research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 2,4,6-tris­­(cyclo­hex­yl­oxy)-1,3,5-triazine

aDepartment of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland, and bSolid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012, Karnataka, India
*Correspondence e-mail: juerg.hulliger@dcb.unibe.ch

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 13 September 2015; accepted 6 October 2015; online 14 October 2015)

The title compound, C21H33N3O3, is a tri-substituted cyclo­hex­yloxy triazine. In the crystal, the triazine rings form (C3i-PU) Piedfort units. The inter-centroid distance of the ππ inter­action involving the triazine rings is 3.3914 (10) Å. In the crystal, mol­ecules are linked by C—H⋯O hydrogen bonds, forming ribbons propagating along [1-10]. There are also weak C—H⋯N and C—H⋯O contacts present, linking inversion-related ribbons, forming a three-dimensional structure.

1. Chemical content

Cyclo­hexyl derivatives are known to have applications in various fields of chemistry. The mono- and di-substituted derivatives of triazine with cyclo­hexa­nol show anti­viral activity (Mibu et al., 2013[Mibu, N., Yokomizo, K., Takemura, S., Ueki, N., Itohara, S., Zhou, J., Miyata, T. & Sumoto, K. (2013). Chem. Pharm. Bull. 61, 823-833.]), wherein cyclo­hexyl esters show the properties of traction fluids (Baldwin et al., 1997[Baldwin, C. R., Britton, M. M., Davies, S. C., Gillies, D. G., Hughes, D. L., Smith, G. W. & Sutcliffe, L. H. (1997). J. Mol. Struct. 403, 1-16.]). Partially substituted menth­oxy triazines can be used as enantio-differentiating reagents in organic synthesis (Kamiński et al., 1998[Kamiński, Z. J., Markowicz, S. W., Kolesińska, B., Martynowski, D. & Główka, M. L. (1998). Synth. Commun. 28, 2689-2696.]). The cyclo­hexyl trimer, perhydro­triphenelene (PHTP) can form inclusion compounds showing non-linear optical properties (Hoss et al., 1996[Hoss, R., König, O., Kramer-Hoss, V., Berger, P., Rogin, P. & Hulliger, J. (1996). Angew. Chem. Int. Ed. Engl. 35, 1664-1666.]). In particular, PHTP as a renowned host in the literature, forms variable inclusions with functional mol­ecules (Allegra et al., 1967[Allegra, G., Farina, M., Immirzi, A., Colombo, A., Rossi, U., Broggi, I. & Natta, G. (1967). J. Chem. Soc. B, pp. 1020-1028.]; König et al., 1997[König, O., Bürgi, H. B., Armbruster, T., Hulliger, J. & Weber, T. (1997). J. Am. Chem. Soc. 119, 10632-10640.]; Couderc & Hulliger, 2010[Couderc, G. & Hulliger, J. (2010). Chem. Soc. Rev. 39, 1545-1554.]). Most triazines also exhibit various types of inclusion properties (Süss et al., 2002[Süss, H. I., Lutz, M. & Hulliger, J. (2002). CrystEngComm, 4, 610-612.], 2005[Süss, H. I., Neels, A. & Hulliger, J. (2005). CrystEngComm, 7, 370-373.]; Reichenbächer et al., 2004[Reichenbächer, K., Süss, H. I., Stoeckli-Evans, H., Bracco, S., Sozzani, P., Weber, E. & Hulliger, J. (2004). New J. Chem. 28, 393-397.]). Thus, the title compound was synthesized to study the supra­molecular features in comparison to PHTP. Symmetrically substituted triazines with three cyclo­hexa­nol units through an oxygen linkage shows a trigonal symmetry in its trans racemic form and a planar geometry in its crystal structure. So far, the crystallization of the title compound with conventional solvents did not form any inclusions. To the best of our knowledge, this is the first tri-substituted cyclo­hex­yloxy triazine to be described.

[Scheme 1]

2. Structural commentary

The mol­ecular structure of the title compound is illustrated in Fig. 1[link]. The mol­ecule has threefold rotation symmetry, but there are small variation in the C—O—C=N torsion angles; C4—O1—C1—N1 = 3.6 (2), C10—O2—C2—N2 = −1.2 (2) and C16—O3—C3—N3 = −3.1 (2)°.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with atom labelling. Displacement ellipsoids drawn at the 50% probability level. The C—O—C=N torsion angles are C4—O1—C1—N1 = 3.6 (2), C10—O2—C2—N2 = −1.2 (2) and C16—O3—C3—N3 = −3.1 (2)°.

3. Supra­molecular features

In the crystal, mol­ecules are linked by C—H⋯O hydrogen bonds, forming ribbons propagating along [1[\overline{1}]0] (Fig. 2[link] and Table 1[link]). Inversion-related ribbons are linked by weak C—H⋯N and C—H⋯O contacts, forming a three-dimensional structure (Table 1[link]). There are Piedfort units (C3i-PU) present (Jessiman et al., 1990[Jessiman, A. S., MacNicol, D. D., Mallinson, P. R. & Vallance, I. (1990). J. Chem. Soc. Chem. Commun. pp. 1619-1621.]), as shown in Fig. 3[link]. The inter-centroid distance of the slightly slipped parallel ππ inter­action involving inversion-related triazine rings is 3.3914 (10) Å. The inter-planar distance is 3.3315 (7) Å, while the slippage is 0.634 Å. There are three C—H⋯H—C van der Waals contacts, 2.28, 2.28 and 2.37 Å (Fig. 4[link]), which are longer than those in the crystal structure of PHTP (measured 2.13, 2.14 and 2.16 Å; Harlow & Desiraju, 1990[Harlow, R. L. & Desiraju, G. R. (1990). Acta Cryst. C46, 1054-1055.]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12A⋯O1i 0.99 2.45 3.413 (2) 164
C9—H9A⋯O3ii 0.99 2.60 3.528 (2) 156
C10—H10⋯O1ii 1.00 2.95 3.787 (2) 142
C5—H5B⋯N1iii 0.99 2.77 3.684 (2) 154
Symmetry codes: (i) x-1, y-1, z; (ii) -x+2, -y+2, -z+1; (iii) -x+3, -y+2, -z+1.
[Figure 2]
Figure 2
A view along the c axis of the crystal packing of the title compound. The most significant C—H⋯O hydrogen bonds (see Table 1[link]) are shown as dashed lines, and the only H atoms shown are H12A and H9A (grey balls) for clarity.
[Figure 3]
Figure 3
A view of the Piedfort unit (C3i-PU), with the two triazine rings stacking one above the other, forming an hexa­gonal symmetry unit. The N atoms are shown as red and blue balls.
[Figure 4]
Figure 4
A view of the short C—H⋯H⋯C contacts (orange dashed lines) and some C—H⋯O hydrogen bonds (green dashed lines; see Table 1[link]) in the crystal structure of the title compound.

The perhydrogenated outer wall resembles the structural features of PHTP (pe­hydro­tri­phenyl­ene) in its crystal structure with C—H⋯H—C short contacts (Harlow & Desiraju, 1990[Harlow, R. L. & Desiraju, G. R. (1990). Acta Cryst. C46, 1054-1055.]). In comparison, PHTP is a highly symmetrical chiral mol­ecule, which is used for inclusions in its all-trans racemic form (König et al., 1997[König, O., Bürgi, H. B., Armbruster, T., Hulliger, J. & Weber, T. (1997). J. Am. Chem. Soc. 119, 10632-10640.]). Thus, the title compound is a perhydrogenated triazine analogue of PHTP. However, the triazine rings which form Piedfort units (Jessiman et al., 1990[Jessiman, A. S., MacNicol, D. D., Mallinson, P. R. & Vallance, I. (1990). J. Chem. Soc. Chem. Commun. pp. 1619-1621.]) and the C—H⋯O and C—H⋯N hydrogen bonds (Table 1[link]) contribute to the stabilization of the structure as compared to PHTP.

4. Synthesis and crystallization

Cyclo­hexa­nol (10.4 ml, 10.02 g, 100 mmol) and sodium hydride (2.88 g, 120 mmol) were taken in a round bottom flask containing 50 ml of THF at 273 K. The mixture was stirred at room temperature for 30 min, then cyanuric chloride (4.6 g, 25 mmol) was carefully added in one portion. The mixture was stirred overnight at 323 K. The solvent was then removed under reduced pressure and the oily mixture was transferred in to a separating funnel and extracted with CH2Cl2 (3 × 100 ml). Again, the solvent was removed under reduced pressure and the crude product was further purified through column chromatography (SiO2 60, eluent: diethyl ether/pentane 1:1) to yield the pure product as a white powder. Colourless prismatic crystals were obtained by isothermal evaporation of a solution in THF.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The C-bound H atoms were included in calculated positions and treated as riding atoms: C—H = 0.99–1.00 Å with Uiso(H) = 1.2Ueq(C).

Table 2
Experimental details

Crystal data
Chemical formula C21H33N3O3
Mr 375.50
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 100
a, b, c (Å) 9.7020 (2), 10.1456 (3), 11.2064 (3)
α, β, γ (°) 96.528 (2), 95.982 (2), 112.110 (2)
V3) 1002.30 (5)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.08
Crystal size (mm) 0.47 × 0.24 × 0.10
 
Data collection
Diffractometer Agilent SuperNova, Eos
Absorption correction Multi-scan (CrysAlis PRO; Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, UK.])
Tmin, Tmax 0.657, 1
No. of measured, independent and observed [I > 2σ(I)] reflections 24791, 4106, 3603
Rint 0.027
(sin θ/λ)max−1) 0.625
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.142, 1.04
No. of reflections 4106
No. of parameters 244
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.61, −0.21
Computer programs: CrysAlis PRO (Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, UK.]), SHELXS2014/7 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014/7 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), POV-RAY (POV-RAY Team, 2004[POV-RAY Team (2004). POV-RAY - The Persistance of Vision Raytracer. http://www.povray.org]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Agilent, 2014); cell refinement: CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis PRO (Agilent, 2014); program(s) used to solve structure: SHELXS2014/7 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015); molecular graphics: POV-RAY (POV-RAY Team, 2004) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2014/7 (Sheldrick, 2015) and PLATON (Spek, 2009).

2,4,6-Tris(cyclohexyloxy)-1,3,5-triazine top
Crystal data top
C21H33N3O3Z = 2
Mr = 375.50F(000) = 408
Triclinic, P1Dx = 1.244 Mg m3
a = 9.7020 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.1456 (3) ÅCell parameters from 9471 reflections
c = 11.2064 (3) Åθ = 2.2–27.7°
α = 96.528 (2)°µ = 0.08 mm1
β = 95.982 (2)°T = 100 K
γ = 112.110 (2)°Prism, colourless
V = 1002.30 (5) Å30.47 × 0.24 × 0.10 mm
Data collection top
Agilent SuperNova, Eos
diffractometer
4106 independent reflections
Radiation source: Mo X-ray Source3603 reflections with I > 2σ(I)
Detector resolution: 16.0965 pixels mm-1Rint = 0.027
ω scansθmax = 26.4°, θmin = 1.9°
Absorption correction: multi-scan
(CrysAlis Pro; Agilent, 2014)
h = 1212
Tmin = 0.657, Tmax = 1k = 1212
24791 measured reflectionsl = 1313
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.052H-atom parameters constrained
wR(F2) = 0.142 w = 1/[σ2(Fo2) + (0.0651P)2 + 0.7913P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
4106 reflectionsΔρmax = 0.61 e Å3
244 parametersΔρmin = 0.21 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C11.24843 (18)1.05014 (17)0.49190 (14)0.0195 (3)
C21.05411 (17)0.83773 (16)0.45059 (14)0.0188 (3)
C31.07636 (18)1.00085 (17)0.32811 (14)0.0194 (3)
C41.44642 (19)1.10652 (17)0.66284 (14)0.0225 (4)
H41.43721.00470.64260.027*
C51.61162 (19)1.20826 (19)0.68357 (16)0.0256 (4)
H5A1.62041.30940.69760.031*
H5B1.65691.19410.61050.031*
C61.6957 (2)1.1792 (2)0.79337 (17)0.0295 (4)
H6A1.69561.08130.77550.035*
H6B1.80181.24950.80910.035*
C71.6240 (2)1.19059 (19)0.90564 (16)0.0284 (4)
H7A1.63531.29160.92950.034*
H7B1.67651.16420.97370.034*
C81.4568 (2)1.0913 (2)0.88254 (16)0.0277 (4)
H8A1.44590.98960.86770.033*
H8B1.41141.10550.95560.033*
C91.3732 (2)1.1221 (2)0.77312 (16)0.0271 (4)
H9A1.26631.05360.75740.033*
H9B1.37631.22120.79020.033*
C100.83931 (18)0.61278 (17)0.40889 (15)0.0220 (3)
H100.78500.66960.37400.026*
C110.7472 (2)0.5209 (2)0.49280 (16)0.0293 (4)
H11A0.72680.58290.55750.035*
H11B0.80380.46970.53190.035*
C120.5979 (2)0.4112 (2)0.41799 (17)0.0330 (4)
H12A0.53750.34980.47180.040*
H12B0.53950.46300.38260.040*
C130.6271 (2)0.31714 (19)0.31667 (17)0.0317 (4)
H13A0.53000.24770.26890.038*
H13B0.68140.26180.35200.038*
C140.7213 (2)0.4114 (2)0.23329 (16)0.0297 (4)
H14A0.66430.46220.19410.036*
H14B0.74220.34980.16850.036*
C150.87075 (19)0.52219 (18)0.30727 (15)0.0243 (4)
H15A0.93110.47150.34170.029*
H15B0.92950.58510.25350.029*
C161.09447 (19)1.17766 (17)0.19788 (15)0.0219 (3)
H161.14391.24900.27430.026*
C170.9714 (2)1.2129 (2)0.13237 (19)0.0314 (4)
H17A0.89921.21630.18770.038*
H17B0.91591.13670.06120.038*
C181.0407 (2)1.3590 (2)0.09008 (19)0.0338 (4)
H18A0.96021.37880.04340.041*
H18B1.08721.43610.16200.041*
C191.1586 (2)1.36119 (19)0.01149 (16)0.0310 (4)
H19A1.20461.45820.01100.037*
H19B1.11031.29060.06430.037*
C201.2807 (2)1.3241 (2)0.07840 (19)0.0350 (4)
H20A1.33521.39950.15030.042*
H20B1.35421.32160.02410.042*
C211.2106 (2)1.17700 (19)0.11921 (17)0.0292 (4)
H21A1.16291.10060.04690.035*
H21B1.29031.15570.16530.035*
N11.18158 (15)0.92270 (14)0.52567 (12)0.0202 (3)
N20.99553 (15)0.86893 (14)0.35006 (12)0.0203 (3)
N31.20286 (15)1.09706 (14)0.39485 (12)0.0208 (3)
O11.37668 (13)1.14586 (12)0.55837 (10)0.0244 (3)
O20.98237 (13)0.71122 (12)0.48406 (10)0.0227 (3)
O31.01921 (13)1.03331 (12)0.22770 (10)0.0230 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0179 (7)0.0191 (8)0.0164 (7)0.0030 (6)0.0012 (6)0.0001 (6)
C20.0186 (7)0.0166 (7)0.0189 (7)0.0042 (6)0.0042 (6)0.0024 (6)
C30.0224 (8)0.0219 (8)0.0154 (7)0.0098 (6)0.0041 (6)0.0042 (6)
C40.0239 (8)0.0199 (8)0.0180 (8)0.0039 (7)0.0038 (6)0.0036 (6)
C50.0223 (8)0.0265 (9)0.0236 (8)0.0046 (7)0.0038 (7)0.0047 (7)
C60.0204 (8)0.0332 (10)0.0304 (9)0.0062 (7)0.0004 (7)0.0063 (7)
C70.0308 (9)0.0273 (9)0.0211 (8)0.0080 (7)0.0067 (7)0.0020 (7)
C80.0290 (9)0.0344 (10)0.0206 (8)0.0120 (8)0.0051 (7)0.0091 (7)
C90.0220 (8)0.0340 (9)0.0238 (9)0.0089 (7)0.0023 (7)0.0075 (7)
C100.0201 (8)0.0168 (8)0.0218 (8)0.0004 (6)0.0006 (6)0.0019 (6)
C110.0282 (9)0.0278 (9)0.0198 (8)0.0018 (7)0.0013 (7)0.0032 (7)
C120.0284 (9)0.0279 (9)0.0286 (9)0.0044 (7)0.0026 (7)0.0056 (7)
C130.0323 (10)0.0191 (8)0.0309 (9)0.0001 (7)0.0077 (8)0.0008 (7)
C140.0334 (10)0.0279 (9)0.0226 (8)0.0104 (8)0.0032 (7)0.0032 (7)
C150.0238 (8)0.0244 (8)0.0208 (8)0.0066 (7)0.0006 (6)0.0014 (6)
C160.0260 (8)0.0182 (8)0.0186 (8)0.0055 (6)0.0007 (6)0.0054 (6)
C170.0253 (9)0.0287 (9)0.0407 (11)0.0093 (7)0.0038 (8)0.0138 (8)
C180.0337 (10)0.0292 (10)0.0416 (11)0.0135 (8)0.0046 (8)0.0152 (8)
C190.0426 (11)0.0223 (8)0.0223 (8)0.0061 (8)0.0024 (8)0.0076 (7)
C200.0330 (10)0.0318 (10)0.0415 (11)0.0098 (8)0.0145 (8)0.0143 (8)
C210.0306 (9)0.0261 (9)0.0344 (10)0.0122 (7)0.0099 (8)0.0110 (7)
N10.0195 (7)0.0196 (7)0.0167 (6)0.0031 (5)0.0001 (5)0.0030 (5)
N20.0191 (7)0.0202 (7)0.0177 (6)0.0046 (5)0.0003 (5)0.0018 (5)
N30.0228 (7)0.0183 (7)0.0175 (7)0.0041 (6)0.0019 (5)0.0038 (5)
O10.0228 (6)0.0209 (6)0.0204 (6)0.0001 (5)0.0041 (5)0.0056 (5)
O20.0220 (6)0.0188 (6)0.0202 (6)0.0009 (5)0.0012 (4)0.0041 (4)
O30.0233 (6)0.0203 (6)0.0202 (6)0.0037 (5)0.0025 (5)0.0051 (4)
Geometric parameters (Å, º) top
C1—N11.329 (2)C11—H11A0.9900
C1—O11.3338 (19)C11—H11B0.9900
C1—N31.334 (2)C12—C131.518 (3)
C2—O21.3281 (19)C12—H12A0.9900
C2—N21.333 (2)C12—H12B0.9900
C2—N11.340 (2)C13—C141.532 (3)
C3—N31.326 (2)C13—H13A0.9900
C3—O31.3318 (19)C13—H13B0.9900
C3—N21.339 (2)C14—C151.537 (2)
C4—O11.4601 (19)C14—H14A0.9900
C4—C91.510 (2)C14—H14B0.9900
C4—C51.520 (2)C15—H15A0.9900
C4—H41.0000C15—H15B0.9900
C5—C61.524 (2)C16—O31.4652 (19)
C5—H5A0.9900C16—C211.502 (2)
C5—H5B0.9900C16—C171.514 (2)
C6—C71.513 (3)C16—H161.0000
C6—H6A0.9900C17—C181.533 (2)
C6—H6B0.9900C17—H17A0.9900
C7—C81.529 (2)C17—H17B0.9900
C7—H7A0.9900C18—C191.510 (3)
C7—H7B0.9900C18—H18A0.9900
C8—C91.526 (2)C18—H18B0.9900
C8—H8A0.9900C19—C201.524 (3)
C8—H8B0.9900C19—H19A0.9900
C9—H9A0.9900C19—H19B0.9900
C9—H9B0.9900C20—C211.535 (2)
C10—O21.4680 (18)C20—H20A0.9900
C10—C151.510 (2)C20—H20B0.9900
C10—C111.516 (2)C21—H21A0.9900
C10—H101.0000C21—H21B0.9900
C11—C121.536 (2)
N1—C1—O1119.36 (14)H12A—C12—H12B108.1
N1—C1—N3127.33 (14)C12—C13—C14109.90 (15)
O1—C1—N3113.31 (14)C12—C13—H13A109.7
O2—C2—N2119.16 (14)C14—C13—H13A109.7
O2—C2—N1114.21 (14)C12—C13—H13B109.7
N2—C2—N1126.63 (14)C14—C13—H13B109.7
N3—C3—O3119.32 (14)H13A—C13—H13B108.2
N3—C3—N2126.75 (14)C13—C14—C15110.08 (14)
O3—C3—N2113.93 (14)C13—C14—H14A109.6
O1—C4—C9111.01 (14)C15—C14—H14A109.6
O1—C4—C5105.24 (13)C13—C14—H14B109.6
C9—C4—C5111.64 (14)C15—C14—H14B109.6
O1—C4—H4109.6H14A—C14—H14B108.2
C9—C4—H4109.6C10—C15—C14109.76 (14)
C5—C4—H4109.6C10—C15—H15A109.7
C4—C5—C6109.90 (14)C14—C15—H15A109.7
C4—C5—H5A109.7C10—C15—H15B109.7
C6—C5—H5A109.7C14—C15—H15B109.7
C4—C5—H5B109.7H15A—C15—H15B108.2
C6—C5—H5B109.7O3—C16—C21109.68 (13)
H5A—C5—H5B108.2O3—C16—C17105.89 (13)
C7—C6—C5111.39 (15)C21—C16—C17111.75 (14)
C7—C6—H6A109.3O3—C16—H16109.8
C5—C6—H6A109.3C21—C16—H16109.8
C7—C6—H6B109.3C17—C16—H16109.8
C5—C6—H6B109.3C16—C17—C18109.82 (15)
H6A—C6—H6B108.0C16—C17—H17A109.7
C6—C7—C8111.16 (14)C18—C17—H17A109.7
C6—C7—H7A109.4C16—C17—H17B109.7
C8—C7—H7A109.4C18—C17—H17B109.7
C6—C7—H7B109.4H17A—C17—H17B108.2
C8—C7—H7B109.4C19—C18—C17111.37 (16)
H7A—C7—H7B108.0C19—C18—H18A109.4
C9—C8—C7111.15 (14)C17—C18—H18A109.4
C9—C8—H8A109.4C19—C18—H18B109.4
C7—C8—H8A109.4C17—C18—H18B109.4
C9—C8—H8B109.4H18A—C18—H18B108.0
C7—C8—H8B109.4C18—C19—C20110.83 (15)
H8A—C8—H8B108.0C18—C19—H19A109.5
C4—C9—C8109.41 (14)C20—C19—H19A109.5
C4—C9—H9A109.8C18—C19—H19B109.5
C8—C9—H9A109.8C20—C19—H19B109.5
C4—C9—H9B109.8H19A—C19—H19B108.1
C8—C9—H9B109.8C19—C20—C21110.28 (16)
H9A—C9—H9B108.2C19—C20—H20A109.6
O2—C10—C15109.31 (13)C21—C20—H20A109.6
O2—C10—C11106.48 (13)C19—C20—H20B109.6
C15—C10—C11111.73 (14)C21—C20—H20B109.6
O2—C10—H10109.8H20A—C20—H20B108.1
C15—C10—H10109.8C16—C21—C20110.14 (15)
C11—C10—H10109.8C16—C21—H21A109.6
C10—C11—C12108.91 (14)C20—C21—H21A109.6
C10—C11—H11A109.9C16—C21—H21B109.6
C12—C11—H11A109.9C20—C21—H21B109.6
C10—C11—H11B109.9H21A—C21—H21B108.1
C12—C11—H11B109.9C1—N1—C2112.84 (13)
H11A—C11—H11B108.3C2—N2—C3113.31 (14)
C13—C12—C11110.63 (16)C3—N3—C1113.12 (13)
C13—C12—H12A109.5C1—O1—C4119.74 (12)
C11—C12—H12A109.5C2—O2—C10117.91 (12)
C13—C12—H12B109.5C3—O3—C16118.62 (12)
C11—C12—H12B109.5
C4—O1—C1—N13.6 (2)O1—C4—C5—C6178.67 (14)
C4—O1—C1—N3175.80 (14)C9—C4—C5—C658.2 (2)
C1—O1—C4—C5157.44 (15)O1—C4—C9—C8175.68 (14)
C1—O1—C4—C981.64 (18)C5—C4—C9—C858.60 (19)
C2—O2—C10—C1587.08 (17)C4—C5—C6—C755.8 (2)
C10—O2—C2—N1178.32 (14)C5—C6—C7—C855.0 (2)
C10—O2—C2—N21.2 (2)C6—C7—C8—C955.5 (2)
C2—O2—C10—C11152.09 (15)C7—C8—C9—C456.8 (2)
C3—O3—C16—C17148.75 (15)O2—C10—C11—C12177.83 (14)
C16—O3—C3—N2177.09 (15)C11—C10—C15—C1458.48 (19)
C16—O3—C3—N33.1 (2)C15—C10—C11—C1258.6 (2)
C3—O3—C16—C2190.51 (18)O2—C10—C15—C14176.06 (13)
C2—N1—C1—O1179.98 (15)C10—C11—C12—C1358.4 (2)
C1—N1—C2—O2178.09 (15)C11—C12—C13—C1458.9 (2)
C2—N1—C1—N30.7 (3)C12—C13—C14—C1558.0 (2)
C1—N1—C2—N21.4 (3)C13—C14—C15—C1057.36 (19)
C2—N2—C3—N30.1 (3)O3—C16—C17—C18176.46 (14)
C3—N2—C2—O2178.35 (15)C21—C16—C17—C1857.1 (2)
C3—N2—C2—N11.1 (3)O3—C16—C21—C20175.18 (14)
C2—N2—C3—O3179.86 (14)C17—C16—C21—C2058.1 (2)
C1—N3—C3—O3179.28 (15)C16—C17—C18—C1955.9 (2)
C3—N3—C1—N10.2 (3)C17—C18—C19—C2056.4 (2)
C3—N3—C1—O1179.16 (15)C18—C19—C20—C2156.6 (2)
C1—N3—C3—N20.5 (3)C19—C20—C21—C1657.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12A···O1i0.992.453.413 (2)164
C9—H9A···O3ii0.992.603.528 (2)156
C10—H10···O1ii1.002.953.787 (2)142
C5—H5B···N1iii0.992.773.684 (2)154
Symmetry codes: (i) x1, y1, z; (ii) x+2, y+2, z+1; (iii) x+3, y+2, z+1.
 

Acknowledgements

This work was supported by the Swiss National Science Foundation through the Indo-Swiss Joint Research Program (project number ISJRP 138 860).

References

First citationAgilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, UK.  Google Scholar
First citationAllegra, G., Farina, M., Immirzi, A., Colombo, A., Rossi, U., Broggi, I. & Natta, G. (1967). J. Chem. Soc. B, pp. 1020–1028.  Google Scholar
First citationBaldwin, C. R., Britton, M. M., Davies, S. C., Gillies, D. G., Hughes, D. L., Smith, G. W. & Sutcliffe, L. H. (1997). J. Mol. Struct. 403, 1–16.  CSD CrossRef CAS Web of Science Google Scholar
First citationCouderc, G. & Hulliger, J. (2010). Chem. Soc. Rev. 39, 1545–1554.  Web of Science CrossRef CAS PubMed Google Scholar
First citationHarlow, R. L. & Desiraju, G. R. (1990). Acta Cryst. C46, 1054–1055.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHoss, R., König, O., Kramer-Hoss, V., Berger, P., Rogin, P. & Hulliger, J. (1996). Angew. Chem. Int. Ed. Engl. 35, 1664–1666.  CrossRef CAS Web of Science Google Scholar
First citationJessiman, A. S., MacNicol, D. D., Mallinson, P. R. & Vallance, I. (1990). J. Chem. Soc. Chem. Commun. pp. 1619–1621.  CrossRef Web of Science Google Scholar
First citationKamiński, Z. J., Markowicz, S. W., Kolesińska, B., Martynowski, D. & Główka, M. L. (1998). Synth. Commun. 28, 2689–2696.  Google Scholar
First citationKönig, O., Bürgi, H. B., Armbruster, T., Hulliger, J. & Weber, T. (1997). J. Am. Chem. Soc. 119, 10632–10640.  CSD CrossRef Web of Science Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMibu, N., Yokomizo, K., Takemura, S., Ueki, N., Itohara, S., Zhou, J., Miyata, T. & Sumoto, K. (2013). Chem. Pharm. Bull. 61, 823–833.  CrossRef CAS PubMed Google Scholar
First citationPOV-RAY Team (2004). POV-RAY – The Persistance of Vision Raytracer. http://www.povray.org  Google Scholar
First citationReichenbächer, K., Süss, H. I., Stoeckli-Evans, H., Bracco, S., Sozzani, P., Weber, E. & Hulliger, J. (2004). New J. Chem. 28, 393–397.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSüss, H. I., Lutz, M. & Hulliger, J. (2002). CrystEngComm, 4, 610–612.  Google Scholar
First citationSüss, H. I., Neels, A. & Hulliger, J. (2005). CrystEngComm, 7, 370–373.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds