.4 (17)
N3B—N2B—C6B113.9 (19)O2D—C2D—O1D128.7 (16)
N4B—N3B—N2B170 (3)O2D—C2D—C1D115.6 (15)
O1A—C1A—C2A—F1A145.1 (17)F1B—C2B—C3B—F3B51 (2)
O1A—C1A—C2A—C3A91 (2)F1B—C2B—C3B—C4B172.2 (18)
O1A—C1A—C6A—N2A71 (2)F2B—C3B—C4B—N1B37 (3)
O1A—C1A—C6A—C5A172.1 (19)F3B—C3B—C4B—N1B153.7 (17)
O1A—C7A—C8A—C9A70 (3)N1B—C5B—C6B—N2B155.3 (19)
O1A—C7A—C8A—C13A118 (2)N1B—C5B—C6B—C1B84 (3)
F1A—C2A—C3A—F2A72.0 (17)N3B—N2B—C6B—C1B81 (2)
F1A—C2A—C3A—F3A170.6 (12)N3B—N2B—C6B—C5B157 (2)
F1A—C2A—C3A—C4A48.5 (19)C1B—O1B—C7B—C8B171 (2)
F2A—C3A—C4A—N1A173.5 (17)C1B—C2B—C3B—F2B62 (2)
F3A—C3A—C4A—N1A57 (2)C1B—C2B—C3B—F3B174.5 (17)
N1A—C5A—C6A—N2A148.0 (17)C1B—C2B—C3B—C4B64 (3)
N1A—C5A—C6A—C1A94 (2)C2B—C1B—C6B—N2B174.0 (19)
N3A—N2A—C6A—C1A80 (2)C2B—C1B—C6B—C5B65 (3)
N3A—N2A—C6A—C5A159 (2)C2B—C3B—C4B—N1B88 (2)
C1A—O1A—C7A—C8A177.4 (19)C4B—N1B—C5B—C6B35 (3)
C1A—C2A—C3A—F2A161.7 (17)C5B—N1B—C4B—C3B47 (3)
C1A—C2A—C3A—F3A44 (2)C6B—N2B—N3B—N4B158 (12)
C1A—C2A—C3A—C4A78 (2)C6B—C1B—C2B—F1B169.4 (16)
C2A—C1A—C6A—N2A166.2 (18)C6B—C1B—C2B—C3B46 (3)
C2A—C1A—C6A—C5A50 (2)C7B—O1B—C1B—C2B105 (2)
C2A—C3A—C4A—N1A64 (2)C7B—O1B—C1B—C6B129 (2)
C4A—N1A—C5A—C6A74 (2)C7B—C8B—C9B—C10B177 (3)
C5A—N1A—C4A—C3A52 (2)C7B—C8B—C13B—C12B176 (3)
C6A—C1A—C2A—F1A97 (2)C8B—C9B—C10B—C11B0 (5)
C6A—C1A—C2A—C3A27 (3)C9B—C8B—C13B—C12B3 (4)
C7A—O1A—C1A—C2A87 (2)C9B—C10B—C11B—C12B0 (5)
C7A—O1A—C1A—C6A148.9 (19)C10B—C11B—C12B—C13B1 (4)
C7A—C8A—C9A—C10A175 (2)C11B—C12B—C13B—C8B3 (4)
C7A—C8A—C13A—C12A178 (2)C13B—C8B—C9B—C10B2 (4)
C8A—C9A—C10A—C11A2 (4)F1C—C1C—C2C—O1C30 (3)
C9A—C8A—C13A—C12A7 (4)F1C—C1C—C2C—O2C155.7 (18)
C9A—C10A—C11A—C12A5 (4)F2C—C1C—C2C—O1C89 (2)
C10A—C11A—C12A—C13A9 (5)F2C—C1C—C2C—O2C86 (2)
C11A—C12A—C13A—C8A9 (4)F3C—C1C—C2C—O1C150 (2)
C13A—C8A—C9A—C10A3 (3)F3C—C1C—C2C—O2C35 (3)
O1B—C1B—C2B—F1B71 (2)F1D—C1D—C2D—O1D154.0 (19)
O1B—C1B—C2B—C3B165.6 (17)F1D—C1D—C2D—O2D31 (3)
O1B—C1B—C6B—N2B55 (2)F2D—C1D—C2D—O1D89 (2)
O1B—C1B—C6B—C5B176 (2)F2D—C1D—C2D—O2D86 (3)
O1B—C7B—C8B—C9B64 (4)F3D—C1D—C2D—O1D32 (3)
O1B—C7B—C8B—C13B115 (3)F3D—C1D—C2D—O2D153 (2)
F1B—C2B—C3B—F2B61 (2)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the mid-points of the C10A—C11A and C10B—C11B bonds, respectively.
D—H···AD—HH···AD···AD—H···A
N1A—H1AA···O1Di0.911.892.75 (2)156
N1A—H1AB···O2Dii0.911.792.677 (19)163
N1B—H1BA···O1Ciii0.911.762.66 (2)170
N1B—H1BB···O2Civ0.911.852.75 (2)167
N1A—H1AA···O1C0.912.572.88 (3)101
N1A—H1AB···O1C0.912.572.88 (3)101
N1B—H1BB···O2Dv0.912.632.94 (3)101
N1B—H1BA···O2Dv0.912.702.94 (3)96
N1A—H1AB···F3Di0.912.603.010 (16)108
N1B—H1BB···F3Civ0.912.552.954 (17)108
C4A—H4AA···O1C0.992.473.12 (3)122
C6A—H6A···O1Di1.002.423.14 (3)129
C4B—H4BA···O2Dv0.992.393.08 (3)126
C6B—H6B···O2Ciii1.002.373.22 (3)142
C12B—H12B···N4Avi0.952.713.42 (4)133
C4A—H4AA···F3B0.992.503.29 (3)137
C4A—H4AA···F3Cv0.992.693.27 (3)118
C5A—H5AA···F1A0.992.593.18 (2)118
C5A—H5AB···F3Di0.992.703.31 (2)120
C6A—H6A···F3A1.002.352.88 (2)112
C4B—H4BA···F2A0.992.553.39 (3)142
C4B—H4BA···F3D0.992.853.34 (3)111
C5B—H5BA···F2B0.992.512.95 (2)107
C7B—H7BA···F1B0.992.593.15 (5)116
C7B—H7BA···Cg1v0.992.873.73 (4)146
C7A—H7AA···Cg2v0.992.643.46 (4)140
Symmetry codes: (i) x, y, z1; (ii) x+1, y, z1; (iii) x, y, z+1; (iv) x+1, y, z+1; (v) x+1, y, z; (vi) x, y+1/2, z+1.
 

Footnotes

Current address: School of Chemistry, The University of New South Wales, Sydney NSW 2052, Australia.

Acknowledgements

The authors thank the Australian Synchrotron facility for the diffraction data. The support from Dr Luke Hunter and Dr Samuel Kutty is greatly appreciated.

References

First citationBakshi, P. K., Linden, A., Vincent, B. R., Roe, S. P., Adhikesavalu, D., Cameron, T. S. & Knop, O. (1994). Can. J. Chem. 72, 1273–1293.  CrossRef CAS Web of Science Google Scholar
First citationBégué, J.-P. & Bonnet-Delpon, D. (2006). J. Fluor. Chem. 127, 992–1012.  Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationCameron, T. S. & Scheeren, H. W. (1977). J. Chem. Soc. Chem. Commun. pp. 939–941.  CrossRef Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.  Web of Science CSD CrossRef CAS Google Scholar
First citationIsanbor, C. & O'Hagan, D. (2006). J. Fluor. Chem. 127, 303–319.  CrossRef CAS Google Scholar
First citationKabsch, W. (2010). Acta Cryst. D66, 125–132.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKashino, S., Sasahara, N., Kataoka, S.-I. & Haisa, M. (1981). Bull. Chem. Soc. Jpn, 54, 962–966.  CrossRef CAS Google Scholar
First citationKirk, K. L. (2006). J. Fluor. Chem. 127, 1013–1029.  CrossRef CAS Google Scholar
First citationLaver, W. G., Bischofberger, N. & Webster, R. G. (1999). Sci. Am. 280, 78–87.  CrossRef CAS PubMed Google Scholar
First citationLi, H., Liu, T., Zhang, Y., Favre, S., Bello, C., Vogel, P., Butters, T. D., Oikonomakos, N. G., Marrot, J. & Blériot, Y. (2008). ChemBioChem, 9, 253–260.  CSD CrossRef PubMed Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMisaki, S., Kashino, S. & Haisa, M. (1989). Acta Cryst. C45, 917–921.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationMoritani, Y. & Kashino, S. (2002). Bull. Chem. Soc. Jpn, 75, 1235–1239.  CSD CrossRef CAS Google Scholar
First citationMoritani, Y., Sasahara, N., Kashino, S. & Haisa, M. (1987). Acta Cryst. C43, 154–158.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMüller, K., Faeh, C. & Diederich, F. (2007). Science, 317, 1881–1886.  Web of Science PubMed Google Scholar
First citationNúñez-Villanueva, D., Bonache, M. A. N., Infantes, L., García-López, M. T., Martín-Martínez, M. & González-Muñiz, R. (2011). J. Org. Chem. 76, 6592–6603.  PubMed Google Scholar
First citationPainter, G. F., Eldridge, P. J. & Falshaw, A. (2004). Bioorg. Med. Chem. 12, 225–232.  CrossRef PubMed CAS Google Scholar
First citationPatel, A. R., Ball, G., Hunter, L. & Liu, F. (2013). Org. Biomol. Chem. 11, 3781–3785.  CrossRef CAS PubMed Google Scholar
First citationPatel, A. R., Hunter, L., Bhadbhade, M. M. & Liu, F. (2014). Eur. J. Org. Chem. pp. 2584–2593.  CSD CrossRef Google Scholar
First citationPatel, A. R. & Liu, F. (2013). Tetrahedron, 69, 744–752.  CrossRef CAS Google Scholar
First citationPatel, A. R. & Liu, F. (2015). Aust. J. Chem. 68, 50–56.  CrossRef CAS Google Scholar
First citationRitter, S. K. (2012). Chem. Eng. News, 90, 10–17.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSinnott, M. L. (1990). Chem. Rev. 90, 1171–1202.  CrossRef CAS Web of Science Google Scholar
First citationStütz, A. E. (1999). In Iminosugars as Glycosidase Inhibitors: Nojirimycin and Beyond. Weinheim: Wiley-VCH.  Google Scholar
First citationVerlooy, P. L. H., Robeyns, K., Van Meervelt, L., Lebedev, O. I., Van Tendeloo, G., Martens, J. A. & Kirschhock, C. E. A. (2010). Microporous Mesoporous Mater. 130, 14–20.  Web of Science CSD CrossRef CAS Google Scholar
First citationWipf, P. & Spencer, S. R. (2005). J. Am. Chem. Soc. 127, 225–235.  CrossRef PubMed CAS Google Scholar
First citationZitzmann, N., Mehta, A. S., Carrouée, S., Butters, T. D., Platt, F. M., McCauley, J., Blumberg, B. S., Dwek, R. A. & Block, T. M. (1999). Proc. Natl Acad. Sci. 96, 11878–11882.  CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds