organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of (2E)-1-(1-benzo­furan-2-yl)-3-(2-bromo­phen­yl)prop-2-en-1-one monohydrate

aDepartment of Physics, S. D. M College (Autonomous), Ujire 574 240, India
*Correspondence e-mail: ssatheeshchandra@rediffmail.com

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 15 September 2015; accepted 7 October 2015; online 14 October 2015)

The title compound, C17H11BrO2·H2O, crystallizes as a monohydrate in the chiral ortho­rhom­bic space group P212121, and has non-linear optical (NLO) properties. The mol­ecule has an E conformation about the C=C bond and is relatively planar with the benzo­furan and bromo­phenyl rings being inclined to one another by 10.60 (14)°. In the crystal, the water mol­ecule is linked to the organic mol­ecule by O—H⋯O hydrogen bonds, forming an R22(7) ring motif while C—H⋯O hydrogen bonds lead to the formation of helices along the b-axis direction.

1. Related literature

For background to chalcones and their biological and other properties, see: Choudary et al. (1999[Choudary, B. M., Lakshmi Kantam, M., Venkat Reddy, C. R., Koteswara Rao, K. & Figueras, F. (1999). J. Mol. Catal. A Chem. 146, 279-284.]); Jayarama et al. (2013[Jayarama, A., Ravindra, H. J., Menezes, A. P., Dharmaprakash, S. M. & Ng, S. W. (2013). J. Mol. Catal. A Chem. 1051, 285-291.]); Tomazela et al. (2000[Tomazela, D. M., Pupo, M. T., Passador, E. A. P., da Silva, M. F. das G. F., Vieira, P. C., Fernandes, J. B., Fo, E. R., Oliva, G. & Pirani, J. R. (2000). Phytochemistry, 55, 643-651.]); Gu et al. (2008[Gu, B., Ji, W., Patil, P. S. & Dharmaprakash, S. M. (2008). J. Appl. Phys. 103, 103511-103516.]). For the crystal structure of a similar compound, see: Benmekhbi et al. (2009[Benmekhbi, L., Belhouas, R., Bouacida, S., Mosbah, S. & Bencharif, L. (2009). Acta Cryst. E65, o1472-o1473.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C17H11BrO2·H2O

  • Mr = 345.18

  • Orthorhombic, P 21 21 21

  • a = 4.8614 (4) Å

  • b = 13.8220 (15) Å

  • c = 21.755 (2) Å

  • V = 1461.8 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.82 mm−1

  • T = 296 K

  • 0.40 × 0.30 × 0.25 mm

2.2. Data collection

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.399, Tmax = 0.539

  • 3636 measured reflections

  • 3636 independent reflections

  • 2134 reflections with I > 2σ(I)

  • Rint = 0.034

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.102

  • S = 1.01

  • 3636 reflections

  • 196 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.29 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1497 Friedel pairs

  • Absolute structure parameter: −0.011 (11)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1S—H1SA⋯O1 0.96 (2) 2.37 (4) 3.181 (4) 142 (4)
O1S—H1SB⋯O2 0.95 (2) 2.11 (4) 2.928 (4) 143 (4)
C7—H7⋯O1Si 0.93 2.32 3.229 (5) 164
C10—H10⋯O1Si 0.93 2.45 3.375 (5) 174
Symmetry code: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP (Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97.

Supporting information


Commentary top

Chalcones are among the most abundant and ubiquitous group of natural products (Tomazela, et al., 2000). Some of the chalcone derivatives shows high second-harmonic generation conversion efficiency (Gu et al., 2008; Choudary et al., 1999; Jayarama et al., 2013). The title compound crystallizes in a non-centrosymmteric space group and exhibits inter­esting nonlinear optical properties.

In the title compound, Fig. 1, the benzo­furan and bromo­phenyl groups are linked by a prop-2-en-1-one group. The benzo­furan and bromo­phenyl rings are slightly non-planar with a dihedral angle of 10.60 (14) °. The torsion angle C7–C8–C9–O2 is 175.9 (4)° indicating that the O3 meth­oxy group is coplanar with the attached benzo­furan ring. The CC double bond shows an E conformation.

In the crystal, the water molecule is linked to the organic molecule by O—H···O hydrogen bonds forming an R22(7) ring motif (Table 1 and Fig. 2). The organic molecule is linked to the water molecule by C—H..O hydrogen bonds so forming helices along the b-axis direction (Table and Fig. 2).

Synthesis and crystallization top

2-Benzo­furanyl methyl ketone (0.01 mol) and 2-bromo­benzaldehyde (0.01 mol) were dissolved in methanol (60 ml). Sodium hydroxide (2 ml, 20%) was then added drop wise to the solution which was then stirred for 1.5 h. The contents of the flask were cooled using ice-cold water, and the resulting powder content was collected by filtration. The compound was dried and re-crystallized twice using acetone as solvent, yielding golden-yellow block-like crystals.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2. The water H atoms were located in a difference Fourier map. They were refined with distance restraints: O—H = 0.88 (2) Å, H···H = 1.43 (2) Å with Uiso(H) = 1.5Ueq(O). The C-bound H atoms were placed in calculated positions and included in the refinement in the riding model approximation: C—H = 0.93 Å with Uiso(H) = 1.2Ueq(C).

Related literature top

For background to chalcones and their biological and other properties, see: Choudary et al. (1999); Jayarama et al. (2013); Tomazela et al. (2000); Gu et al. (2008). For the crystal structure of a similar compound, see: Benmekhbi et al. (2009).

Structure description top

Chalcones are among the most abundant and ubiquitous group of natural products (Tomazela, et al., 2000). Some of the chalcone derivatives shows high second-harmonic generation conversion efficiency (Gu et al., 2008; Choudary et al., 1999; Jayarama et al., 2013). The title compound crystallizes in a non-centrosymmteric space group and exhibits inter­esting nonlinear optical properties.

In the title compound, Fig. 1, the benzo­furan and bromo­phenyl groups are linked by a prop-2-en-1-one group. The benzo­furan and bromo­phenyl rings are slightly non-planar with a dihedral angle of 10.60 (14) °. The torsion angle C7–C8–C9–O2 is 175.9 (4)° indicating that the O3 meth­oxy group is coplanar with the attached benzo­furan ring. The CC double bond shows an E conformation.

In the crystal, the water molecule is linked to the organic molecule by O—H···O hydrogen bonds forming an R22(7) ring motif (Table 1 and Fig. 2). The organic molecule is linked to the water molecule by C—H..O hydrogen bonds so forming helices along the b-axis direction (Table and Fig. 2).

For background to chalcones and their biological and other properties, see: Choudary et al. (1999); Jayarama et al. (2013); Tomazela et al. (2000); Gu et al. (2008). For the crystal structure of a similar compound, see: Benmekhbi et al. (2009).

Synthesis and crystallization top

2-Benzo­furanyl methyl ketone (0.01 mol) and 2-bromo­benzaldehyde (0.01 mol) were dissolved in methanol (60 ml). Sodium hydroxide (2 ml, 20%) was then added drop wise to the solution which was then stirred for 1.5 h. The contents of the flask were cooled using ice-cold water, and the resulting powder content was collected by filtration. The compound was dried and re-crystallized twice using acetone as solvent, yielding golden-yellow block-like crystals.

Refinement details top

Crystal data, data collection and structure refinement details are summarized in Table 2. The water H atoms were located in a difference Fourier map. They were refined with distance restraints: O—H = 0.88 (2) Å, H···H = 1.43 (2) Å with Uiso(H) = 1.5Ueq(O). The C-bound H atoms were placed in calculated positions and included in the refinement in the riding model approximation: C—H = 0.93 Å with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of title compound, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A view along the a-axis of the crystal packing of the title compound. The intermolecular interactions are represented by dashed lines (see Table 1).
(2E)-1-(1-Benzofuran-2-yl)-3-(2-bromophenyl)prop-2-en-1-one monohydrate top
Crystal data top
C17H11BrO2·H2OF(000) = 696
Mr = 345.18Dx = 1.568 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 2499 reflections
a = 4.8614 (4) Åθ = 4.8–41.6°
b = 13.8220 (15) ŵ = 2.82 mm1
c = 21.755 (2) ÅT = 296 K
V = 1461.8 (2) Å3Block, golden-yellow
Z = 40.40 × 0.30 × 0.25 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3636 independent reflections
Radiation source: fine-focus sealed tube2134 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
ω and φ scanθmax = 28.4°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 65
Tmin = 0.399, Tmax = 0.539k = 1818
3636 measured reflectionsl = 2829
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.102 w = 1/[σ2(Fo2) + (0.0372P)2 + 0.0197P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.001
3636 reflectionsΔρmax = 0.42 e Å3
196 parametersΔρmin = 0.29 e Å3
3 restraintsAbsolute structure: Flack (1983), 1497 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.011 (11)
Crystal data top
C17H11BrO2·H2OV = 1461.8 (2) Å3
Mr = 345.18Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 4.8614 (4) ŵ = 2.82 mm1
b = 13.8220 (15) ÅT = 296 K
c = 21.755 (2) Å0.40 × 0.30 × 0.25 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3636 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
2134 reflections with I > 2σ(I)
Tmin = 0.399, Tmax = 0.539Rint = 0.034
3636 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.042H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.102Δρmax = 0.42 e Å3
S = 1.01Δρmin = 0.29 e Å3
3636 reflectionsAbsolute structure: Flack (1983), 1497 Friedel pairs
196 parametersAbsolute structure parameter: 0.011 (11)
3 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br11.34723 (10)0.98219 (3)0.06738 (2)0.0902 (2)
O10.3289 (4)0.93267 (17)0.32535 (10)0.0513 (5)
O20.6697 (5)0.99535 (19)0.23842 (13)0.0720 (7)
C10.1694 (7)0.8801 (2)0.36525 (14)0.0463 (8)
C20.0186 (7)0.9171 (3)0.40591 (16)0.0593 (10)
H20.05230.98310.40930.071*
C30.1522 (7)0.8509 (3)0.44089 (16)0.0634 (10)
H30.28120.87240.46940.076*
C40.1034 (7)0.7519 (3)0.43576 (17)0.0607 (9)
H40.20200.70910.46030.073*
C50.0860 (7)0.7169 (3)0.39547 (16)0.0587 (10)
H50.11850.65070.39230.070*
C60.2301 (6)0.7824 (3)0.35908 (14)0.0444 (8)
C70.4402 (6)0.7757 (3)0.31357 (15)0.0468 (8)
H70.52560.71950.29970.056*
C80.4907 (6)0.8671 (3)0.29448 (15)0.0463 (9)
C90.6756 (7)0.9078 (3)0.24929 (15)0.0503 (8)
C100.8640 (6)0.8424 (2)0.21760 (14)0.0446 (7)
H100.87120.77790.22970.054*
C111.0223 (6)0.8713 (3)0.17288 (16)0.0480 (8)
H111.00810.93610.16190.058*
C121.2190 (6)0.8136 (3)0.13815 (14)0.0439 (8)
C131.2629 (7)0.7170 (3)0.15197 (16)0.0523 (9)
H131.16170.68920.18370.063*
C141.4478 (7)0.6610 (3)0.12115 (19)0.0615 (10)
H141.46910.59610.13150.074*
C151.6028 (7)0.7008 (3)0.07476 (17)0.0603 (10)
H151.73130.66330.05390.072*
C161.5667 (7)0.7964 (3)0.05931 (16)0.0557 (9)
H161.66950.82390.02780.067*
C171.3787 (7)0.8507 (3)0.09068 (14)0.0493 (8)
O1S0.1601 (7)1.1082 (2)0.23870 (17)0.0950 (10)
H1SA0.179 (11)1.078 (4)0.2780 (12)0.143*
H1SB0.300 (9)1.070 (3)0.220 (2)0.143*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.1130 (4)0.0695 (3)0.0881 (3)0.0070 (3)0.0327 (3)0.0255 (2)
O10.0458 (12)0.0526 (14)0.0555 (14)0.0017 (11)0.0037 (12)0.0104 (11)
O20.0594 (14)0.0592 (19)0.0974 (19)0.0071 (14)0.0271 (13)0.0068 (15)
C10.0391 (17)0.057 (2)0.0426 (18)0.0028 (18)0.0028 (16)0.0049 (15)
C20.0461 (19)0.079 (3)0.053 (2)0.0023 (19)0.0023 (17)0.016 (2)
C30.0426 (18)0.104 (3)0.044 (2)0.003 (2)0.0102 (19)0.009 (2)
C40.056 (2)0.081 (3)0.0447 (19)0.0068 (19)0.002 (2)0.008 (2)
C50.058 (2)0.065 (2)0.054 (2)0.0003 (19)0.0023 (18)0.0054 (19)
C60.0340 (17)0.058 (2)0.0408 (17)0.0013 (15)0.0096 (14)0.0056 (16)
C70.0383 (17)0.056 (2)0.0460 (19)0.0050 (15)0.0053 (15)0.0044 (17)
C80.0323 (16)0.060 (2)0.047 (2)0.0051 (16)0.0044 (14)0.0082 (18)
C90.0368 (17)0.060 (2)0.054 (2)0.0001 (18)0.0042 (16)0.0041 (17)
C100.0346 (16)0.052 (2)0.0469 (18)0.0021 (17)0.0011 (16)0.0002 (15)
C110.0423 (16)0.055 (2)0.047 (2)0.0008 (16)0.0021 (16)0.0048 (16)
C120.0302 (16)0.060 (2)0.0419 (18)0.0028 (15)0.0042 (13)0.0007 (16)
C130.050 (2)0.056 (2)0.051 (2)0.0004 (17)0.0043 (15)0.0046 (18)
C140.059 (2)0.057 (2)0.068 (3)0.0079 (19)0.003 (2)0.001 (2)
C150.051 (2)0.074 (3)0.055 (2)0.0128 (19)0.0024 (18)0.014 (2)
C160.0437 (18)0.085 (3)0.0389 (19)0.0034 (18)0.0069 (15)0.0009 (19)
C170.0434 (18)0.063 (2)0.0418 (18)0.0013 (18)0.0009 (15)0.0050 (15)
O1S0.098 (2)0.071 (2)0.117 (3)0.0067 (18)0.019 (2)0.0037 (18)
Geometric parameters (Å, º) top
Br1—C171.893 (4)C9—C101.460 (5)
O1—C11.372 (4)C10—C111.303 (4)
O1—C81.375 (4)C10—H100.9300
O2—C91.234 (4)C11—C121.456 (4)
C1—C21.370 (5)C11—H110.9300
C1—C61.390 (5)C12—C131.385 (5)
C2—C31.356 (5)C12—C171.390 (4)
C2—H20.9300C13—C141.363 (5)
C3—C41.393 (5)C13—H130.9300
C3—H30.9300C14—C151.374 (5)
C4—C51.361 (5)C14—H140.9300
C4—H40.9300C15—C161.375 (5)
C5—C61.392 (5)C15—H150.9300
C5—H50.9300C16—C171.366 (5)
C6—C71.426 (4)C16—H160.9300
C7—C81.353 (5)O1S—H1SA0.958 (19)
C7—H70.9300O1S—H1SB0.954 (19)
C8—C91.446 (5)
C1—O1—C8106.5 (3)C8—C9—C10118.1 (3)
C2—C1—O1126.0 (3)C11—C10—C9122.2 (3)
C2—C1—C6124.5 (3)C11—C10—H10118.9
O1—C1—C6109.5 (3)C9—C10—H10118.9
C3—C2—C1115.5 (4)C10—C11—C12127.4 (4)
C3—C2—H2122.2C10—C11—H11116.3
C1—C2—H2122.2C12—C11—H11116.3
C2—C3—C4122.4 (3)C13—C12—C17115.6 (3)
C2—C3—H3118.8C13—C12—C11121.1 (3)
C4—C3—H3118.8C17—C12—C11123.4 (3)
C5—C4—C3121.1 (3)C14—C13—C12122.8 (3)
C5—C4—H4119.4C14—C13—H13118.6
C3—C4—H4119.4C12—C13—H13118.6
C4—C5—C6118.4 (4)C13—C14—C15119.7 (4)
C4—C5—H5120.8C13—C14—H14120.2
C6—C5—H5120.8C15—C14—H14120.2
C1—C6—C5118.1 (3)C14—C15—C16119.7 (3)
C1—C6—C7106.4 (3)C14—C15—H15120.2
C5—C6—C7135.5 (4)C16—C15—H15120.2
C8—C7—C6106.4 (3)C17—C16—C15119.4 (3)
C8—C7—H7126.8C17—C16—H16120.3
C6—C7—H7126.8C15—C16—H16120.3
C7—C8—O1111.2 (3)C16—C17—C12122.8 (3)
C7—C8—C9133.2 (3)C16—C17—Br1116.6 (3)
O1—C8—C9115.6 (3)C12—C17—Br1120.6 (3)
O2—C9—C8119.8 (3)H1SA—O1S—H1SB94 (2)
O2—C9—C10122.1 (3)
C8—O1—C1—C2178.7 (3)O1—C8—C9—O23.8 (5)
C8—O1—C1—C60.4 (3)C7—C8—C9—C103.6 (6)
O1—C1—C2—C3179.9 (3)O1—C8—C9—C10176.5 (3)
C6—C1—C2—C31.0 (5)O2—C9—C10—C115.2 (5)
C1—C2—C3—C40.3 (5)C8—C9—C10—C11174.5 (3)
C2—C3—C4—C51.0 (6)C9—C10—C11—C12179.5 (3)
C3—C4—C5—C60.3 (5)C10—C11—C12—C132.0 (5)
C2—C1—C6—C51.6 (5)C10—C11—C12—C17179.6 (3)
O1—C1—C6—C5179.3 (3)C17—C12—C13—C140.5 (5)
C2—C1—C6—C7178.3 (3)C11—C12—C13—C14179.0 (3)
O1—C1—C6—C70.8 (3)C12—C13—C14—C151.0 (5)
C4—C5—C6—C10.9 (5)C13—C14—C15—C161.0 (5)
C4—C5—C6—C7179.0 (3)C14—C15—C16—C170.5 (5)
C1—C6—C7—C80.9 (3)C15—C16—C17—C120.1 (5)
C5—C6—C7—C8179.1 (3)C15—C16—C17—Br1178.9 (3)
C6—C7—C8—O10.8 (4)C13—C12—C17—C160.1 (5)
C6—C7—C8—C9179.1 (3)C11—C12—C17—C16178.6 (3)
C1—O1—C8—C70.3 (4)C13—C12—C17—Br1178.9 (2)
C1—O1—C8—C9179.6 (3)C11—C12—C17—Br10.4 (4)
C7—C8—C9—O2176.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1S—H1SA···O10.96 (2)2.37 (4)3.181 (4)142 (4)
O1S—H1SB···O20.95 (2)2.11 (4)2.928 (4)143 (4)
C7—H7···O1Si0.932.323.229 (5)164
C10—H10···O1Si0.932.453.375 (5)174
Symmetry code: (i) x+1, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1S—H1SA···O10.96 (2)2.37 (4)3.181 (4)142 (4)
O1S—H1SB···O20.95 (2)2.11 (4)2.928 (4)143 (4)
C7—H7···O1Si0.932.323.229 (5)164
C10—H10···O1Si0.932.453.375 (5)174
Symmetry code: (i) x+1, y1/2, z+1/2.
 

Acknowledgements

We are grateful to Professor Jayarama A, Department of Physics & Karnataka Government Research Center (KGRC), Sahyadri College of Engineering & Management, Mangalore, for supporting this study.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBenmekhbi, L., Belhouas, R., Bouacida, S., Mosbah, S. & Bencharif, L. (2009). Acta Cryst. E65, o1472–o1473.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChoudary, B. M., Lakshmi Kantam, M., Venkat Reddy, C. R., Koteswara Rao, K. & Figueras, F. (1999). J. Mol. Catal. A Chem. 146, 279–284.  Web of Science CrossRef CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGu, B., Ji, W., Patil, P. S. & Dharmaprakash, S. M. (2008). J. Appl. Phys. 103, 103511–103516.  Web of Science CrossRef Google Scholar
First citationJayarama, A., Ravindra, H. J., Menezes, A. P., Dharmaprakash, S. M. & Ng, S. W. (2013). J. Mol. Catal. A Chem. 1051, 285–291.  CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTomazela, D. M., Pupo, M. T., Passador, E. A. P., da Silva, M. F. das G. F., Vieira, P. C., Fernandes, J. B., Fo, E. R., Oliva, G. & Pirani, J. R. (2000). Phytochemistry, 55, 643–651.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds