organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of (E)-1-(2,4-di­nitro­phen­yl)-2-[(E)-5-phenyl-1-(p-tol­yl)pent-2-en-4-yn-1-yl­­idene]hydrazine

aDepartment of Chemistry Chemical Processes and Technologies, Togliatti State University, 445667 Togliatti, Russian Federation, bNesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, 119991 Moscow, Russian Federation, and cLaboratory of Functional of Heterocyclic Compounds, Togliatti State University, 445667 Togliatti, Russian Federation
*Correspondence e-mail: labofhc@gmail.com

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 7 October 2015; accepted 12 October 2015; online 17 October 2015)

In the title compound, C24H18N4O4, the plane of the phenyl ring is inclined to those of the toluene ring and the di­nitro-substituted benzene ring by 66.96 (19) and 47.06 (18)°, respectively, while the planes of the two benzene rings are inclined to one another by 36.26 (19)°. There is an intra­molecular N—H⋯O hydrogen bond between the NH group and the O atom of a nitro group, forming an S(6) ring motif. In the crystal, mol­ecules are linked by C—H⋯O hydrogen bonds and C—H⋯π inter­actions, forming a three-dimensional network. There are also weak ππ inter­actions present involving the phenyl ring and the di­nitro-substituted benzene ring [inter-centroid distance = 3.741 (2) Å].

1. Related literature

For the biological activity of chalcones, and their aryl­thio-containing derivatives, see: Nielsen et al. (2005[Nielsen, S. F., Larsen, M., Boesen, T., Schønning, K. & Kromann, H. (2005). J. Med. Chem. 48, 2667-2677.]); Wu et al. (2011[Wu, J., Li, J., Cai, Y., Pan, Y., Ye, F., Zhang, Y., Zhao, Y., Yang, S., Li, X. & Liang, G. (2011). J. Med. Chem. 54, 8110-8123.]); Chate et al. (2012[Chate, A. V., Joshi, R. S., Mandhane, P. G., Mohekar, S. R. & Gill, C. H. (2012). Phosphorus Sulfur Silicon Relat. Elem. 187, 327-335.]); Karaman et al. (2012[Karaman, İ, Gezegen, H., Ceylan, M. & Dilmaç, M. (2012). Phosphorus Sulfur Silicon Relat. Elem. 187, 580-586.]). For the synthesis and crystal structure of 1,5-di­aryl­pent-2-en-4-yn-1-one precursors, see: Golovanov et al. (2013[Golovanov, A. A., Latypova, D. R., Bekin, V. V., Pisareva, V. S., Vologzhanina, A. V. & Dokichev, V. A. (2013). Russ. J. Org. Chem. 49, 1264-1269.]); Vologzhanina et al. (2014[Vologzhanina, A. V., Golovanov, A. A., Gusev, D. M., Odin, S. I., Apreyan, R. A. & Suponitsky, K. Yu. (2014). Cryst. Growth Des. 14, 4402-4410.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C24H18N4O4

  • Mr = 426.42

  • Monoclinic, P 21 /n

  • a = 18.4810 (6) Å

  • b = 6.1674 (2) Å

  • c = 19.2366 (12) Å

  • β = 109.902 (5)°

  • V = 2061.63 (17) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.79 mm−1

  • T = 120 K

  • 0.42 × 0.06 × 0.06 mm

2.2. Data collection

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.903, Tmax = 0.916

  • 27966 measured reflections

  • 3661 independent reflections

  • 2388 reflections with I > 2σ(I)

  • Rint = 0.174

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.091

  • wR(F2) = 0.283

  • S = 1.03

  • 3661 reflections

  • 295 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.53 e Å−3

  • Δρmin = −0.49 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the C12–C17 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2N⋯O1 0.89 (5) 1.86 (5) 2.597 (5) 139 (4)
C8—H8⋯O1i 0.95 2.49 3.396 (5) 160
C10—H10⋯O2ii 0.95 2.51 3.337 (5) 146
C3—H3⋯Cg2iii 0.95 2.63 3.504 (4) 153
Symmetry codes: (i) [-x-{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [x-{\script{1\over 2}}, -y+{\script{5\over 2}}, z-{\script{1\over 2}}]; (iii) x, y+1, z.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: OLEX2.

Supporting information


Comments top

Chalcones exhibit anti­biotic (Nielsen et al., 2005) and anti-inflammatory (Wu et al., 2011) activity. Aryl­thio-containing ketones are also active against some human pathogenic microorganisms (Chate et al., 2012; Karaman et al., 2012). Thus, a molecule which contains both fragments may have a high biological effect. Herein we present the synthesis and crystal structure of the title hydrazone, prepared by the reaction between 2,4-di­nitro­phenyl­hydrazine and 1-(4-methyl­phenyl)-5-phenyl-2-penten-4-yn-1-one.

In the title compound, Fig. 1, the length of the C3—C4 bond [1.427 (6) Å] indicates slight delocalization of electron density along the polyene C C—CC chain. In contrast with the parent pent-2-en-4-yn-1-one compound (Vologzhanina et al., 2014) the benzene rings at C1 and C5 atoms are twisted with respect to one another, with a dihedral angle of 66.96 (19) °. There is an intra­molecular N—H···O hydrogen bond, between an O atom of a nitro-group and the NH H atom forming an S(6) ring motif (Table 1 and Fig. 1).

In the crystal, molecules are linked by C—H···O hydrogen bonds and C—H···π inter­actions, forming a three-dimensional structure (Table 1 and Fig. 2). There are also weak π-π inter­actions present involving the phenyl ring and the di­nitro-substituted benzene ring [Cg1···Cg3i = 3.741 (2) Å; Cg1 and Cg3 are the centroids of rings C6—C11 and C19—C24, respectively; symmetry code: x-1/2, -y+3/2, z-1/2].

Synthesis and crystallization top

A mixture of 2,4-di­nitro­phenyl­hydrazine (320 mg, 1.61 mmol), 1-(4-methyl­phenyl)-5-phenyl-2-penten-4-yn-1-one (374 mg, 1.61 mmol) and 1 ml concentrated HCl were dissolved in MeOH (20 ml). The reaction mixture was heated under reflux. The mixture was cooled, and the precipitate of the hydro­zone was filtered off, washed on a filter with 2 ml of cold 95% EtOH, and dried (yield 87%). The single-crystals of the title compound were obtained by slow crystallization of a solution in MeOH (m.p.: 415–417 K). IR (KBr), ν/cm-1: 2196, 1615. 1H NMR (400 MHz, CDCl3): 2.44 (s, 3H), 6.43 (d, 1H, J = 16.3 Hz), 7.07 (d, 1H, J = 16.3 Hz), 7.32 (m, 5H), 7.53 (dd, 2H, J = 4.3 Hz, J = 3.0 Hz), 7.61 (d, 2H, J =8.0 Hz), 8.10 (d, 1H, J = 9.0 Hz), 8.35 (dd, 1H, J = 9.6 Hz, J = 2.0 Hz), 9.17 (d, 1H, J = 2.3 Hz), 11.65 (s, 1H). Anal. Calcd. for C24H18N4O4: C, 67.60; H, 4.26. Found: C, 67.95; H, 4.08.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2. The NH H atom was located in a difference Fourier map and freely refined. The C-bound H atoms were included in calculated positions and treated as riding atoms: C—H = 0.95-0.98 Å with Uiso(H) = 1.5Ueq(C-methyl) and 1.2Ueq(C) for other H atoms.

Related literature top

For the biological activity of chalcones, and their arylthio-containing derivatives, see: Nielsen et al. (2005); Wu et al. (2011); Chate et al. (2012); Karaman et al. (2012). For the synthesis and crystal structure of 1,5-diarylpent-2-en-4-yn-1-one precursors, see: Golovanov et al. (2013); Vologzhanina et al. (2014).

Structure description top

Chalcones exhibit anti­biotic (Nielsen et al., 2005) and anti-inflammatory (Wu et al., 2011) activity. Aryl­thio-containing ketones are also active against some human pathogenic microorganisms (Chate et al., 2012; Karaman et al., 2012). Thus, a molecule which contains both fragments may have a high biological effect. Herein we present the synthesis and crystal structure of the title hydrazone, prepared by the reaction between 2,4-di­nitro­phenyl­hydrazine and 1-(4-methyl­phenyl)-5-phenyl-2-penten-4-yn-1-one.

In the title compound, Fig. 1, the length of the C3—C4 bond [1.427 (6) Å] indicates slight delocalization of electron density along the polyene C C—CC chain. In contrast with the parent pent-2-en-4-yn-1-one compound (Vologzhanina et al., 2014) the benzene rings at C1 and C5 atoms are twisted with respect to one another, with a dihedral angle of 66.96 (19) °. There is an intra­molecular N—H···O hydrogen bond, between an O atom of a nitro-group and the NH H atom forming an S(6) ring motif (Table 1 and Fig. 1).

In the crystal, molecules are linked by C—H···O hydrogen bonds and C—H···π inter­actions, forming a three-dimensional structure (Table 1 and Fig. 2). There are also weak π-π inter­actions present involving the phenyl ring and the di­nitro-substituted benzene ring [Cg1···Cg3i = 3.741 (2) Å; Cg1 and Cg3 are the centroids of rings C6—C11 and C19—C24, respectively; symmetry code: x-1/2, -y+3/2, z-1/2].

For the biological activity of chalcones, and their arylthio-containing derivatives, see: Nielsen et al. (2005); Wu et al. (2011); Chate et al. (2012); Karaman et al. (2012). For the synthesis and crystal structure of 1,5-diarylpent-2-en-4-yn-1-one precursors, see: Golovanov et al. (2013); Vologzhanina et al. (2014).

Synthesis and crystallization top

A mixture of 2,4-di­nitro­phenyl­hydrazine (320 mg, 1.61 mmol), 1-(4-methyl­phenyl)-5-phenyl-2-penten-4-yn-1-one (374 mg, 1.61 mmol) and 1 ml concentrated HCl were dissolved in MeOH (20 ml). The reaction mixture was heated under reflux. The mixture was cooled, and the precipitate of the hydro­zone was filtered off, washed on a filter with 2 ml of cold 95% EtOH, and dried (yield 87%). The single-crystals of the title compound were obtained by slow crystallization of a solution in MeOH (m.p.: 415–417 K). IR (KBr), ν/cm-1: 2196, 1615. 1H NMR (400 MHz, CDCl3): 2.44 (s, 3H), 6.43 (d, 1H, J = 16.3 Hz), 7.07 (d, 1H, J = 16.3 Hz), 7.32 (m, 5H), 7.53 (dd, 2H, J = 4.3 Hz, J = 3.0 Hz), 7.61 (d, 2H, J =8.0 Hz), 8.10 (d, 1H, J = 9.0 Hz), 8.35 (dd, 1H, J = 9.6 Hz, J = 2.0 Hz), 9.17 (d, 1H, J = 2.3 Hz), 11.65 (s, 1H). Anal. Calcd. for C24H18N4O4: C, 67.60; H, 4.26. Found: C, 67.95; H, 4.08.

Refinement details top

Crystal data, data collection and structure refinement details are summarized in Table 2. The NH H atom was located in a difference Fourier map and freely refined. The C-bound H atoms were included in calculated positions and treated as riding atoms: C—H = 0.95-0.98 Å with Uiso(H) = 1.5Ueq(C-methyl) and 1.2Ueq(C) for other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A partial view along the b axis of the crystal packing of the title compound. The H atoms have been omitted.
(E)-1-(2,4-Dinitrophenyl)-2-[(E)-5-phenyl-1-(p-tolyl)pent-2-en-4-yn-1-ylidene]hydrazine top
Crystal data top
C24H18N4O4F(000) = 888
Mr = 426.42Dx = 1.374 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54178 Å
a = 18.4810 (6) ÅCell parameters from 4900 reflections
b = 6.1674 (2) Åθ = 2.9–66.5°
c = 19.2366 (12) ŵ = 0.79 mm1
β = 109.902 (5)°T = 120 K
V = 2061.63 (17) Å3Needle, red
Z = 40.42 × 0.06 × 0.06 mm
Data collection top
Bruker APEXII CCD
diffractometer
3661 independent reflections
Radiation source: fine-focus sealed tube2388 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.174
φ and ω scansθmax = 68.1°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 2222
Tmin = 0.903, Tmax = 0.916k = 77
27966 measured reflectionsl = 2122
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.091H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.283 w = 1/[σ2(Fo2) + (0.1877P)2 + 0.4158P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
3661 reflectionsΔρmax = 0.53 e Å3
295 parametersΔρmin = 0.49 e Å3
0 restraintsExtinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0043 (10)
Crystal data top
C24H18N4O4V = 2061.63 (17) Å3
Mr = 426.42Z = 4
Monoclinic, P21/nCu Kα radiation
a = 18.4810 (6) ŵ = 0.79 mm1
b = 6.1674 (2) ÅT = 120 K
c = 19.2366 (12) Å0.42 × 0.06 × 0.06 mm
β = 109.902 (5)°
Data collection top
Bruker APEXII CCD
diffractometer
3661 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2388 reflections with I > 2σ(I)
Tmin = 0.903, Tmax = 0.916Rint = 0.174
27966 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0910 restraints
wR(F2) = 0.283H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.53 e Å3
3661 reflectionsΔρmin = 0.49 e Å3
295 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.03666 (16)0.8320 (6)0.91286 (19)0.0415 (10)
O20.08785 (16)1.1218 (6)0.97070 (17)0.0347 (9)
O30.35551 (17)1.2102 (5)1.08437 (18)0.0343 (8)
O40.43421 (15)0.9726 (5)1.06733 (17)0.0337 (9)
N10.13617 (18)0.3687 (6)0.84326 (18)0.0235 (9)
N20.12194 (18)0.5366 (6)0.88310 (19)0.0239 (9)
H2N0.077 (3)0.598 (8)0.877 (3)0.036 (14)*
N30.09357 (18)0.9408 (6)0.94809 (19)0.0253 (9)
N40.36865 (19)1.0372 (6)1.05984 (19)0.0256 (9)
C10.0782 (2)0.2979 (7)0.7893 (2)0.0218 (10)
C20.0018 (2)0.3818 (7)0.7662 (2)0.0237 (10)
H20.04180.28100.76260.028*
C30.0214 (2)0.5874 (7)0.7502 (2)0.0239 (10)
H30.01830.69130.75640.029*
C40.0994 (2)0.6596 (8)0.7240 (2)0.0267 (10)
C50.1651 (2)0.7169 (8)0.7004 (2)0.0261 (10)
C60.2456 (2)0.7682 (7)0.6685 (2)0.0229 (10)
C70.3002 (2)0.6081 (8)0.6657 (2)0.0278 (11)
H70.28410.46940.68680.033*
C80.3780 (2)0.6527 (8)0.6322 (2)0.0307 (11)
H80.41500.54360.63010.037*
C90.4020 (2)0.8530 (8)0.6020 (2)0.0293 (11)
H90.45530.88160.57850.035*
C100.3485 (2)1.0128 (8)0.6058 (2)0.0292 (11)
H100.36501.15220.58570.035*
C110.2702 (2)0.9698 (7)0.6390 (2)0.0268 (10)
H110.23361.08020.64140.032*
C120.0927 (2)0.1107 (7)0.7471 (2)0.0210 (9)
C130.0446 (2)0.0721 (7)0.6754 (2)0.0260 (10)
H130.00180.16440.65340.031*
C140.0585 (2)0.1003 (7)0.6353 (2)0.0275 (11)
H140.02530.12400.58590.033*
C150.1208 (2)0.2392 (7)0.6668 (2)0.0245 (10)
C160.1688 (2)0.2011 (7)0.7387 (2)0.0261 (10)
H160.21080.29600.76110.031*
C170.1563 (2)0.0273 (7)0.7783 (2)0.0251 (10)
H170.19080.00030.82690.030*
C180.1338 (2)0.4305 (8)0.6238 (3)0.0331 (12)
H18C0.15080.55520.65690.050*
H18B0.17330.39410.60230.050*
H18A0.08560.46670.58410.050*
C190.1805 (2)0.6534 (7)0.9298 (2)0.0218 (10)
C200.1700 (2)0.8485 (7)0.9621 (2)0.0207 (9)
C210.2312 (2)0.9736 (7)1.0058 (2)0.0216 (10)
H210.22261.10751.02610.026*
C220.3048 (2)0.8976 (7)1.0187 (2)0.0221 (10)
C230.3174 (2)0.7040 (8)0.9893 (2)0.0251 (10)
H230.36870.65490.99960.030*
C240.2583 (2)0.5810 (7)0.9458 (2)0.0261 (10)
H240.26850.44760.92610.031*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0141 (15)0.054 (2)0.049 (2)0.0019 (15)0.0020 (14)0.0209 (18)
O20.0210 (15)0.045 (2)0.0337 (19)0.0090 (14)0.0032 (13)0.0054 (16)
O30.0243 (16)0.036 (2)0.0363 (19)0.0025 (14)0.0024 (13)0.0077 (15)
O40.0146 (14)0.048 (2)0.0335 (18)0.0014 (14)0.0018 (12)0.0048 (15)
N10.0194 (17)0.030 (2)0.0198 (18)0.0003 (15)0.0045 (14)0.0016 (15)
N20.0113 (16)0.036 (2)0.0210 (19)0.0008 (15)0.0010 (14)0.0081 (16)
N30.0165 (17)0.034 (2)0.0212 (19)0.0048 (16)0.0011 (14)0.0079 (16)
N40.0204 (18)0.033 (2)0.0205 (19)0.0014 (16)0.0033 (14)0.0011 (16)
C10.0145 (19)0.031 (3)0.019 (2)0.0018 (17)0.0055 (16)0.0040 (17)
C20.0153 (19)0.032 (3)0.023 (2)0.0005 (18)0.0053 (16)0.0000 (19)
C30.0149 (19)0.036 (3)0.017 (2)0.0038 (18)0.0001 (15)0.0029 (18)
C40.022 (2)0.036 (3)0.020 (2)0.0042 (19)0.0058 (17)0.0005 (19)
C50.021 (2)0.037 (3)0.016 (2)0.0047 (19)0.0004 (16)0.0026 (18)
C60.0140 (18)0.033 (3)0.019 (2)0.0037 (17)0.0017 (15)0.0028 (18)
C70.027 (2)0.036 (3)0.019 (2)0.001 (2)0.0067 (18)0.0023 (19)
C80.019 (2)0.045 (3)0.029 (2)0.005 (2)0.0081 (18)0.002 (2)
C90.016 (2)0.046 (3)0.024 (2)0.001 (2)0.0044 (17)0.004 (2)
C100.022 (2)0.039 (3)0.023 (2)0.010 (2)0.0021 (17)0.007 (2)
C110.021 (2)0.031 (3)0.025 (2)0.0005 (19)0.0038 (17)0.0026 (18)
C120.0152 (18)0.030 (3)0.017 (2)0.0005 (17)0.0045 (15)0.0024 (17)
C130.019 (2)0.032 (3)0.021 (2)0.0030 (18)0.0013 (17)0.0017 (19)
C140.022 (2)0.035 (3)0.020 (2)0.0017 (19)0.0011 (17)0.0041 (19)
C150.021 (2)0.027 (3)0.027 (2)0.0035 (18)0.0115 (17)0.0019 (18)
C160.0173 (19)0.033 (3)0.025 (2)0.0044 (18)0.0032 (17)0.0001 (19)
C170.0133 (19)0.037 (3)0.021 (2)0.0007 (18)0.0008 (16)0.0014 (19)
C180.023 (2)0.045 (3)0.031 (3)0.001 (2)0.0092 (19)0.010 (2)
C190.017 (2)0.031 (3)0.016 (2)0.0003 (17)0.0042 (16)0.0017 (17)
C200.0126 (19)0.028 (3)0.018 (2)0.0026 (16)0.0005 (15)0.0028 (17)
C210.023 (2)0.029 (3)0.0111 (19)0.0003 (18)0.0024 (15)0.0005 (17)
C220.0154 (19)0.033 (3)0.014 (2)0.0037 (18)0.0002 (15)0.0028 (17)
C230.0135 (19)0.037 (3)0.023 (2)0.0015 (18)0.0034 (16)0.0007 (19)
C240.017 (2)0.033 (3)0.025 (2)0.0033 (18)0.0033 (17)0.0020 (19)
Geometric parameters (Å, º) top
O1—N31.237 (4)C10—C111.394 (6)
O2—N31.215 (4)C10—H100.9500
O3—N41.224 (5)C11—H110.9500
O4—N41.236 (4)C12—C131.383 (6)
N1—C11.288 (5)C12—C171.409 (6)
N1—N21.366 (5)C13—C141.388 (6)
N2—C191.355 (5)C13—H130.9500
N2—H2N0.89 (5)C14—C151.396 (6)
N3—C201.461 (5)C14—H140.9500
N4—C221.457 (5)C15—C161.387 (6)
C1—C21.484 (5)C15—C181.507 (6)
C1—C121.488 (6)C16—C171.378 (6)
C2—C31.326 (6)C16—H160.9500
C2—H20.9500C17—H170.9500
C3—C41.427 (6)C18—H18C0.9800
C3—H30.9500C18—H18B0.9800
C4—C51.195 (6)C18—H18A0.9800
C5—C61.439 (5)C19—C201.398 (6)
C6—C111.377 (6)C19—C241.435 (5)
C6—C71.400 (6)C20—C211.391 (6)
C7—C81.388 (6)C21—C221.379 (6)
C7—H70.9500C21—H210.9500
C8—C91.373 (7)C22—C231.374 (6)
C8—H80.9500C23—C241.358 (6)
C9—C101.380 (6)C23—H230.9500
C9—H90.9500C24—H240.9500
C1—N1—N2116.2 (3)C17—C12—C1121.0 (4)
C19—N2—N1120.8 (3)C12—C13—C14120.6 (4)
C19—N2—H2N112 (3)C12—C13—H13119.7
N1—N2—H2N127 (3)C14—C13—H13119.7
O2—N3—O1122.2 (3)C13—C14—C15120.6 (4)
O2—N3—C20119.2 (3)C13—C14—H14119.7
O1—N3—C20118.6 (4)C15—C14—H14119.7
O3—N4—O4123.4 (4)C16—C15—C14118.8 (4)
O3—N4—C22119.6 (3)C16—C15—C18120.9 (4)
O4—N4—C22116.9 (4)C14—C15—C18120.3 (4)
N1—C1—C2126.5 (4)C17—C16—C15120.8 (4)
N1—C1—C12116.6 (3)C17—C16—H16119.6
C2—C1—C12117.0 (3)C15—C16—H16119.6
C3—C2—C1124.6 (4)C16—C17—C12120.4 (4)
C3—C2—H2117.7C16—C17—H17119.8
C1—C2—H2117.7C12—C17—H17119.8
C2—C3—C4122.9 (4)C15—C18—H18C109.5
C2—C3—H3118.5C15—C18—H18B109.5
C4—C3—H3118.5H18C—C18—H18B109.5
C5—C4—C3178.3 (5)C15—C18—H18A109.5
C4—C5—C6174.9 (5)H18C—C18—H18A109.5
C11—C6—C7119.2 (4)H18B—C18—H18A109.5
C11—C6—C5121.5 (4)N2—C19—C20123.5 (4)
C7—C6—C5119.3 (4)N2—C19—C24119.6 (4)
C8—C7—C6119.8 (4)C20—C19—C24116.9 (4)
C8—C7—H7120.1C21—C20—C19122.6 (4)
C6—C7—H7120.1C21—C20—N3115.6 (4)
C9—C8—C7120.6 (4)C19—C20—N3121.7 (3)
C9—C8—H8119.7C22—C21—C20118.0 (4)
C7—C8—H8119.7C22—C21—H21121.0
C8—C9—C10119.9 (4)C20—C21—H21121.0
C8—C9—H9120.1C23—C22—C21121.0 (4)
C10—C9—H9120.1C23—C22—N4121.2 (4)
C9—C10—C11120.1 (4)C21—C22—N4117.6 (4)
C9—C10—H10120.0C24—C23—C22121.7 (4)
C11—C10—H10120.0C24—C23—H23119.1
C6—C11—C10120.4 (4)C22—C23—H23119.1
C6—C11—H11119.8C23—C24—C19119.6 (4)
C10—C11—H11119.8C23—C24—H24120.2
C13—C12—C17118.7 (4)C19—C24—H24120.2
C13—C12—C1120.2 (4)
C1—N1—N2—C19165.5 (4)C13—C12—C17—C162.0 (6)
N2—N1—C1—C20.5 (6)C1—C12—C17—C16179.5 (4)
N2—N1—C1—C12178.2 (3)N1—N2—C19—C20168.5 (4)
N1—C1—C2—C354.1 (6)N1—N2—C19—C249.2 (6)
C12—C1—C2—C3127.2 (5)N2—C19—C20—C21175.4 (4)
C1—C2—C3—C4176.3 (4)C24—C19—C20—C212.4 (6)
C11—C6—C7—C81.3 (6)N2—C19—C20—N30.5 (6)
C5—C6—C7—C8177.2 (4)C24—C19—C20—N3178.3 (4)
C6—C7—C8—C90.4 (7)O2—N3—C20—C214.4 (6)
C7—C8—C9—C100.9 (7)O1—N3—C20—C21176.3 (4)
C8—C9—C10—C111.1 (7)O2—N3—C20—C19171.9 (4)
C7—C6—C11—C101.1 (6)O1—N3—C20—C197.5 (6)
C5—C6—C11—C10177.4 (4)C19—C20—C21—C221.6 (6)
C9—C10—C11—C60.1 (7)N3—C20—C21—C22177.8 (3)
N1—C1—C12—C13157.2 (4)C20—C21—C22—C230.0 (6)
C2—C1—C12—C1324.0 (6)C20—C21—C22—N4175.5 (3)
N1—C1—C12—C1721.3 (6)O3—N4—C22—C23178.9 (4)
C2—C1—C12—C17157.5 (4)O4—N4—C22—C230.4 (6)
C17—C12—C13—C140.5 (6)O3—N4—C22—C213.4 (6)
C1—C12—C13—C14179.0 (4)O4—N4—C22—C21175.9 (4)
C12—C13—C14—C150.7 (7)C21—C22—C23—C240.8 (7)
C13—C14—C15—C160.4 (6)N4—C22—C23—C24174.6 (4)
C13—C14—C15—C18177.8 (4)C22—C23—C24—C190.0 (7)
C14—C15—C16—C171.1 (6)N2—C19—C24—C23176.4 (4)
C18—C15—C16—C17179.3 (4)C20—C19—C24—C231.5 (6)
C15—C16—C17—C122.3 (7)
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C12–C17 ring.
D—H···AD—HH···AD···AD—H···A
N2—H2N···O10.89 (5)1.86 (5)2.597 (5)139 (4)
C8—H8···O1i0.952.493.396 (5)160
C10—H10···O2ii0.952.513.337 (5)146
C3—H3···Cg2iii0.952.633.504 (4)153
Symmetry codes: (i) x1/2, y1/2, z+3/2; (ii) x1/2, y+5/2, z1/2; (iii) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C12–C17 ring.
D—H···AD—HH···AD···AD—H···A
N2—H2N···O10.89 (5)1.86 (5)2.597 (5)139 (4)
C8—H8···O1i0.952.493.396 (5)160
C10—H10···O2ii0.952.513.337 (5)146
C3—H3···Cg2iii0.952.633.504 (4)153
Symmetry codes: (i) x1/2, y1/2, z+3/2; (ii) x1/2, y+5/2, z1/2; (iii) x, y+1, z.
 

Acknowledgements

The authors are grateful to the Ministry of Education and Science of the Russian Federation for supporting this work (State program No. 426).

References

First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChate, A. V., Joshi, R. S., Mandhane, P. G., Mohekar, S. R. & Gill, C. H. (2012). Phosphorus Sulfur Silicon Relat. Elem. 187, 327–335.  Web of Science CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGolovanov, A. A., Latypova, D. R., Bekin, V. V., Pisareva, V. S., Vologzhanina, A. V. & Dokichev, V. A. (2013). Russ. J. Org. Chem. 49, 1264–1269.  Web of Science CrossRef CAS Google Scholar
First citationKaraman, İ, Gezegen, H., Ceylan, M. & Dilmaç, M. (2012). Phosphorus Sulfur Silicon Relat. Elem. 187, 580–586.  Web of Science CrossRef CAS Google Scholar
First citationNielsen, S. F., Larsen, M., Boesen, T., Schønning, K. & Kromann, H. (2005). J. Med. Chem. 48, 2667–2677.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationVologzhanina, A. V., Golovanov, A. A., Gusev, D. M., Odin, S. I., Apreyan, R. A. & Suponitsky, K. Yu. (2014). Cryst. Growth Des. 14, 4402–4410.  Web of Science CSD CrossRef CAS Google Scholar
First citationWu, J., Li, J., Cai, Y., Pan, Y., Ye, F., Zhang, Y., Zhao, Y., Yang, S., Li, X. & Liang, G. (2011). J. Med. Chem. 54, 8110–8123.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds