metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of di-μ-iodido-bis­{[bis­(piperidin-1-yl)methane-κ2N,N′]copper(I)}

aFakultät für Chemie und Chemische Biologie, Technische Universität Dortmund, Otto-Hahn-Strasse 6, 44227 Dortmund, Germany
*Correspondence e-mail: carsten.strohmann@tu-dortmund.de

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 11 September 2015; accepted 6 October 2015; online 14 October 2015)

The title compound, [Cu2I2(C11H22N2)2], crystallizes as a symmetric dimer with one quarter of the mol­ecule in the asymmetric unit. The copper(I) atom, the iodine atom and the central methyl­ene C atom of the di(piperidin-1-yl)methane ligand lie on a mirror plane and the complete molecule exhibits point group symmetry 2/m. To the best of our knowledge it is the first di­amine copper(I) complex containing a four-membered chelate ring. Compared to other di­amine copper(I) iodide dimers, the title compound has a short Cu⋯Cu distance of 2.5137 (11) Å, but a long Cu—N bond length of 2.213 (3) Å. The I—Cu—I angle [121.84 (2)°] is large, and the N—Cu—N angle = 66.61 (13)° is the smallest one found for copper(I) di­amine complexes. As a result of the four-membered ring, the ligands around the copper(I) atom have an extremely distorted tetra­hedral arrangement. In the crystal, there are no significant inter­molecular inter­actions present.

1. Related literature

To the best of our knowledge no related di­amine complexes with four-membered chelate rings are known. For di­amine complexes with five-membered chelate rings, see: Haitko (1984[Haitko, D. A. (1984). J. Coord. Chem. 13, 119-122.]); Garbauskas et al. (1986[Garbauskas, M. F., Haitko, D. A. & Kasper, J. S. (1986). J. Crystallogr. Spectrosc. Res. 16, 729-738.]). For a bi­pyridine complex containing a copper(I) iodide dimer, see: Huang et al. (2013[Huang, P.-C., Parthasarathy, K. & Cheng, C.-H. (2013). Chem. Eur. J. 19, 460-464.]). For the crystal structure of the μ,μ′-diiodido-bridged dimer, with four-coordinate copper(I), viz. [(py)2CuI2Cu(py)2] (py is pyridine), see: Dyason et al. (1984[Dyason, J. C., Engelhardt, L. M., Healy, P. C. & White, A. H. (1984). Aust. J. Chem. 37, 2201-2205.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • [Cu2I2(C11H22N2)2]

  • Mr = 745.49

  • Orthorhombic, C m c e

  • a = 18.718 (4) Å

  • b = 8.4175 (15) Å

  • c = 17.074 (3) Å

  • V = 2690.1 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.89 mm−1

  • T = 173 K

  • 0.4 × 0.3 × 0.2 mm

2.2. Data collection

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.]) Tmin = 0.256, Tmax = 0.459

  • 38065 measured reflections

  • 1704 independent reflections

  • 1349 reflections with I > 2σ(I)

  • Rint = 0.096

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.070

  • S = 1.07

  • 1704 reflections

  • 73 parameters

  • H-atom parameters constrained

  • Δρmax = 0.99 e Å−3

  • Δρmin = −0.44 e Å−3

Table 1
Selected geometric parameters (Å, °)

Cu1—Cu1i 2.5137 (11)
I1—Cu1 2.5798 (8)
I1—Cu1i 2.5922 (7)
Cu1—N1 2.213 (3)
Cu1—I1—Cu1i 58.16 (2)
N1—Cu1—N1ii 66.61 (13)
N1—Cu1—I1 116.02 (7)
N1—Cu1—I1i 111.90 (7)
I1—Cu1—I1i 121.84 (2)
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+1, y, z.

Data collection: APEX2 (Bruker, 2003[Bruker (2003). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2003[Bruker (2003). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]); program(s) used to refine structure: SHELXL2014/6 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]); molecular graphics: Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Synthesis and crystallization top

The title compound was prepared by dissolving 98 mg (0.51 mmol) of CuI in 2 ml acetone under an inert argon atmosphere. Then 151 mg (0.83 mmol) of di(piperidin-1-yl)methane was added to this solution with stirring. After one week colourless crystals of the title compound were obtained.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2. The C-bound H atoms were included in calculated positions and treated as riding atoms: C—H = 0.99 Å with Uiso(H) = 1.2Ueq(C).

Related literature top

To the best of our knowledge no related diamine complexes with four-membered chelate rings are known. For diamine complexes with five-membered chelate rings, see: Haitko (1984); Garbauskas et al. (1986). For a bipyridine complex containing a copper(I) iodide dimer, see: Huang et al. (2013). For the crystal structure of the µ,µ'-diiodido-bridged dimer, with four-coordinate copper(I), viz. [(py)2CuI2Cu(py)2], see: Dyason et al. (1984).

Structure description top

To the best of our knowledge no related diamine complexes with four-membered chelate rings are known. For diamine complexes with five-membered chelate rings, see: Haitko (1984); Garbauskas et al. (1986). For a bipyridine complex containing a copper(I) iodide dimer, see: Huang et al. (2013). For the crystal structure of the µ,µ'-diiodido-bridged dimer, with four-coordinate copper(I), viz. [(py)2CuI2Cu(py)2], see: Dyason et al. (1984).

Synthesis and crystallization top

The title compound was prepared by dissolving 98 mg (0.51 mmol) of CuI in 2 ml acetone under an inert argon atmosphere. Then 151 mg (0.83 mmol) of di(piperidin-1-yl)methane was added to this solution with stirring. After one week colourless crystals of the title compound were obtained.

Refinement details top

Crystal data, data collection and structure refinement details are summarized in Table 2. The C-bound H atoms were included in calculated positions and treated as riding atoms: C—H = 0.99 Å with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014/6 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, with atom labelling. The displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Crystal packing of the title compound viewed along b axis. H-atoms have been omitted for clarity.
Di-µ-iodido-bis{[bis(piperidin-1-yl)methane-κ2N,N']copper(I)} top
Crystal data top
[Cu2I2(C11H22N2)2]Dx = 1.841 Mg m3
Mr = 745.49Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, CmceCell parameters from 38065 reflections
a = 18.718 (4) Åθ = 2.2–28.2°
b = 8.4175 (15) ŵ = 3.89 mm1
c = 17.074 (3) ÅT = 173 K
V = 2690.1 (8) Å3Block, colourless
Z = 40.4 × 0.3 × 0.2 mm
F(000) = 1472
Data collection top
Bruker APEXII CCD
diffractometer
1349 reflections with I > 2σ(I)
φ and ω scansRint = 0.096
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
θmax = 28.2°, θmin = 2.2°
Tmin = 0.256, Tmax = 0.459h = 2424
38065 measured reflectionsk = 1111
1704 independent reflectionsl = 2222
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.032H-atom parameters constrained
wR(F2) = 0.070 w = 1/[σ2(Fo2) + (0.0354P)2 + 0.6685P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
1704 reflectionsΔρmax = 0.99 e Å3
73 parametersΔρmin = 0.44 e Å3
Crystal data top
[Cu2I2(C11H22N2)2]V = 2690.1 (8) Å3
Mr = 745.49Z = 4
Orthorhombic, CmceMo Kα radiation
a = 18.718 (4) ŵ = 3.89 mm1
b = 8.4175 (15) ÅT = 173 K
c = 17.074 (3) Å0.4 × 0.3 × 0.2 mm
Data collection top
Bruker APEXII CCD
diffractometer
1704 independent reflections
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
1349 reflections with I > 2σ(I)
Tmin = 0.256, Tmax = 0.459Rint = 0.096
38065 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.070H-atom parameters constrained
S = 1.07Δρmax = 0.99 e Å3
1704 reflectionsΔρmin = 0.44 e Å3
73 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.50000.70816 (3)0.58360 (2)0.03716 (12)
Cu10.50000.40635 (6)0.55733 (3)0.03283 (16)
N10.56490 (13)0.2603 (3)0.63824 (16)0.0259 (5)
C10.50000.1792 (5)0.6679 (3)0.0299 (10)
H1A0.50000.06700.65050.036*
H1B0.50000.18060.72590.036*
C20.60139 (18)0.3498 (4)0.70093 (19)0.0333 (7)
H2A0.61650.27560.74270.040*
H2B0.56770.42740.72410.040*
C30.66608 (19)0.4367 (4)0.6694 (2)0.0444 (9)
H3A0.65040.51760.63100.053*
H3B0.69050.49240.71290.053*
C40.7177 (2)0.3238 (5)0.6306 (3)0.0497 (10)
H4A0.73820.25100.67020.060*
H4B0.75730.38440.60640.060*
C50.6785 (2)0.2285 (5)0.5680 (2)0.0460 (9)
H5A0.66280.30060.52550.055*
H5B0.71140.14900.54510.055*
C60.61428 (18)0.1448 (4)0.60214 (19)0.0333 (8)
H6A0.58910.08580.56030.040*
H6B0.63020.06740.64210.040*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.0678 (3)0.02108 (15)0.02262 (17)0.0000.0000.00298 (11)
Cu10.0540 (4)0.0219 (3)0.0225 (3)0.0000.0000.0030 (2)
N10.0293 (13)0.0222 (11)0.0262 (13)0.0010 (10)0.0021 (11)0.0001 (10)
C10.032 (3)0.028 (2)0.029 (3)0.0000.0000.0092 (18)
C20.0359 (19)0.0369 (17)0.0271 (17)0.0032 (14)0.0048 (14)0.0078 (14)
C30.040 (2)0.041 (2)0.052 (2)0.0066 (16)0.0035 (17)0.0046 (17)
C40.036 (2)0.051 (2)0.062 (3)0.0062 (17)0.0047 (19)0.0075 (19)
C50.043 (2)0.047 (2)0.048 (2)0.0054 (18)0.0177 (17)0.0000 (18)
C60.040 (2)0.0289 (16)0.0314 (18)0.0033 (14)0.0023 (15)0.0046 (13)
Geometric parameters (Å, º) top
Cu1—Cu1i2.5137 (11)C2—H2A0.9900
I1—Cu12.5798 (8)C2—H2B0.9900
I1—Cu1i2.5922 (7)C3—C41.509 (5)
Cu1—N12.213 (3)C3—H3A0.9900
Cu1—N1ii2.213 (3)C3—H3B0.9900
Cu1—I1i2.5922 (7)C4—C51.526 (6)
N1—C61.476 (4)C4—H4A0.9900
N1—C21.477 (4)C4—H4B0.9900
N1—C11.483 (3)C5—C61.509 (5)
C1—N1ii1.483 (3)C5—H5A0.9900
C1—H1A0.9900C5—H5B0.9900
C1—H1B0.9900C6—H6A0.9900
C2—C31.513 (5)C6—H6B0.9900
Cu1—I1—Cu1i58.16 (2)C3—C2—H2B109.4
N1—Cu1—N1ii66.61 (13)H2A—C2—H2B108.0
N1—Cu1—Cu1i146.59 (7)C4—C3—C2111.4 (3)
N1ii—Cu1—Cu1i146.59 (7)C4—C3—H3A109.4
N1—Cu1—I1116.02 (7)C2—C3—H3A109.4
N1ii—Cu1—I1116.01 (7)C4—C3—H3B109.4
Cu1i—Cu1—I161.17 (2)C2—C3—H3B109.4
N1—Cu1—I1i111.90 (7)H3A—C3—H3B108.0
N1ii—Cu1—I1i111.90 (7)C3—C4—C5109.3 (3)
Cu1i—Cu1—I1i60.67 (3)C3—C4—H4A109.8
I1—Cu1—I1i121.84 (2)C5—C4—H4A109.8
C6—N1—C2110.4 (2)C3—C4—H4B109.8
C6—N1—C1110.6 (3)C5—C4—H4B109.8
C2—N1—C1111.5 (3)H4A—C4—H4B108.3
C6—N1—Cu1116.7 (2)C6—C5—C4111.0 (3)
C2—N1—Cu1115.02 (19)C6—C5—H5A109.4
C1—N1—Cu191.11 (18)C4—C5—H5A109.4
N1ii—C1—N1110.0 (3)C6—C5—H5B109.4
N1ii—C1—H1A109.7C4—C5—H5B109.4
N1—C1—H1A109.7H5A—C5—H5B108.0
N1ii—C1—H1B109.7N1—C6—C5110.6 (3)
N1—C1—H1B109.7N1—C6—H6A109.5
H1A—C1—H1B108.2C5—C6—H6A109.5
N1—C2—C3111.0 (3)N1—C6—H6B109.5
N1—C2—H2A109.4C5—C6—H6B109.5
C3—C2—H2A109.4H6A—C6—H6B108.1
N1—C2—H2B109.4
C6—N1—C1—N1ii128.9 (3)C2—C3—C4—C554.5 (4)
C2—N1—C1—N1ii107.7 (3)C3—C4—C5—C655.1 (4)
Cu1—N1—C1—N1ii9.8 (3)C2—N1—C6—C559.2 (4)
C6—N1—C2—C358.5 (3)C1—N1—C6—C5176.9 (3)
C1—N1—C2—C3178.0 (3)Cu1—N1—C6—C574.6 (3)
Cu1—N1—C2—C376.1 (3)C4—C5—C6—N157.9 (4)
N1—C2—C3—C456.9 (4)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z.
Selected geometric parameters (Å, º) top
Cu1—Cu1i2.5137 (11)I1—Cu1i2.5922 (7)
I1—Cu12.5798 (8)Cu1—N12.213 (3)
Cu1—I1—Cu1i58.16 (2)N1—Cu1—I1i111.90 (7)
N1—Cu1—N1ii66.61 (13)I1—Cu1—I1i121.84 (2)
N1—Cu1—I1116.02 (7)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z.
 

Acknowledgements

We are grateful to the Deutsche Forschungsgemeinschaft (DFG) for financial support.

References

First citationBruker (2003). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDyason, J. C., Engelhardt, L. M., Healy, P. C. & White, A. H. (1984). Aust. J. Chem. 37, 2201–2205.  CSD CrossRef CAS Web of Science Google Scholar
First citationGarbauskas, M. F., Haitko, D. A. & Kasper, J. S. (1986). J. Crystallogr. Spectrosc. Res. 16, 729–738.  CSD CrossRef CAS Web of Science Google Scholar
First citationHaitko, D. A. (1984). J. Coord. Chem. 13, 119–122.  CrossRef CAS Web of Science Google Scholar
First citationHuang, P.-C., Parthasarathy, K. & Cheng, C.-H. (2013). Chem. Eur. J. 19, 460–464.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds