research communications
of 2,4,6-tris(cyclohexyloxy)-1,3,5-triazine
aDepartment of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland, and bSolid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012, Karnataka, India
*Correspondence e-mail: juerg.hulliger@dcb.unibe.ch
The title compound, C21H33N3O3, is a tri-substituted cyclohexyloxy triazine. In the crystal, the triazine rings form (C3i-PU) Piedfort units. The inter-centroid distance of the π–π interaction involving the triazine rings is 3.3914 (10) Å. In the crystal, molecules are linked by C—H⋯O hydrogen bonds, forming ribbons propagating along [1-10]. There are also weak C—H⋯N and C—H⋯O contacts present, linking inversion-related ribbons, forming a three-dimensional structure.
Keywords: crystal structure; triazine; cyclohexanol; channel inclusion; Piedfort units; hydrogen bonding.
CCDC reference: 1430153
1. Chemical content
Cyclohexyl derivatives are known to have applications in various fields of chemistry. The mono- and di-substituted derivatives of triazine with cyclohexanol show antiviral activity (Mibu et al., 2013), wherein cyclohexyl show the properties of traction fluids (Baldwin et al., 1997). Partially substituted menthoxy triazines can be used as enantio-differentiating reagents in organic synthesis (Kamiński et al., 1998). The cyclohexyl trimer, perhydrotriphenelene (PHTP) can form inclusion compounds showing non-linear optical properties (Hoss et al., 1996). In particular, PHTP as a renowned host in the literature, forms variable inclusions with functional molecules (Allegra et al., 1967; König et al., 1997; Couderc & Hulliger, 2010). Most triazines also exhibit various types of inclusion properties (Süss et al., 2002, 2005; Reichenbächer et al., 2004). Thus, the title compound was synthesized to study the supramolecular features in comparison to PHTP. Symmetrically substituted triazines with three cyclohexanol units through an oxygen linkage shows a trigonal symmetry in its trans racemic form and a planar geometry in its So far, the crystallization of the title compound with conventional solvents did not form any inclusions. To the best of our knowledge, this is the first tri-substituted cyclohexyloxy triazine to be described.
2. Structural commentary
The molecular structure of the title compound is illustrated in Fig. 1. The molecule has threefold rotation symmetry, but there are small variation in the C—O—C=N torsion angles; C4—O1—C1—N1 = 3.6 (2), C10—O2—C2—N2 = −1.2 (2) and C16—O3—C3—N3 = −3.1 (2)°.
3. Supramolecular features
In the crystal, molecules are linked by C—H⋯O hydrogen bonds, forming ribbons propagating along [10] (Fig. 2 and Table 1). Inversion-related ribbons are linked by weak C—H⋯N and C—H⋯O contacts, forming a three-dimensional structure (Table 1). There are Piedfort units (C3i-PU) present (Jessiman et al., 1990), as shown in Fig. 3. The inter-centroid distance of the slightly slipped parallel π–π interaction involving inversion-related triazine rings is 3.3914 (10) Å. The inter-planar distance is 3.3315 (7) Å, while the slippage is 0.634 Å. There are three C—H⋯H—C van der Waals contacts, 2.28, 2.28 and 2.37 Å (Fig. 4), which are longer than those in the of PHTP (measured 2.13, 2.14 and 2.16 Å; Harlow & Desiraju, 1990).
The perhydrogenated outer wall resembles the structural features of PHTP (pehydrotriphenylene) in its ). In comparison, PHTP is a highly symmetrical chiral molecule, which is used for inclusions in its all-trans racemic form (König et al., 1997). Thus, the title compound is a perhydrogenated triazine analogue of PHTP. However, the triazine rings which form Piedfort units (Jessiman et al., 1990) and the C—H⋯O and C—H⋯N hydrogen bonds (Table 1) contribute to the stabilization of the structure as compared to PHTP.
with C—H⋯H—C short contacts (Harlow & Desiraju, 19904. Synthesis and crystallization
Cyclohexanol (10.4 ml, 10.02 g, 100 mmol) and sodium hydride (2.88 g, 120 mmol) were taken in a round bottom flask containing 50 ml of THF at 273 K. The mixture was stirred at room temperature for 30 min, then cyanuric chloride (4.6 g, 25 mmol) was carefully added in one portion. The mixture was stirred overnight at 323 K. The solvent was then removed under reduced pressure and the oily mixture was transferred in to a separating funnel and extracted with CH2Cl2 (3 × 100 ml). Again, the solvent was removed under reduced pressure and the crude product was further purified through (SiO2 60, diethyl ether/pentane 1:1) to yield the pure product as a white powder. Colourless prismatic crystals were obtained by isothermal evaporation of a solution in THF.
5. Refinement
Crystal data, data collection and structure . The C-bound H atoms were included in calculated positions and treated as riding atoms: C—H = 0.99–1.00 Å with Uiso(H) = 1.2Ueq(C).
details are summarized in Table 2
|
Supporting information
CCDC reference: 1430153
https://doi.org/10.1107/S2056989015018782/su5213sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989015018782/su5213Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989015018782/su5213Isup3.cml
Data collection: CrysAlis PRO (Agilent, 2014); cell
CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis PRO (Agilent, 2014); program(s) used to solve structure: SHELXS2014/7 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015); molecular graphics: POV-RAY (POV-RAY Team, 2004) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2014/7 (Sheldrick, 2015) and PLATON (Spek, 2009).C21H33N3O3 | Z = 2 |
Mr = 375.50 | F(000) = 408 |
Triclinic, P1 | Dx = 1.244 Mg m−3 |
a = 9.7020 (2) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 10.1456 (3) Å | Cell parameters from 9471 reflections |
c = 11.2064 (3) Å | θ = 2.2–27.7° |
α = 96.528 (2)° | µ = 0.08 mm−1 |
β = 95.982 (2)° | T = 100 K |
γ = 112.110 (2)° | Prism, colourless |
V = 1002.30 (5) Å3 | 0.47 × 0.24 × 0.10 mm |
Agilent SuperNova, Eos diffractometer | 4106 independent reflections |
Radiation source: Mo X-ray Source | 3603 reflections with I > 2σ(I) |
Detector resolution: 16.0965 pixels mm-1 | Rint = 0.027 |
ω scans | θmax = 26.4°, θmin = 1.9° |
Absorption correction: multi-scan (CrysAlis Pro; Agilent, 2014) | h = −12→12 |
Tmin = 0.657, Tmax = 1 | k = −12→12 |
24791 measured reflections | l = −13→13 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.052 | H-atom parameters constrained |
wR(F2) = 0.142 | w = 1/[σ2(Fo2) + (0.0651P)2 + 0.7913P] where P = (Fo2 + 2Fc2)/3 |
S = 1.04 | (Δ/σ)max < 0.001 |
4106 reflections | Δρmax = 0.61 e Å−3 |
244 parameters | Δρmin = −0.21 e Å−3 |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | 1.24843 (18) | 1.05014 (17) | 0.49190 (14) | 0.0195 (3) | |
C2 | 1.05411 (17) | 0.83773 (16) | 0.45059 (14) | 0.0188 (3) | |
C3 | 1.07636 (18) | 1.00085 (17) | 0.32811 (14) | 0.0194 (3) | |
C4 | 1.44642 (19) | 1.10652 (17) | 0.66284 (14) | 0.0225 (4) | |
H4 | 1.4372 | 1.0047 | 0.6426 | 0.027* | |
C5 | 1.61162 (19) | 1.20826 (19) | 0.68357 (16) | 0.0256 (4) | |
H5A | 1.6204 | 1.3094 | 0.6976 | 0.031* | |
H5B | 1.6569 | 1.1941 | 0.6105 | 0.031* | |
C6 | 1.6957 (2) | 1.1792 (2) | 0.79337 (17) | 0.0295 (4) | |
H6A | 1.6956 | 1.0813 | 0.7755 | 0.035* | |
H6B | 1.8018 | 1.2495 | 0.8091 | 0.035* | |
C7 | 1.6240 (2) | 1.19059 (19) | 0.90564 (16) | 0.0284 (4) | |
H7A | 1.6353 | 1.2916 | 0.9295 | 0.034* | |
H7B | 1.6765 | 1.1642 | 0.9737 | 0.034* | |
C8 | 1.4568 (2) | 1.0913 (2) | 0.88254 (16) | 0.0277 (4) | |
H8A | 1.4459 | 0.9896 | 0.8677 | 0.033* | |
H8B | 1.4114 | 1.1055 | 0.9556 | 0.033* | |
C9 | 1.3732 (2) | 1.1221 (2) | 0.77312 (16) | 0.0271 (4) | |
H9A | 1.2663 | 1.0536 | 0.7574 | 0.033* | |
H9B | 1.3763 | 1.2212 | 0.7902 | 0.033* | |
C10 | 0.83931 (18) | 0.61278 (17) | 0.40889 (15) | 0.0220 (3) | |
H10 | 0.7850 | 0.6696 | 0.3740 | 0.026* | |
C11 | 0.7472 (2) | 0.5209 (2) | 0.49280 (16) | 0.0293 (4) | |
H11A | 0.7268 | 0.5829 | 0.5575 | 0.035* | |
H11B | 0.8038 | 0.4697 | 0.5319 | 0.035* | |
C12 | 0.5979 (2) | 0.4112 (2) | 0.41799 (17) | 0.0330 (4) | |
H12A | 0.5375 | 0.3498 | 0.4718 | 0.040* | |
H12B | 0.5395 | 0.4630 | 0.3826 | 0.040* | |
C13 | 0.6271 (2) | 0.31714 (19) | 0.31667 (17) | 0.0317 (4) | |
H13A | 0.5300 | 0.2477 | 0.2689 | 0.038* | |
H13B | 0.6814 | 0.2618 | 0.3520 | 0.038* | |
C14 | 0.7213 (2) | 0.4114 (2) | 0.23329 (16) | 0.0297 (4) | |
H14A | 0.6643 | 0.4622 | 0.1941 | 0.036* | |
H14B | 0.7422 | 0.3498 | 0.1685 | 0.036* | |
C15 | 0.87075 (19) | 0.52219 (18) | 0.30727 (15) | 0.0243 (4) | |
H15A | 0.9311 | 0.4715 | 0.3417 | 0.029* | |
H15B | 0.9295 | 0.5851 | 0.2535 | 0.029* | |
C16 | 1.09447 (19) | 1.17766 (17) | 0.19788 (15) | 0.0219 (3) | |
H16 | 1.1439 | 1.2490 | 0.2743 | 0.026* | |
C17 | 0.9714 (2) | 1.2129 (2) | 0.13237 (19) | 0.0314 (4) | |
H17A | 0.8992 | 1.2163 | 0.1877 | 0.038* | |
H17B | 0.9159 | 1.1367 | 0.0612 | 0.038* | |
C18 | 1.0407 (2) | 1.3590 (2) | 0.09008 (19) | 0.0338 (4) | |
H18A | 0.9602 | 1.3788 | 0.0434 | 0.041* | |
H18B | 1.0872 | 1.4361 | 0.1620 | 0.041* | |
C19 | 1.1586 (2) | 1.36119 (19) | 0.01149 (16) | 0.0310 (4) | |
H19A | 1.2046 | 1.4582 | −0.0110 | 0.037* | |
H19B | 1.1103 | 1.2906 | −0.0643 | 0.037* | |
C20 | 1.2807 (2) | 1.3241 (2) | 0.07840 (19) | 0.0350 (4) | |
H20A | 1.3352 | 1.3995 | 0.1503 | 0.042* | |
H20B | 1.3542 | 1.3216 | 0.0241 | 0.042* | |
C21 | 1.2106 (2) | 1.17700 (19) | 0.11921 (17) | 0.0292 (4) | |
H21A | 1.1629 | 1.1006 | 0.0469 | 0.035* | |
H21B | 1.2903 | 1.1557 | 0.1653 | 0.035* | |
N1 | 1.18158 (15) | 0.92270 (14) | 0.52567 (12) | 0.0202 (3) | |
N2 | 0.99553 (15) | 0.86893 (14) | 0.35006 (12) | 0.0203 (3) | |
N3 | 1.20286 (15) | 1.09706 (14) | 0.39485 (12) | 0.0208 (3) | |
O1 | 1.37668 (13) | 1.14586 (12) | 0.55837 (10) | 0.0244 (3) | |
O2 | 0.98237 (13) | 0.71122 (12) | 0.48406 (10) | 0.0227 (3) | |
O3 | 1.01921 (13) | 1.03331 (12) | 0.22770 (10) | 0.0230 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0179 (7) | 0.0191 (8) | 0.0164 (7) | 0.0030 (6) | 0.0012 (6) | −0.0001 (6) |
C2 | 0.0186 (7) | 0.0166 (7) | 0.0189 (7) | 0.0042 (6) | 0.0042 (6) | 0.0024 (6) |
C3 | 0.0224 (8) | 0.0219 (8) | 0.0154 (7) | 0.0098 (6) | 0.0041 (6) | 0.0042 (6) |
C4 | 0.0239 (8) | 0.0199 (8) | 0.0180 (8) | 0.0039 (7) | −0.0038 (6) | 0.0036 (6) |
C5 | 0.0223 (8) | 0.0265 (9) | 0.0236 (8) | 0.0046 (7) | 0.0038 (7) | 0.0047 (7) |
C6 | 0.0204 (8) | 0.0332 (10) | 0.0304 (9) | 0.0062 (7) | −0.0004 (7) | 0.0063 (7) |
C7 | 0.0308 (9) | 0.0273 (9) | 0.0211 (8) | 0.0080 (7) | −0.0067 (7) | 0.0020 (7) |
C8 | 0.0290 (9) | 0.0344 (10) | 0.0206 (8) | 0.0120 (8) | 0.0051 (7) | 0.0091 (7) |
C9 | 0.0220 (8) | 0.0340 (9) | 0.0238 (9) | 0.0089 (7) | 0.0023 (7) | 0.0075 (7) |
C10 | 0.0201 (8) | 0.0168 (8) | 0.0218 (8) | 0.0004 (6) | 0.0006 (6) | 0.0019 (6) |
C11 | 0.0282 (9) | 0.0278 (9) | 0.0198 (8) | −0.0018 (7) | 0.0013 (7) | 0.0032 (7) |
C12 | 0.0284 (9) | 0.0279 (9) | 0.0286 (9) | −0.0044 (7) | 0.0026 (7) | 0.0056 (7) |
C13 | 0.0323 (10) | 0.0191 (8) | 0.0309 (9) | −0.0001 (7) | −0.0077 (8) | 0.0008 (7) |
C14 | 0.0334 (10) | 0.0279 (9) | 0.0226 (8) | 0.0104 (8) | −0.0032 (7) | −0.0032 (7) |
C15 | 0.0238 (8) | 0.0244 (8) | 0.0208 (8) | 0.0066 (7) | 0.0006 (6) | 0.0014 (6) |
C16 | 0.0260 (8) | 0.0182 (8) | 0.0186 (8) | 0.0055 (6) | 0.0007 (6) | 0.0054 (6) |
C17 | 0.0253 (9) | 0.0287 (9) | 0.0407 (11) | 0.0093 (7) | 0.0038 (8) | 0.0138 (8) |
C18 | 0.0337 (10) | 0.0292 (10) | 0.0416 (11) | 0.0135 (8) | 0.0046 (8) | 0.0152 (8) |
C19 | 0.0426 (11) | 0.0223 (8) | 0.0223 (8) | 0.0061 (8) | 0.0024 (8) | 0.0076 (7) |
C20 | 0.0330 (10) | 0.0318 (10) | 0.0415 (11) | 0.0098 (8) | 0.0145 (8) | 0.0143 (8) |
C21 | 0.0306 (9) | 0.0261 (9) | 0.0344 (10) | 0.0122 (7) | 0.0099 (8) | 0.0110 (7) |
N1 | 0.0195 (7) | 0.0196 (7) | 0.0167 (6) | 0.0031 (5) | −0.0001 (5) | 0.0030 (5) |
N2 | 0.0191 (7) | 0.0202 (7) | 0.0177 (6) | 0.0046 (5) | 0.0003 (5) | 0.0018 (5) |
N3 | 0.0228 (7) | 0.0183 (7) | 0.0175 (7) | 0.0041 (6) | 0.0019 (5) | 0.0038 (5) |
O1 | 0.0228 (6) | 0.0209 (6) | 0.0204 (6) | −0.0001 (5) | −0.0041 (5) | 0.0056 (5) |
O2 | 0.0220 (6) | 0.0188 (6) | 0.0202 (6) | 0.0009 (5) | −0.0012 (4) | 0.0041 (4) |
O3 | 0.0233 (6) | 0.0203 (6) | 0.0202 (6) | 0.0037 (5) | −0.0025 (5) | 0.0051 (4) |
C1—N1 | 1.329 (2) | C11—H11A | 0.9900 |
C1—O1 | 1.3338 (19) | C11—H11B | 0.9900 |
C1—N3 | 1.334 (2) | C12—C13 | 1.518 (3) |
C2—O2 | 1.3281 (19) | C12—H12A | 0.9900 |
C2—N2 | 1.333 (2) | C12—H12B | 0.9900 |
C2—N1 | 1.340 (2) | C13—C14 | 1.532 (3) |
C3—N3 | 1.326 (2) | C13—H13A | 0.9900 |
C3—O3 | 1.3318 (19) | C13—H13B | 0.9900 |
C3—N2 | 1.339 (2) | C14—C15 | 1.537 (2) |
C4—O1 | 1.4601 (19) | C14—H14A | 0.9900 |
C4—C9 | 1.510 (2) | C14—H14B | 0.9900 |
C4—C5 | 1.520 (2) | C15—H15A | 0.9900 |
C4—H4 | 1.0000 | C15—H15B | 0.9900 |
C5—C6 | 1.524 (2) | C16—O3 | 1.4652 (19) |
C5—H5A | 0.9900 | C16—C21 | 1.502 (2) |
C5—H5B | 0.9900 | C16—C17 | 1.514 (2) |
C6—C7 | 1.513 (3) | C16—H16 | 1.0000 |
C6—H6A | 0.9900 | C17—C18 | 1.533 (2) |
C6—H6B | 0.9900 | C17—H17A | 0.9900 |
C7—C8 | 1.529 (2) | C17—H17B | 0.9900 |
C7—H7A | 0.9900 | C18—C19 | 1.510 (3) |
C7—H7B | 0.9900 | C18—H18A | 0.9900 |
C8—C9 | 1.526 (2) | C18—H18B | 0.9900 |
C8—H8A | 0.9900 | C19—C20 | 1.524 (3) |
C8—H8B | 0.9900 | C19—H19A | 0.9900 |
C9—H9A | 0.9900 | C19—H19B | 0.9900 |
C9—H9B | 0.9900 | C20—C21 | 1.535 (2) |
C10—O2 | 1.4680 (18) | C20—H20A | 0.9900 |
C10—C15 | 1.510 (2) | C20—H20B | 0.9900 |
C10—C11 | 1.516 (2) | C21—H21A | 0.9900 |
C10—H10 | 1.0000 | C21—H21B | 0.9900 |
C11—C12 | 1.536 (2) | ||
N1—C1—O1 | 119.36 (14) | H12A—C12—H12B | 108.1 |
N1—C1—N3 | 127.33 (14) | C12—C13—C14 | 109.90 (15) |
O1—C1—N3 | 113.31 (14) | C12—C13—H13A | 109.7 |
O2—C2—N2 | 119.16 (14) | C14—C13—H13A | 109.7 |
O2—C2—N1 | 114.21 (14) | C12—C13—H13B | 109.7 |
N2—C2—N1 | 126.63 (14) | C14—C13—H13B | 109.7 |
N3—C3—O3 | 119.32 (14) | H13A—C13—H13B | 108.2 |
N3—C3—N2 | 126.75 (14) | C13—C14—C15 | 110.08 (14) |
O3—C3—N2 | 113.93 (14) | C13—C14—H14A | 109.6 |
O1—C4—C9 | 111.01 (14) | C15—C14—H14A | 109.6 |
O1—C4—C5 | 105.24 (13) | C13—C14—H14B | 109.6 |
C9—C4—C5 | 111.64 (14) | C15—C14—H14B | 109.6 |
O1—C4—H4 | 109.6 | H14A—C14—H14B | 108.2 |
C9—C4—H4 | 109.6 | C10—C15—C14 | 109.76 (14) |
C5—C4—H4 | 109.6 | C10—C15—H15A | 109.7 |
C4—C5—C6 | 109.90 (14) | C14—C15—H15A | 109.7 |
C4—C5—H5A | 109.7 | C10—C15—H15B | 109.7 |
C6—C5—H5A | 109.7 | C14—C15—H15B | 109.7 |
C4—C5—H5B | 109.7 | H15A—C15—H15B | 108.2 |
C6—C5—H5B | 109.7 | O3—C16—C21 | 109.68 (13) |
H5A—C5—H5B | 108.2 | O3—C16—C17 | 105.89 (13) |
C7—C6—C5 | 111.39 (15) | C21—C16—C17 | 111.75 (14) |
C7—C6—H6A | 109.3 | O3—C16—H16 | 109.8 |
C5—C6—H6A | 109.3 | C21—C16—H16 | 109.8 |
C7—C6—H6B | 109.3 | C17—C16—H16 | 109.8 |
C5—C6—H6B | 109.3 | C16—C17—C18 | 109.82 (15) |
H6A—C6—H6B | 108.0 | C16—C17—H17A | 109.7 |
C6—C7—C8 | 111.16 (14) | C18—C17—H17A | 109.7 |
C6—C7—H7A | 109.4 | C16—C17—H17B | 109.7 |
C8—C7—H7A | 109.4 | C18—C17—H17B | 109.7 |
C6—C7—H7B | 109.4 | H17A—C17—H17B | 108.2 |
C8—C7—H7B | 109.4 | C19—C18—C17 | 111.37 (16) |
H7A—C7—H7B | 108.0 | C19—C18—H18A | 109.4 |
C9—C8—C7 | 111.15 (14) | C17—C18—H18A | 109.4 |
C9—C8—H8A | 109.4 | C19—C18—H18B | 109.4 |
C7—C8—H8A | 109.4 | C17—C18—H18B | 109.4 |
C9—C8—H8B | 109.4 | H18A—C18—H18B | 108.0 |
C7—C8—H8B | 109.4 | C18—C19—C20 | 110.83 (15) |
H8A—C8—H8B | 108.0 | C18—C19—H19A | 109.5 |
C4—C9—C8 | 109.41 (14) | C20—C19—H19A | 109.5 |
C4—C9—H9A | 109.8 | C18—C19—H19B | 109.5 |
C8—C9—H9A | 109.8 | C20—C19—H19B | 109.5 |
C4—C9—H9B | 109.8 | H19A—C19—H19B | 108.1 |
C8—C9—H9B | 109.8 | C19—C20—C21 | 110.28 (16) |
H9A—C9—H9B | 108.2 | C19—C20—H20A | 109.6 |
O2—C10—C15 | 109.31 (13) | C21—C20—H20A | 109.6 |
O2—C10—C11 | 106.48 (13) | C19—C20—H20B | 109.6 |
C15—C10—C11 | 111.73 (14) | C21—C20—H20B | 109.6 |
O2—C10—H10 | 109.8 | H20A—C20—H20B | 108.1 |
C15—C10—H10 | 109.8 | C16—C21—C20 | 110.14 (15) |
C11—C10—H10 | 109.8 | C16—C21—H21A | 109.6 |
C10—C11—C12 | 108.91 (14) | C20—C21—H21A | 109.6 |
C10—C11—H11A | 109.9 | C16—C21—H21B | 109.6 |
C12—C11—H11A | 109.9 | C20—C21—H21B | 109.6 |
C10—C11—H11B | 109.9 | H21A—C21—H21B | 108.1 |
C12—C11—H11B | 109.9 | C1—N1—C2 | 112.84 (13) |
H11A—C11—H11B | 108.3 | C2—N2—C3 | 113.31 (14) |
C13—C12—C11 | 110.63 (16) | C3—N3—C1 | 113.12 (13) |
C13—C12—H12A | 109.5 | C1—O1—C4 | 119.74 (12) |
C11—C12—H12A | 109.5 | C2—O2—C10 | 117.91 (12) |
C13—C12—H12B | 109.5 | C3—O3—C16 | 118.62 (12) |
C11—C12—H12B | 109.5 | ||
C4—O1—C1—N1 | 3.6 (2) | O1—C4—C5—C6 | 178.67 (14) |
C4—O1—C1—N3 | −175.80 (14) | C9—C4—C5—C6 | 58.2 (2) |
C1—O1—C4—C5 | 157.44 (15) | O1—C4—C9—C8 | −175.68 (14) |
C1—O1—C4—C9 | −81.64 (18) | C5—C4—C9—C8 | −58.60 (19) |
C2—O2—C10—C15 | 87.08 (17) | C4—C5—C6—C7 | −55.8 (2) |
C10—O2—C2—N1 | 178.32 (14) | C5—C6—C7—C8 | 55.0 (2) |
C10—O2—C2—N2 | −1.2 (2) | C6—C7—C8—C9 | −55.5 (2) |
C2—O2—C10—C11 | −152.09 (15) | C7—C8—C9—C4 | 56.8 (2) |
C3—O3—C16—C17 | −148.75 (15) | O2—C10—C11—C12 | −177.83 (14) |
C16—O3—C3—N2 | 177.09 (15) | C11—C10—C15—C14 | 58.48 (19) |
C16—O3—C3—N3 | −3.1 (2) | C15—C10—C11—C12 | −58.6 (2) |
C3—O3—C16—C21 | 90.51 (18) | O2—C10—C15—C14 | 176.06 (13) |
C2—N1—C1—O1 | −179.98 (15) | C10—C11—C12—C13 | 58.4 (2) |
C1—N1—C2—O2 | −178.09 (15) | C11—C12—C13—C14 | −58.9 (2) |
C2—N1—C1—N3 | −0.7 (3) | C12—C13—C14—C15 | 58.0 (2) |
C1—N1—C2—N2 | 1.4 (3) | C13—C14—C15—C10 | −57.36 (19) |
C2—N2—C3—N3 | 0.1 (3) | O3—C16—C17—C18 | −176.46 (14) |
C3—N2—C2—O2 | 178.35 (15) | C21—C16—C17—C18 | −57.1 (2) |
C3—N2—C2—N1 | −1.1 (3) | O3—C16—C21—C20 | 175.18 (14) |
C2—N2—C3—O3 | 179.86 (14) | C17—C16—C21—C20 | 58.1 (2) |
C1—N3—C3—O3 | −179.28 (15) | C16—C17—C18—C19 | 55.9 (2) |
C3—N3—C1—N1 | −0.2 (3) | C17—C18—C19—C20 | −56.4 (2) |
C3—N3—C1—O1 | 179.16 (15) | C18—C19—C20—C21 | 56.6 (2) |
C1—N3—C3—N2 | 0.5 (3) | C19—C20—C21—C16 | −57.1 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
C12—H12A···O1i | 0.99 | 2.45 | 3.413 (2) | 164 |
C9—H9A···O3ii | 0.99 | 2.60 | 3.528 (2) | 156 |
C10—H10···O1ii | 1.00 | 2.95 | 3.787 (2) | 142 |
C5—H5B···N1iii | 0.99 | 2.77 | 3.684 (2) | 154 |
Symmetry codes: (i) x−1, y−1, z; (ii) −x+2, −y+2, −z+1; (iii) −x+3, −y+2, −z+1. |
Acknowledgements
This work was supported by the Swiss National Science Foundation through the Indo-Swiss Joint Research Program (project number ISJRP 138 860).
References
Agilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, UK. Google Scholar
Allegra, G., Farina, M., Immirzi, A., Colombo, A., Rossi, U., Broggi, I. & Natta, G. (1967). J. Chem. Soc. B, pp. 1020–1028. Google Scholar
Baldwin, C. R., Britton, M. M., Davies, S. C., Gillies, D. G., Hughes, D. L., Smith, G. W. & Sutcliffe, L. H. (1997). J. Mol. Struct. 403, 1–16. CSD CrossRef CAS Web of Science Google Scholar
Couderc, G. & Hulliger, J. (2010). Chem. Soc. Rev. 39, 1545–1554. Web of Science CrossRef CAS PubMed Google Scholar
Harlow, R. L. & Desiraju, G. R. (1990). Acta Cryst. C46, 1054–1055. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Hoss, R., König, O., Kramer-Hoss, V., Berger, P., Rogin, P. & Hulliger, J. (1996). Angew. Chem. Int. Ed. Engl. 35, 1664–1666. CrossRef CAS Web of Science Google Scholar
Jessiman, A. S., MacNicol, D. D., Mallinson, P. R. & Vallance, I. (1990). J. Chem. Soc. Chem. Commun. pp. 1619–1621. CrossRef Web of Science Google Scholar
Kamiński, Z. J., Markowicz, S. W., Kolesińska, B., Martynowski, D. & Główka, M. L. (1998). Synth. Commun. 28, 2689–2696. Google Scholar
König, O., Bürgi, H. B., Armbruster, T., Hulliger, J. & Weber, T. (1997). J. Am. Chem. Soc. 119, 10632–10640. CSD CrossRef Web of Science Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Mibu, N., Yokomizo, K., Takemura, S., Ueki, N., Itohara, S., Zhou, J., Miyata, T. & Sumoto, K. (2013). Chem. Pharm. Bull. 61, 823–833. CrossRef CAS PubMed Google Scholar
POV-RAY Team (2004). POV-RAY – The Persistance of Vision Raytracer. http://www.povray.org Google Scholar
Reichenbächer, K., Süss, H. I., Stoeckli-Evans, H., Bracco, S., Sozzani, P., Weber, E. & Hulliger, J. (2004). New J. Chem. 28, 393–397. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Süss, H. I., Lutz, M. & Hulliger, J. (2002). CrystEngComm, 4, 610–612. Google Scholar
Süss, H. I., Neels, A. & Hulliger, J. (2005). CrystEngComm, 7, 370–373. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.