research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of (E)-2-amino-4-methyl­sulfanyl-6-oxo-1-{[(thiophen-2-yl)­methyl­­idene]­amino}-1,6-di­hydro­pyrimidine-5-carbo­nitrile

aChemistry Department, Faculty of Science, Helwan University, Cairo, Egypt, and bInstitut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Postfach 3329, D-38023 Braunschweig, Germany
*Correspondence e-mail: p.jones@tu-bs.de

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 17 September 2015; accepted 7 October 2015; online 14 October 2015)

The title compound, C11H9N5OS2, a 1-thio­phen-2-yl­methyl­ene­amino­pyrimidine derivative, displays an essentially planar C—NH2 group. The conformation across the N=C bond linking the pyrimidine and thienyl groups is E. The pyrimidine and thienyl ring systems subtend an inter-planar angle of 42.72 (5)°. In the crystal, mol­ecules are linked by N–H⋯Nnitrile and N–H⋯O=C hydrogen bonds, forming chains parallel to the b axis.

1. Chemical context

Pyrimidines are well known for their biological activities as anti­metabolic agents and have attracted much attention from the standpoint of pharmaceutical chemistry. Many drugs, such as 5-fluoro­uracil, containing a pyrimidine moiety have been developed and used as anti­cancer agents. It is difficult to find a general method for the introduction of specific substituents into the pyrimidine nucleus directly, and thus many synthetic methods have been developed for the construction of pyrimidine rings bearing potential functional groups (Elgemeie & Sood, 2001[Elgemeie, G. H. & Sood, S. A. (2001). J. Chem. Res. (S), pp. 439-441.]). As part of our program directed toward the preparation of potential anti­metabolites (Elgemeie & Hussain, 1994[Elgemeie, G. H. & Hussain, B. A. (1994). Tetrahedron, 50, 199-204.]), we have recently reported various successful approaches for the syntheses of purine and pyrimidine analogues (Elgemeie, 2003[Elgemeie, G. H. (2003). Curr. Pharm. Des. 9, 2627-2642.]; Elgemeie et al., 2009[Elgemeie, G. H., Zaghary, W. A., Amin, K. M. & Nasr, T. M. (2009). J. Carbohydr. Chem. 28, 161-178.]). Derivatives of these ring systems are inter­esting as anti­metabolic agents in biochemical reactions (Scala et al., 1997[Scala, S., Akhmed, N., Rao, U. S., Paul, K., Lan, L., Dickstein, B., Lee, J., Elgemeie, G. H., Stein, W. D. & Bates, S. E. (1997). Mol. Pharm. 51, 1024-1033.]).

[Scheme 1]

We report herein on the synthesis and crystal structure of a new 1-thio­phen-2-yl­methyl­ene­amino­pyrimidine derivative, obtained by reaction of dimethyl N-cyano­dithio­imino­carbonate with 1-cyano­acetyl-4-thio­phene­methyl­idene semicarbazide in dioxane containing KOH at room temperature. To the best of our knowledge, this is the first example of this approach to be reported for N-substituted amino­pyrimidine derivatives. The X-ray structure determination was undertaken to establish the nature of the product unambiguously.

2. Structural commentary

The mol­ecular structure of the title compound is shown in Fig. 1[link]. The E conformation across the double bond N2=C10 is confirmed, with a bond length of 1.2879 (14) Å. Both ring systems are, as expected, planar (r.m.s. deviations are 0.017 Å for the pyrimidine and 0.001 Å for the thienyl ring). Atom N2 lies 0.189 (2) Å out of the pyrimidine plane; all other immediate substituent atoms lie effectively in the ring plane. Carbon atom C7 of the thio­methyl group is rotated slightly out of the ring plane, with torsion angle N3—C4—S1—C7 being −6.30 (10)°. The inter-planar angle between the rings is 42.72 (5)°; the relative orientation is influenced by the torsion angles C6—N1—N2—C10 = −51.78 (13), N1—N2—C10—C11 = 174.68 (9) and N2—C10—C11—S12 = 5.22 (15)°. The NH2 group is planar; the nitro­gen atom lies only 0.048 (9) Å out of the plane of its substituents. The intra­molecular contact H041⋯N2 = 2.22 (2) Å may be construed as a hydrogen bond, although the angle at the H atom is necessarily narrow at 108.4 (14) ° (Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H041⋯N2 0.827 (18) 2.224 (17) 2.6062 (13) 108.4 (14)
N4—H041⋯N5i 0.827 (18) 2.513 (17) 3.0555 (14) 124.2 (15)
N4—H042⋯O1i 0.823 (17) 2.144 (17) 2.9414 (12) 163.1 (15)
C13—H13⋯N5ii 0.95 2.49 3.2722 (15) 139
C10—H10⋯O1iii 0.95 2.35 3.2124 (13) 150
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [x+1, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].
[Figure 1]
Figure 1
The mol­ecule structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level. The intra­molecular hydrogen bond, H042⋯N1, is not shown.

3. Supra­molecular features

In the crystal, mol­ecules are connected into chains parallel to the b axis by the two classical hydrogen bonds, H041⋯N5 2.51 (2) Å and H042⋯O1 2.14 (2) Å (Table 1[link] and Fig. 2[link]), both involving the 21 screw operator −x + 1, y − [{1\over 2}], −z + [{3\over 2}]. The longer of these two contacts forms part of a three-center system with the intra­molecular contact H041⋯N2 (Table 1[link]). The `weak' hydrogen bond H13⋯N5 of 2.49 Å, formed via the c glide operator x + 1, −y + [{3\over 2}], z − [{1\over 2}], connects the chains to form layers parallel to (102) (Table 1[link] and Fig. 2[link]).

[Figure 2]
Figure 2
Crystal packing diagram of the title compound, viewed perpendicular to (102). Classical hydrogen bonds are drawn as thick dashed lines and `weak' hydrogen bonds as thin dashed lines (see Table 1[link]).

4. Database survey

A search of the Cambridge Structural Database (Version 5.36, 2014; Groom & Allen, 2014[Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662-671.]) revealed 42 hits for pyrimidines with the amino and C=O functions located as for the title compound.

5. Synthesis and crystallization

Dimethyl N-cyano­dithio­imino­carbonate (0.01 mol) was added to a stirred solution of 1-cyano­acetyl-4-thio­phene­methyl­idenesemicarbazide (0.01 mol) in dry dioxane (50 ml), containing potassium hydroxide (0.01 mol), at room temperature. The solution was stirred overnight at room temperature, after which a colourless solid product was collected by filtration and crystallized from ethanol (m.p. 541–542 K), giving colourless block-like crystals.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The NH hydrogen atoms were located in a difference Fourier map and freely refined. The C-bound H atoms were included in calculated positions and treated as riding atoms: C—H = 0.95–0.98 Å with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for other H atoms. The methyl group was refined as an idealized rigid group, allowed to rotate but not to tip.

Table 2
Experimental details

Crystal data
Chemical formula C11H9N5OS2
Mr 291.35
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 11.4650 (4), 14.7715 (4), 7.5924 (3)
β (°) 96.397 (3)
V3) 1277.81 (8)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.42
Crystal size (mm) 0.40 × 0.40 × 0.12
 
Data collection
Diffractometer Oxford Diffraction Xcalibur, Eos
Absorption correction Multi-scan (CrysAlis PRO; Agilent, 2013[Agilent (2013). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.])
Tmin, Tmax 0.949, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 40035, 3838, 3400
Rint 0.035
(sin θ/λ)max−1) 0.719
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.078, 1.05
No. of reflections 3838
No. of parameters 181
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.45, −0.28
Computer programs: CrysAlis PRO (Agilent, 2013[Agilent (2013). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.]), SHELXS97, SHELXL97 and XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Agilent, 2013); cell refinement: CrysAlis PRO (Agilent, 2013); data reduction: CrysAlis PRO (Agilent, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

(E)-2-Amino-4-methylsulfanyl-6-oxo-1-{[(thiophen-2-yl)methylidene]amino}-1,6-dihydropyrimidine-5-carbonitrile top
Crystal data top
C11H9N5OS2F(000) = 600
Mr = 291.35Dx = 1.514 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ycCell parameters from 11992 reflections
a = 11.4650 (4) Åθ = 2.8–30.7°
b = 14.7715 (4) ŵ = 0.42 mm1
c = 7.5924 (3) ÅT = 100 K
β = 96.397 (3)°Block, colourless
V = 1277.81 (8) Å30.40 × 0.40 × 0.12 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur, Eos
diffractometer
3838 independent reflections
Radiation source: Enhance (Mo) X-ray Source3400 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
Detector resolution: 16.1419 pixels mm-1θmax = 30.7°, θmin = 2.3°
ω–scanh = 1616
Absorption correction: multi-scan
(CrysAlis Pro; Agilent, 2013)
k = 2120
Tmin = 0.949, Tmax = 1.000l = 1010
40035 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.078H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0353P)2 + 0.5986P]
where P = (Fo2 + 2Fc2)/3
3838 reflections(Δ/σ)max = 0.001
181 parametersΔρmax = 0.45 e Å3
0 restraintsΔρmin = 0.28 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

NH H atoms were refined freely. The methyl was refined as an idealized rigid group allowed to rotate but not tip (AFIX 137). Other H atoms were included using a riding model starting from calculated positions.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.18882 (2)0.570453 (19)0.93852 (4)0.01607 (8)
N10.53629 (8)0.58971 (6)0.73366 (12)0.01132 (17)
C20.48455 (9)0.50790 (7)0.76239 (14)0.01123 (19)
N30.37941 (8)0.50061 (6)0.82064 (12)0.01267 (18)
C40.32601 (9)0.57730 (7)0.86044 (14)0.01173 (19)
C50.37518 (9)0.66299 (7)0.84526 (14)0.0122 (2)
C60.48602 (9)0.67272 (7)0.77860 (14)0.01108 (19)
C70.15734 (11)0.45152 (8)0.91405 (16)0.0186 (2)
H7A0.16240.43340.79100.028*
H7B0.07810.43950.94500.028*
H7C0.21440.41690.99290.028*
C80.31807 (10)0.74448 (7)0.88764 (15)0.0147 (2)
O10.53764 (7)0.74475 (5)0.75918 (11)0.01462 (16)
N20.65393 (8)0.58528 (6)0.69401 (13)0.01224 (18)
N40.54197 (9)0.43358 (6)0.72510 (14)0.01410 (18)
H0410.6097 (16)0.4387 (12)0.699 (2)0.027 (4)*
H0420.5115 (14)0.3849 (11)0.746 (2)0.020 (4)*
N50.27567 (9)0.81204 (7)0.92072 (15)0.0213 (2)
C100.67911 (9)0.64245 (7)0.57588 (14)0.0123 (2)
H100.61910.67920.51650.015*
C110.79798 (9)0.65073 (7)0.53371 (14)0.0124 (2)
S120.91097 (2)0.58149 (2)0.62072 (4)0.01827 (8)
C131.01057 (10)0.64133 (9)0.51488 (16)0.0190 (2)
H131.09190.62730.52320.023*
C140.96003 (11)0.71124 (8)0.41744 (16)0.0189 (2)
H141.00220.75160.35050.023*
C150.83751 (10)0.71713 (8)0.42687 (15)0.0157 (2)
H150.78830.76160.36660.019*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.01141 (13)0.01430 (13)0.02338 (15)0.00065 (9)0.00585 (10)0.00028 (10)
N10.0097 (4)0.0088 (4)0.0158 (4)0.0005 (3)0.0028 (3)0.0004 (3)
C20.0122 (5)0.0093 (4)0.0120 (5)0.0008 (4)0.0002 (4)0.0001 (3)
N30.0116 (4)0.0110 (4)0.0154 (4)0.0006 (3)0.0014 (3)0.0001 (3)
C40.0099 (4)0.0130 (5)0.0121 (5)0.0001 (4)0.0001 (4)0.0006 (4)
C50.0110 (5)0.0105 (4)0.0153 (5)0.0007 (4)0.0024 (4)0.0004 (4)
C60.0107 (5)0.0094 (4)0.0130 (5)0.0010 (3)0.0007 (4)0.0008 (4)
C70.0168 (5)0.0164 (5)0.0235 (6)0.0054 (4)0.0058 (4)0.0012 (4)
C80.0127 (5)0.0136 (5)0.0185 (5)0.0014 (4)0.0045 (4)0.0010 (4)
O10.0142 (4)0.0086 (3)0.0217 (4)0.0011 (3)0.0044 (3)0.0012 (3)
N20.0090 (4)0.0109 (4)0.0173 (4)0.0003 (3)0.0035 (3)0.0014 (3)
N40.0134 (4)0.0079 (4)0.0214 (5)0.0002 (3)0.0036 (4)0.0005 (3)
N50.0189 (5)0.0158 (5)0.0308 (6)0.0014 (4)0.0104 (4)0.0002 (4)
C100.0123 (5)0.0115 (4)0.0130 (5)0.0009 (4)0.0008 (4)0.0022 (4)
C110.0124 (5)0.0111 (4)0.0139 (5)0.0009 (4)0.0023 (4)0.0014 (4)
S120.01309 (14)0.01868 (14)0.02389 (16)0.00414 (10)0.00586 (11)0.00657 (11)
C130.0128 (5)0.0241 (6)0.0210 (6)0.0025 (4)0.0058 (4)0.0022 (5)
C140.0202 (6)0.0181 (5)0.0199 (5)0.0053 (4)0.0084 (4)0.0004 (4)
C150.0181 (5)0.0140 (5)0.0158 (5)0.0001 (4)0.0048 (4)0.0000 (4)
Geometric parameters (Å, º) top
S1—C41.7446 (11)C11—C151.3811 (15)
S1—C71.7990 (12)C11—S121.7234 (11)
N1—C21.3744 (13)S12—C131.7133 (12)
N1—C61.4127 (13)C13—C141.3617 (18)
N1—N21.4158 (12)C14—C151.4172 (16)
C2—N41.3268 (13)C7—H7A0.9800
C2—N31.3337 (14)C7—H7B0.9800
N3—C41.3382 (13)C7—H7C0.9800
C4—C51.3956 (14)N4—H0410.827 (18)
C5—C81.4242 (15)N4—H0420.823 (17)
C5—C61.4265 (14)C10—H100.9500
C6—O11.2343 (13)C13—H130.9500
C8—N51.1500 (15)C14—H140.9500
N2—C101.2879 (14)C15—H150.9500
C10—C111.4395 (14)
C4—S1—C7101.52 (5)C10—C11—S12123.65 (8)
C2—N1—C6122.00 (9)C13—S12—C1191.48 (6)
C2—N1—N2115.55 (8)C14—C13—S12112.37 (9)
C6—N1—N2121.03 (8)C13—C14—C15112.54 (10)
N4—C2—N3119.49 (10)C11—C15—C14112.22 (10)
N4—C2—N1117.42 (10)S1—C7—H7A109.5
N3—C2—N1123.07 (9)S1—C7—H7B109.5
C2—N3—C4117.37 (9)H7A—C7—H7B109.5
N3—C4—C5123.36 (10)S1—C7—H7C109.5
N3—C4—S1118.70 (8)H7A—C7—H7C109.5
C5—C4—S1117.93 (8)H7B—C7—H7C109.5
C4—C5—C8123.21 (10)C2—N4—H041118.5 (12)
C4—C5—C6120.31 (9)C2—N4—H042116.8 (11)
C8—C5—C6116.44 (9)H041—N4—H042123.9 (16)
O1—C6—N1120.35 (9)N2—C10—H10119.9
O1—C6—C5125.96 (10)C11—C10—H10119.9
N1—C6—C5113.69 (9)C14—C13—H13123.8
N5—C8—C5177.44 (12)S12—C13—H13123.8
C10—N2—N1114.23 (9)C13—C14—H14123.7
N2—C10—C11120.12 (10)C15—C14—H14123.7
C15—C11—C10124.88 (10)C11—C15—H15123.9
C15—C11—S12111.39 (8)C14—C15—H15123.9
C6—N1—C2—N4176.23 (10)N2—N1—C6—C5169.29 (9)
N2—N1—C2—N49.70 (14)C4—C5—C6—O1179.88 (11)
C6—N1—C2—N35.62 (16)C8—C5—C6—O12.07 (17)
N2—N1—C2—N3172.15 (10)C4—C5—C6—N10.23 (15)
N4—C2—N3—C4178.49 (10)C8—C5—C6—N1178.04 (9)
N1—C2—N3—C43.40 (16)C2—N1—N2—C10141.55 (10)
C2—N3—C4—C50.54 (16)C6—N1—N2—C1051.78 (13)
C2—N3—C4—S1179.55 (8)N1—N2—C10—C11174.68 (9)
C7—S1—C4—N36.30 (10)N2—C10—C11—C15171.31 (11)
C7—S1—C4—C5174.63 (9)N2—C10—C11—S125.22 (15)
N3—C4—C5—C8179.96 (11)C15—C11—S12—C130.11 (9)
S1—C4—C5—C81.01 (15)C10—C11—S12—C13176.84 (10)
N3—C4—C5—C62.31 (17)C11—S12—C13—C140.08 (10)
S1—C4—C5—C6178.67 (8)S12—C13—C14—C150.25 (14)
C2—N1—C6—O1176.40 (10)C10—C11—C15—C14176.64 (10)
N2—N1—C6—O110.60 (15)S12—C11—C15—C140.26 (13)
C2—N1—C6—C53.50 (15)C13—C14—C15—C110.33 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H041···N20.827 (18)2.224 (17)2.6062 (13)108.4 (14)
N4—H041···N5i0.827 (18)2.513 (17)3.0555 (14)124.2 (15)
N4—H042···O1i0.823 (17)2.144 (17)2.9414 (12)163.1 (15)
C13—H13···N5ii0.952.493.2722 (15)139
C10—H10···O1iii0.952.353.2124 (13)150
Symmetry codes: (i) x+1, y1/2, z+3/2; (ii) x+1, y+3/2, z1/2; (iii) x, y+3/2, z1/2.
 

References

First citationAgilent (2013). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.  Google Scholar
First citationElgemeie, G. H. (2003). Curr. Pharm. Des. 9, 2627–2642.  Web of Science CrossRef PubMed CAS Google Scholar
First citationElgemeie, G. H. & Hussain, B. A. (1994). Tetrahedron, 50, 199–204.  CrossRef CAS Web of Science Google Scholar
First citationElgemeie, G. H. & Sood, S. A. (2001). J. Chem. Res. (S), pp. 439–441.  CrossRef Google Scholar
First citationElgemeie, G. H., Zaghary, W. A., Amin, K. M. & Nasr, T. M. (2009). J. Carbohydr. Chem. 28, 161–178.  Web of Science CrossRef CAS Google Scholar
First citationGroom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.  Web of Science CSD CrossRef CAS Google Scholar
First citationScala, S., Akhmed, N., Rao, U. S., Paul, K., Lan, L., Dickstein, B., Lee, J., Elgemeie, G. H., Stein, W. D. & Bates, S. E. (1997). Mol. Pharm. 51, 1024–1033.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds