research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of three co-crystals of 1,2-bis­­(pyridin-4-yl)ethane with 4-alk­­oxy­benzoic acids: 4-eth­­oxy­benzoic acid–1,2-bis­­(pyridin-4-yl)ethane (2/1), 4-n-propoxybenzoic acid–1,2-bis­(pyridin-4-yl)ethane (2/1) and 4-n-but­­oxy­benzoic acid–1,2-bis­­(pyridin-4-yl)ethane (2/1)

aDepartment of Chemistry, Faculty of Science, Okayama University, Okayama 700-8530, Japan
*Correspondence e-mail: ishidah@cc.okayama-u.ac.jp

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 12 October 2015; accepted 13 October 2015; online 17 October 2015)

The crystal structures of three hydrogen-bonded co-crystals of 4-alk­oxy­benzoic acid–1,2-bis­(pyridin-4-yl)ethane (2/1), namely, 2C9H10O3·C12H12N2, (I), 2C10H12O3·C12H12N2, (II), and 2C11H14O3·C12H12N2, (III), have been determined at 93, 290 and 93 K, respectively. In (I), the asymmetric unit consists of one 4-eth­oxy­benzoic acid mol­ecule and one half-mol­ecule of 1,2-bis­(pyridin-4-yl)ethane, which lies on an inversion centre. In (II) and (III), the asymmetric units each comprise two crystallographically independent 4-alk­oxy­benzoic acid mol­ecules and one 1,2-bis­(pyridin-4-yl)ethane mol­ecule. In each crystal, the two components are linked by O—H⋯N hydrogen bonds, forming a linear hydrogen-bonded 2:1unit of the acid and the base. Similar to the structure of 2:1 unit of (I), the units of (II) and (III) adopt nearly pseudo-inversion symmetry. The 2:1 units of (I), (II) and (III) are linked via C—H⋯O hydrogen bonds, forming tape structures.

1. Chemical context

Co-crystals of 4-alk­oxy­benzoic acid–4,4′-bipyridyl (2/1), in which the two acids and the base are held together by inter­molecular O—H⋯N hydrogen bonds, show thermotropic liquid crystallinity (Kato et al., 1990[Kato, T., Wilson, P. G., Fujishima, A. & Fréchet, J. M. J. (1990). Chem. Lett. pp. 2003-2006.], 1993[Kato, T., Fréchet, J. M. J., Wilson, P. G., Saito, T., Uryu, T., Fujishima, A., Jin, C. & Kaneuchi, F. (1993). Chem. Mater. 5, 1094-1100.]; Grunert et al., 1997[Grunert, M., Howie, A., Kaeding, A. & Imrie, C. T. (1997). J. Mater. Chem. 7, 211-214.]). Recently, we have reported the crystal structures of the three compounds of 4-eth­oxy-, 4-n-prop­oxy- and 4-n-but­oxy­benzoic acid (Tabuchi et al., 2015[Tabuchi, Y., Gotoh, K. & Ishida, H. (2015). Acta Cryst. E71, 1290-1295.]). As an expansion of our work on the structural characterization of hydrogen-bonded co-crystals which exhibit liquid phases, we have prepared compounds of 4-alk­oxy­benzoic acid–1,2-bis­(pyridin-4-yl)ethane (2/1) and analyzed the crystal structures. DSC (differential scanning calorimetry) and polarizing microscope measurements show that the compounds of 4-meth­oxy-, 4-eth­oxy- and 4-n-propoxybenzoic acid have nematic phases at 419 (1), 421 (1) and 419 (1) K, respectively, while the compound of 4-n-but­oxy­benzoic acid exhibits a smectic A phase at 413 (1) K and a nematic phase at 419 (1) K.

[Scheme 1]

We present here three structures of 4-eth­oxy­benzoic acid–1,2-bis­(pyridin-4-yl)ethane (2/1), (I)[link], 4-n-propoxybenzoic acid–1,2-bis­(pyridin-4-yl)ethane (2/1), (II)[link], and 4-n-but­oxy­benzoic acid–1,2-bis­(pyridin-4-yl)ethane (2/1), (III)[link]. The structure of 4-meth­oxy­benzoic acid–1,2-bis­(pyridin-4-yl)ethane (2/1) has been reported recently (Mukherjee & Desiraju, 2014[Mukherjee, A. & Desiraju, G. R. (2014). Cryst. Growth Des. 14, 1375-1385.]).

2. Structural commentary

The mol­ecular structures of (I)[link], (II)[link] and (III)[link] are shown in Fig. 1[link]. The asymmetric unit of (I)[link] consists of one 4-eth­oxy­benzoic acid mol­ecule and one half-mol­ecule of 1,2-bis(pyridin-4-yl)ethane which lies on an inversion centre. The two acid mol­ecules and the base mol­ecule are held together via O—H⋯N hydrogen bonds (Table 1[link]) to afford a centrosymmetric linear 2:1 unit. The hydrogen-bonded asymmetric unit is approximately planar with dihedral angles of 9.40 (11), 4.38 (11) and 2.76 (9)°, respectively, between the N1/C10–C14 and O1/C7/O2 planes, the O1/C7/O2 and C1–C6 planes, and the C1–C6 and O3/C8/C9 planes.

Table 1
Hydrogen-bond geometry (Å, °) for (I)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.967 (18) 1.659 (18) 2.6247 (17) 178.0 (14)
C6—H6⋯O2i 0.95 2.60 3.406 (2) 144
Symmetry code: (i) -x+1, -y, -z.
[Figure 1]
Figure 1
The mol­ecular structures of compounds (I)[link], (II)[link] and (III)[link] determined at 93, 290 and 93 K, respectively, with the atom labelling. Displacement ellipsoids are drawn at the 50% probability level. O—H⋯N hydrogen bonds are indicated by dashed lines [symmetry code for (I)[link]: (ii) −x, −y + 2, −z].

The asymmetric units of (II)[link] and (III)[link] are each composed of two crystallographically independent 4-alk­oxybenzoic acid mol­ecules and one 1,2-bis­(pyridin-4-yl)ethane mol­ecule, and the two acids and the base are held together by O—H⋯N hydrogen bonds (Tables 2[link] and 3[link]), forming a linear hydrogen-bonded 2:1 aggregate. Similar to the 2:1 unit of (I)[link], the units of (II)[link] and (III)[link] adopt nearly pseudo-inversion symmetry. The dihedral angles between the pyridine rings of 1,2-bis­(pyridin-4-yl)ethane are 14.36 (6) and 29.92 (7)°, respectively, for (II)[link] and (III)[link]. The pyridine ring and the carboxyl group hydrogen-bonded to it are twisted with respect to each other. In (II)[link], the dihedral angles between the N1/C21–C25 and O1/C7/O2 planes, and the N2/C26–C30 and O4/C17/O5 planes are 4.86 (14) and 7.71 (14)°, respectively, while those in (III)[link] are 9.48 (16) and 25.25 (17)°, respectively, between the N1/C23–C27 and O1/C7/O2 planes, and the N2/C28–C32 and O4/C17/O5 planes.

Table 2
Hydrogen-bond geometry (Å, °) for (II)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.966 (18) 1.657 (19) 2.6207 (17) 175.4 (16)
O4—H4⋯N2 1.010 (19) 1.610 (19) 2.6198 (17) 179 (2)
C6—H6⋯O2i 0.93 2.55 3.376 (2) 149
C27—H27⋯O5ii 0.93 2.52 3.389 (2) 156
Symmetry codes: (i) -x-2, -y, -z+1; (ii) -x+1, -y+1, -z+1.

Table 3
Hydrogen-bond geometry (Å, °) for (III)[link]

Cg1 and Cg2 are the centroids of the C1–C6 and C12–C17 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 1.02 (2) 1.60 (2) 2.6209 (18) 177 (2)
O4—H4⋯N2 1.03 (3) 1.58 (3) 2.6092 (18) 178.1 (19)
C32—H32⋯O3i 0.95 2.57 3.524 (2) 177
C11—H11ACg1ii 0.98 2.80 3.662 (2) 148
C33—H33ACg2iii 0.99 2.74 3.598 (2) 145
Symmetry codes: (i) x, y, z-1; (ii) -x+1, -y, -z+2; (iii) -x, -y+1, -z.

The mol­ecular structures of 4-n-prop­oxy- and 4-n-but­oxy­benzoic acids in (II)[link] and (III)[link] are approximately planar. The dihedral angles made by the benzene ring with the carboxyl group and the alk­oxy group in each propoxybenzoic acid in (II)[link] are 9.20 (14), 4.36 (14), 1.80 (11) and 5.98 (11)°, respectively, between the C1–C6 and O1/C7/O2 planes, the C11–C16 and O4/C17/O5 planes, the C1–C6 and O3/C8–C10 planes, and the C11–C16 and O6/C18–C20 planes. The corresponding dihedral angles in (III)[link] are 0.67 (16), 15.05 (17), 2.83 (10) and 11.86 (10)°, respectively, between the C1–C6 and O1/C7/O2 planes, the C12–C17 and O4/C18/O5 planes, the C1–C6 and O3/C8–C11 planes, and the C12–C17 and O6/C19–C22 planes.

3. Supra­molecular features

In the crystal of (I)[link], the 2:1 units are linked by a pair of C—H⋯O hydrogen bonds (Table 1[link]), forming a tape structure along [1[\overline{2}]0] (Fig. 2[link]). In addition, the units are stacked in a column through ππ inter­actions between the acid and base rings along the b axis (Fig. 3[link]). The centroid–centroid distance between the C1–C6 and N1/C10–C14(x, y − 1, z) rings is 3.592 (2) Å.

[Figure 2]
Figure 2
A partial packing diagram of compound (I)[link], showing the tape structure formed by C—H⋯O hydrogen bonds. H atoms not involved in C—H⋯O and O—H⋯N hydrogen bonds (dashed lines) have been omitted [symmetry codes: (i) −x + 1, −y, −z; (ii) −x, −y + 2, −z].
[Figure 3]
Figure 3
A partial packing diagram of compound (I)[link], showing the column structure formed by ππ stacking inter­actions (dashed lines). H atoms not involved in O—H⋯N hydrogen bonds (dashed lines) have been omitted [symmetry codes: (iii) x, y − 1, z; (iv) x, y + 1, z].

In the crystal of (II)[link] and (III)[link], the 2:1 units are linked by C—H⋯O inter­actions (Tables 2[link] and 3[link]), forming tape structures along [310] (Fig. 4[link]) and [001] (Fig. 5[link]), respectively. Between the tapes in (II)[link], a weak ππ inter­action is observed. The centroid–centroid distance between the C11–C16 benzene ring and the N2/C26–C30(x + 1, y, z) pyridine ring is 3.7115 (18) Å. On the other hand, between the tapes in (III)[link] C—H⋯π inter­actions are observed (Table 3[link]). Although the 2:1 units of the three compounds are arranged in the crystals with their long axes parallel to each other, the distinct layer structure leading to a smectic structure, as observed in 4-n-but­oxy­benzoic acid–4,4′-bipyridyl (2/1) (Tabuchi et al., 2015[Tabuchi, Y., Gotoh, K. & Ishida, H. (2015). Acta Cryst. E71, 1290-1295.]), is not observed.

[Figure 4]
Figure 4
A partial packing diagram of compound (II)[link], showing the tape structure formed by C—H⋯O inter­actions. H atoms not involved in C—H⋯O and O—H⋯N hydrogen bonds (dashed lines) have been omitted [symmetry codes: (i) −x − 2, −y, −z + 1; (ii) −x + 1, −y + 1, −z + 1].
[Figure 5]
Figure 5
A partial packing diagram of compound (III)[link], showing the tape structure formed by C—H⋯O inter­actions. H atoms not involved in C—H⋯O and O—H⋯N hydrogen bonds (dashed lines) have been omitted [symmetry codes: (i) x, y, z − 1; (iv) x, y, z + 1].

4. Database survey

A search of the Cambridge Structural Database (Version 5.36, last update February 2015; Groom & Allen, 2014[Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662-671.]) for co-crystals of 1,2-bis­(pyridin-4-yl)ethane with 4-alk­oxy­benzoic acid gave three structures (Mukherjee & Desiraju, 2014[Mukherjee, A. & Desiraju, G. R. (2014). Cryst. Growth Des. 14, 1375-1385.]; Aakeröy et al., 2005[Aakeröy, C. B., Desper, J. & Urbina, J. F. (2005). CrystEngComm, 7, 193-201.]). A similar compound, 4-pentyl­benzoic acid–1,2-bis­(pyridin-4-yl)ethane (2/1), was reported to exhibit transitions to liquid-crystalline phases (smectic A at 421.3 K and nematic at 439.6 K) and the mol­ecular motions were investigated by solid-state NMR (Duer et al., 1996[Duer, M. J., Gladden, L. F., Griffin, A. C., Jariwala, C. P. & Stourton, C. (1996). J. Chem. Soc. Faraday Trans. 92, 803-810.]; Clauss et al., 1996[Clauss, J., Duer, M. J., Gladden, L. F., Griffin, A. C., Jariwala, C. P. & Stourton, C. (1996). J. Chem. Soc. Faraday Trans. 92, 811-817.]).

5. Synthesis and crystallization

Single crystals of compound (I)[link] were obtained by slow evaporation from an acetone solution (150 ml) of 1,2-bis(pyridin-4-yl)ethane (67 mg) with 4-eth­oxy­benzoic acid (120 mg) at room temperature. Crystals of compounds (II)[link] and (III)[link] were obtained from ethanol solutions of 1,2-bis(pyridin-4-yl)ethane with 4-n-propoxybenzoic acid and 4-n-but­oxy­benzoic acid, respectively, at room temperature [ethanol solution (150 ml) of 1,2-bis­(pyridin-4-yl)ethane (62 mg) and 4-n-propoxybenzoic acid (120 mg) for (II)[link], and ethanol solution (150 ml) of 1,2-bis­(pyridin-4-yl)ethane (57 mg) and 4-n-but­oxy­benzoic acid (120 mg) for (III)].

6. DSC measurements

Phase transitions of 4-meth­oxy­benzoic acid–1,2-bis­(pyridin-4-yl)ethane (2/1) and the title three compounds were observed by DSC and the liquid phases were confirmed by polarizing microscopy. DSC measurements were performed by using a PerkinElmer Pyris 1 in the temperature range from 103 K to the melting temperature at a heating rate of 10 K min−1. Phase transition temperatures (K) and enthalpies (kJ mol−1) determined by DSC are as follows:

4-meth­oxy­benzoic acid–1,2-bis­(pyridin-4-yl)ethane (2/1) 419 (1) [56 (2)] K1 → N, 423 (1) [6.3 (13)] N → I;

(I) 353 (3) [4.5 (5)] K1 → K2, 373 (3) [6.55 (9)] K2 → K3, 404 (1) [0.89 (15)] K3 → K4, 421 (1) [49 (3)] K4 → N, 434 (1) [11.7 (10)] N → I;

(II) 365 (1) [17.9 (9)] K1 → K2, 419 (1) [39 (2)] K2 → N, 421 (1) [6.3 (2)] N → I;

(III) 339 (2) [4.4 (2)] K1 → K2, 399 (1) [0.33 (4)] K2 → K3, 413 (1) [39 (3)] K3 → SA, 419 (1) [0.74 (13)] SA → N, 424 (1) [9.8 (15)] N → I.

Ki, SA, N and I denote crystal, smectic A, nematic and isotropic phases, respectively.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. For all compounds, C-bound H atoms were positioned geometrically with C—H = 0.93–0.99 Å and were refined as riding with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C). The O-bound H atoms were located in difference Fourier maps and freely refined [refined O—H = 0.966 (18)–1.03 (3) Å].

Table 4
Experimental details

  (I) (II) (III)
Crystal data
Chemical formula 2C9H10O3·C12H12N2 2C10H12O3·C12H12N2 2C11H14O3·C12H12N2
Mr 516.57 544.63 572.68
Crystal system, space group Triclinic, P[\overline{1}] Triclinic, P[\overline{1}] Triclinic, P[\overline{1}]
Temperature (K) 93 290 93
a, b, c (Å) 6.967 (3), 9.163 (4), 10.813 (6) 9.121 (3), 12.552 (5), 13.306 (6) 7.702 (2), 10.726 (4), 19.010 (7)
α, β, γ (°) 75.41 (2), 74.97 (2), 77.801 (19) 71.328 (16), 75.076 (18), 89.817 (16) 83.861 (17), 78.794 (16), 73.612 (15)
V3) 637.3 (6) 1389.2 (9) 1475.5 (9)
Z 1 2 2
Radiation type Mo Kα Mo Kα Mo Kα
μ (mm−1) 0.09 0.09 0.09
Crystal size (mm) 0.42 × 0.38 × 0.36 0.40 × 0.30 × 0.20 0.40 × 0.20 × 0.10
 
Data collection
Diffractometer Rigaku R-AXIS RAPIDII Rigaku R-AXIS RAPIDII Rigaku R-AXIS RAPIDII
Absorption correction Multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.])
Tmin, Tmax 0.877, 0.967 0.601, 0.982 0.768, 0.991
No. of measured, independent and observed [I > 2σ(I)] reflections 6408, 2908, 2628 14034, 6347, 4294 14444, 6670, 5219
Rint 0.014 0.022 0.021
(sin θ/λ)max−1) 0.649 0.649 0.649
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.113, 1.07 0.041, 0.122, 0.97 0.043, 0.129, 1.06
No. of reflections 2908 6347 6670
No. of parameters 177 371 389
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.25, −0.40 0.18, −0.21 0.22, −0.36
Computer programs: RAPID-AUTO (Rigaku, 2006[Rigaku (2006). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]), Il Milione (Burla et al., 2007[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G., Siliqi, D. & Spagna, R. (2007). J. Appl. Cryst. 40, 609-613.]), SHELXL2014/7 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), CrystalStructure (Rigaku, 2010[Rigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

For all compounds, data collection: RAPID-AUTO (Rigaku, 2006); cell refinement: RAPID-AUTO (Rigaku, 2006); data reduction: RAPID-AUTO (Rigaku, 2006); program(s) used to solve structure: Il Milione (Burla et al., 2007); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: CrystalStructure (Rigaku, 2010) and PLATON (Spek, 2009).

(I) 4-Ethoxybenzoic acid–1,2-bis(pyridin-4-yl)ethane (2/1) top
Crystal data top
2C9H10O3·C12H12N2Z = 1
Mr = 516.57F(000) = 274.00
Triclinic, P1Dx = 1.346 Mg m3
a = 6.967 (3) ÅMo Kα radiation, λ = 0.71075 Å
b = 9.163 (4) ÅCell parameters from 7263 reflections
c = 10.813 (6) Åθ = 3.1–30.0°
α = 75.41 (2)°µ = 0.09 mm1
β = 74.97 (2)°T = 93 K
γ = 77.801 (19)°Block, colorless
V = 637.3 (6) Å30.42 × 0.38 × 0.36 mm
Data collection top
Rigaku R-AXIS RAPIDII
diffractometer
2628 reflections with I > 2σ(I)
Detector resolution: 10.000 pixels mm-1Rint = 0.014
ω scansθmax = 27.5°, θmin = 3.1°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 98
Tmin = 0.877, Tmax = 0.967k = 1111
6408 measured reflectionsl = 1414
2908 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: mixed
wR(F2) = 0.113H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0808P)2 + 0.0636P]
where P = (Fo2 + 2Fc2)/3
2908 reflections(Δ/σ)max < 0.001
177 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.40 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Reflections were merged by SHELXL according to the crystal class for the calculation of statistics and refinement.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.08950 (10)0.17801 (7)0.27364 (6)0.01773 (17)
O20.36783 (10)0.14762 (7)0.11743 (7)0.02284 (18)
O30.30648 (10)0.53714 (7)0.43129 (6)0.01635 (17)
N10.08580 (11)0.46999 (8)0.17005 (7)0.01554 (18)
C10.25803 (12)0.07314 (9)0.26753 (8)0.01328 (19)
C20.12341 (13)0.13188 (10)0.38081 (8)0.01439 (19)
H20.01750.06450.42230.017*
C30.14273 (13)0.28698 (9)0.43308 (8)0.01467 (19)
H30.05110.32580.51040.018*
C40.29770 (13)0.38638 (9)0.37165 (8)0.01337 (19)
C50.42960 (12)0.32990 (9)0.25669 (8)0.01389 (19)
H50.53260.39760.21350.017*
C60.40911 (12)0.17344 (9)0.20570 (8)0.01382 (19)
H60.49940.13460.12770.017*
C70.24541 (13)0.09388 (10)0.21156 (8)0.01440 (19)
C80.46043 (13)0.64340 (10)0.36946 (9)0.0164 (2)
H8A0.59470.61720.36090.020*
H8B0.44210.63950.28080.020*
C90.44480 (14)0.80100 (10)0.45311 (10)0.0199 (2)
H9A0.46090.80320.54100.030*
H9B0.55060.87530.41360.030*
H9C0.31280.82690.45910.030*
C100.21117 (14)0.51152 (10)0.05431 (9)0.0174 (2)
H100.30310.43430.01590.021*
C110.21180 (13)0.66206 (10)0.01116 (8)0.0168 (2)
H110.30380.68650.09240.020*
C120.07739 (13)0.77805 (9)0.04216 (8)0.01326 (19)
C130.05253 (12)0.73458 (9)0.16120 (8)0.01421 (19)
H130.14790.80930.20100.017*
C140.04226 (12)0.58080 (9)0.22195 (8)0.01511 (19)
H140.13050.55330.30430.018*
C150.08332 (12)0.94192 (9)0.02916 (8)0.01380 (19)
H15A0.07600.95040.12100.017*
H15B0.21450.96860.03080.017*
H10.091 (2)0.285 (2)0.2343 (17)0.060 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0214 (3)0.0103 (3)0.0183 (3)0.0011 (2)0.0008 (2)0.0020 (2)
O20.0258 (4)0.0134 (3)0.0224 (4)0.0043 (3)0.0035 (3)0.0005 (2)
O30.0206 (3)0.0087 (3)0.0158 (3)0.0015 (2)0.0006 (2)0.0005 (2)
N10.0183 (4)0.0113 (3)0.0182 (4)0.0028 (3)0.0076 (3)0.0011 (3)
C10.0161 (4)0.0112 (4)0.0135 (4)0.0030 (3)0.0053 (3)0.0014 (3)
C20.0165 (4)0.0128 (4)0.0139 (4)0.0016 (3)0.0027 (3)0.0039 (3)
C30.0171 (4)0.0138 (4)0.0119 (4)0.0037 (3)0.0008 (3)0.0018 (3)
C40.0160 (4)0.0105 (4)0.0139 (4)0.0026 (3)0.0053 (3)0.0007 (3)
C50.0141 (4)0.0122 (4)0.0150 (4)0.0006 (3)0.0035 (3)0.0030 (3)
C60.0138 (4)0.0143 (4)0.0125 (4)0.0037 (3)0.0022 (3)0.0008 (3)
C70.0168 (4)0.0128 (4)0.0144 (4)0.0027 (3)0.0048 (3)0.0025 (3)
C80.0167 (4)0.0116 (4)0.0189 (4)0.0000 (3)0.0035 (3)0.0021 (3)
C90.0234 (4)0.0114 (4)0.0241 (5)0.0029 (3)0.0075 (4)0.0004 (3)
C100.0220 (4)0.0125 (4)0.0175 (4)0.0009 (3)0.0050 (3)0.0037 (3)
C110.0205 (4)0.0134 (4)0.0145 (4)0.0024 (3)0.0020 (3)0.0016 (3)
C120.0147 (4)0.0115 (4)0.0151 (4)0.0029 (3)0.0070 (3)0.0009 (3)
C130.0132 (4)0.0116 (4)0.0169 (4)0.0010 (3)0.0035 (3)0.0019 (3)
C140.0152 (4)0.0128 (4)0.0163 (4)0.0036 (3)0.0042 (3)0.0008 (3)
C150.0152 (4)0.0106 (4)0.0142 (4)0.0026 (3)0.0031 (3)0.0002 (3)
Geometric parameters (Å, º) top
O1—C71.3242 (11)C8—C91.5076 (13)
O1—H10.970 (19)C8—H8A0.9900
O2—C71.2169 (12)C8—H8B0.9900
O3—C41.3653 (11)C9—H9A0.9800
O3—C81.4353 (11)C9—H9B0.9800
N1—C141.3365 (12)C9—H9C0.9800
N1—C101.3445 (13)C10—C111.3831 (13)
C1—C61.3912 (12)C10—H100.9500
C1—C21.3983 (13)C11—C121.3954 (12)
C1—C71.4900 (13)C11—H110.9500
C2—C31.3825 (13)C12—C131.3874 (14)
C2—H20.9500C12—C151.5091 (13)
C3—C41.3978 (12)C13—C141.3920 (12)
C3—H30.9500C13—H130.9500
C4—C51.3936 (14)C14—H140.9500
C5—C61.3913 (12)C15—C15i1.5215 (16)
C5—H50.9500C15—H15A0.9900
C6—H60.9500C15—H15B0.9900
C7—O1—H1110.2 (10)H8A—C8—H8B108.4
C4—O3—C8117.24 (7)C8—C9—H9A109.5
C14—N1—C10117.48 (8)C8—C9—H9B109.5
C6—C1—C2119.07 (8)H9A—C9—H9B109.5
C6—C1—C7118.99 (8)C8—C9—H9C109.5
C2—C1—C7121.94 (8)H9A—C9—H9C109.5
C3—C2—C1120.72 (8)H9B—C9—H9C109.5
C3—C2—H2119.6N1—C10—C11122.73 (8)
C1—C2—H2119.6N1—C10—H10118.6
C2—C3—C4119.69 (8)C11—C10—H10118.6
C2—C3—H3120.2C10—C11—C12120.01 (9)
C4—C3—H3120.2C10—C11—H11120.0
O3—C4—C5124.27 (8)C12—C11—H11120.0
O3—C4—C3115.52 (8)C13—C12—C11117.06 (8)
C5—C4—C3120.21 (8)C13—C12—C15123.64 (8)
C6—C5—C4119.43 (8)C11—C12—C15119.28 (8)
C6—C5—H5120.3C12—C13—C14119.55 (8)
C4—C5—H5120.3C12—C13—H13120.2
C1—C6—C5120.84 (8)C14—C13—H13120.2
C1—C6—H6119.6N1—C14—C13123.16 (8)
C5—C6—H6119.6N1—C14—H14118.4
O2—C7—O1123.25 (9)C13—C14—H14118.4
O2—C7—C1122.84 (8)C12—C15—C15i115.14 (9)
O1—C7—C1113.92 (8)C12—C15—H15A108.5
O3—C8—C9108.07 (8)C15i—C15—H15A108.5
O3—C8—H8A110.1C12—C15—H15B108.5
C9—C8—H8A110.1C15i—C15—H15B108.5
O3—C8—H8B110.1H15A—C15—H15B107.5
C9—C8—H8B110.1
C6—C1—C2—C31.73 (13)C6—C1—C7—O1176.33 (7)
C7—C1—C2—C3177.82 (7)C2—C1—C7—O14.12 (12)
C1—C2—C3—C40.40 (13)C4—O3—C8—C9178.74 (7)
C8—O3—C4—C50.98 (12)C14—N1—C10—C110.07 (13)
C8—O3—C4—C3178.48 (7)N1—C10—C11—C120.53 (14)
C2—C3—C4—O3179.15 (7)C10—C11—C12—C130.12 (13)
C2—C3—C4—C51.37 (13)C10—C11—C12—C15178.65 (8)
O3—C4—C5—C6178.79 (7)C11—C12—C13—C140.71 (12)
C3—C4—C5—C61.78 (13)C15—C12—C13—C14177.75 (7)
C2—C1—C6—C51.31 (13)C10—N1—C14—C130.83 (12)
C7—C1—C6—C5178.25 (7)C12—C13—C14—N11.24 (13)
C4—C5—C6—C10.43 (13)C13—C12—C15—C15i7.83 (14)
C6—C1—C7—O23.77 (13)C11—C12—C15—C15i173.74 (8)
C2—C1—C7—O2175.77 (8)
Symmetry code: (i) x, y+2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.967 (18)1.659 (18)2.6247 (17)178.0 (14)
C6—H6···O2ii0.952.603.406 (2)144
Symmetry code: (ii) x+1, y, z.
(II) 4-n-Propoxybenzoic acid–1,2-bis(pyridin-4-yl)ethane (2/1) top
Crystal data top
2C10H12O3·C12H12N2Z = 2
Mr = 544.63F(000) = 580.00
Triclinic, P1Dx = 1.302 Mg m3
a = 9.121 (3) ÅMo Kα radiation, λ = 0.71075 Å
b = 12.552 (5) ÅCell parameters from 12886 reflections
c = 13.306 (6) Åθ = 3.0–30.1°
α = 71.328 (16)°µ = 0.09 mm1
β = 75.076 (18)°T = 290 K
γ = 89.817 (16)°Block, colorless
V = 1389.2 (9) Å30.40 × 0.30 × 0.20 mm
Data collection top
Rigaku R-AXIS RAPIDII
diffractometer
4294 reflections with I > 2σ(I)
Detector resolution: 10.000 pixels mm-1Rint = 0.022
ω scansθmax = 27.5°, θmin = 3.0°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1111
Tmin = 0.601, Tmax = 0.982k = 1616
14034 measured reflectionsl = 1717
6347 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: mixed
wR(F2) = 0.122H atoms treated by a mixture of independent and constrained refinement
S = 0.97 w = 1/[σ2(Fo2) + (0.0771P)2]
where P = (Fo2 + 2Fc2)/3
6347 reflections(Δ/σ)max = 0.001
371 parametersΔρmax = 0.18 e Å3
0 restraintsΔρmin = 0.21 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Reflections were merged by SHELXL according to the crystal class for the calculation of statistics and refinement.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.86106 (9)0.14285 (8)0.69416 (7)0.0513 (2)
O20.85639 (9)0.04844 (8)0.57825 (7)0.0572 (3)
O31.54698 (8)0.05094 (7)0.86644 (7)0.0468 (2)
O40.77073 (9)0.45876 (7)0.19717 (7)0.0492 (2)
O50.76146 (9)0.54551 (8)0.31997 (7)0.0581 (3)
O61.46050 (9)0.64460 (7)0.05092 (6)0.0470 (2)
N10.57003 (10)0.19071 (8)0.59325 (8)0.0432 (2)
N20.47841 (10)0.40765 (8)0.29105 (8)0.0438 (2)
C11.08880 (11)0.04396 (9)0.71057 (8)0.0356 (2)
C21.16087 (12)0.06518 (9)0.80729 (9)0.0386 (2)
H21.10570.10200.83820.046*
C31.31324 (12)0.03204 (9)0.85748 (9)0.0407 (3)
H31.36010.04570.92250.049*
C41.39693 (12)0.02169 (9)0.81125 (9)0.0380 (2)
C51.32604 (12)0.04396 (10)0.71520 (9)0.0407 (3)
H51.38110.08070.68430.049*
C61.17302 (12)0.01094 (9)0.66615 (9)0.0399 (2)
H61.12560.02590.60190.048*
C70.92513 (12)0.07793 (9)0.65432 (9)0.0384 (2)
C81.63612 (12)0.10691 (10)0.82118 (10)0.0449 (3)
H8A1.59290.17640.81640.054*
H8B1.63480.05910.74740.054*
C91.79706 (13)0.13286 (11)0.89263 (10)0.0484 (3)
H9A1.84270.06310.89330.058*
H9B1.79790.17630.96760.058*
C101.88892 (14)0.19964 (12)0.84880 (11)0.0557 (3)
H10A1.84250.26800.84710.084*
H10B1.89120.15520.77560.084*
H10C1.99100.21780.89600.084*
C110.99847 (12)0.55101 (9)0.19183 (9)0.0372 (2)
C121.08279 (12)0.51427 (9)0.10802 (9)0.0407 (3)
H121.03500.46720.08230.049*
C131.23598 (13)0.54654 (10)0.06260 (9)0.0426 (3)
H131.29070.52170.00620.051*
C141.30898 (12)0.61617 (9)0.10086 (9)0.0394 (2)
C151.22638 (12)0.65343 (10)0.18464 (9)0.0436 (3)
H151.27440.69970.21110.052*
C161.07223 (13)0.62128 (10)0.22845 (9)0.0437 (3)
H161.01690.64740.28370.052*
C170.83294 (12)0.51878 (9)0.24279 (9)0.0400 (2)
C181.53914 (13)0.70883 (10)0.09605 (10)0.0467 (3)
H18A1.53250.66590.17220.056*
H18B1.49100.77820.09440.056*
C191.70299 (13)0.73646 (11)0.03172 (10)0.0467 (3)
H19A1.71040.77900.04470.056*
H19B1.75220.66740.03420.056*
C201.78187 (14)0.80588 (11)0.08115 (11)0.0557 (3)
H20A1.77960.76170.15530.084*
H20B1.73000.87250.08130.084*
H20C1.88570.82710.03790.084*
C210.50433 (13)0.14613 (10)0.51637 (10)0.0448 (3)
H210.56420.09870.49870.054*
C220.35180 (12)0.16703 (10)0.46180 (10)0.0443 (3)
H220.31080.13360.40880.053*
C230.25902 (12)0.23753 (9)0.48532 (9)0.0369 (2)
C240.32816 (13)0.28490 (11)0.56375 (10)0.0494 (3)
H240.27150.33390.58190.059*
C250.48225 (13)0.25931 (12)0.61548 (10)0.0543 (3)
H250.52650.29190.66850.065*
C260.41740 (13)0.43030 (11)0.38378 (10)0.0474 (3)
H260.48030.46490.41140.057*
C270.26572 (13)0.40488 (10)0.44034 (10)0.0459 (3)
H270.22840.42200.50480.055*
C280.16865 (11)0.35392 (9)0.40132 (9)0.0376 (2)
C290.23253 (12)0.32884 (10)0.30641 (9)0.0424 (3)
H290.17280.29260.27800.051*
C300.38599 (13)0.35788 (10)0.25382 (10)0.0453 (3)
H300.42640.34170.18920.054*
C310.09183 (12)0.25894 (10)0.42528 (9)0.0401 (3)
H31A0.08180.29460.34720.048*
H31B0.04890.18670.43470.048*
C320.00142 (12)0.33167 (10)0.46139 (9)0.0406 (3)
H32A0.04200.40370.45240.049*
H32B0.00840.29580.53940.049*
H10.755 (2)0.1609 (15)0.6535 (14)0.098 (6)*
H40.658 (2)0.4399 (16)0.2335 (15)0.106 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0343 (4)0.0726 (6)0.0542 (5)0.0057 (4)0.0016 (4)0.0386 (5)
O20.0386 (4)0.0833 (6)0.0575 (5)0.0022 (4)0.0016 (4)0.0451 (5)
O30.0326 (4)0.0641 (5)0.0447 (5)0.0036 (4)0.0004 (3)0.0273 (4)
O40.0359 (4)0.0656 (5)0.0546 (5)0.0020 (4)0.0107 (4)0.0324 (4)
O50.0434 (5)0.0806 (6)0.0562 (5)0.0068 (4)0.0011 (4)0.0401 (5)
O60.0368 (4)0.0590 (5)0.0484 (5)0.0050 (4)0.0037 (3)0.0281 (4)
N10.0339 (5)0.0533 (6)0.0421 (5)0.0010 (4)0.0052 (4)0.0194 (4)
N20.0337 (5)0.0465 (5)0.0497 (6)0.0016 (4)0.0118 (4)0.0135 (5)
C10.0344 (5)0.0373 (5)0.0354 (6)0.0066 (4)0.0080 (4)0.0137 (5)
C20.0375 (5)0.0444 (6)0.0388 (6)0.0037 (5)0.0096 (4)0.0210 (5)
C30.0398 (6)0.0493 (6)0.0350 (6)0.0048 (5)0.0038 (4)0.0217 (5)
C40.0341 (5)0.0408 (6)0.0371 (6)0.0033 (4)0.0051 (4)0.0139 (5)
C50.0367 (5)0.0497 (6)0.0397 (6)0.0000 (5)0.0079 (4)0.0222 (5)
C60.0386 (6)0.0479 (6)0.0354 (6)0.0043 (5)0.0048 (4)0.0209 (5)
C70.0344 (5)0.0447 (6)0.0374 (6)0.0045 (5)0.0071 (4)0.0171 (5)
C80.0373 (6)0.0527 (7)0.0468 (7)0.0009 (5)0.0063 (5)0.0230 (5)
C90.0389 (6)0.0548 (7)0.0466 (7)0.0028 (5)0.0011 (5)0.0184 (6)
C100.0407 (6)0.0621 (8)0.0621 (8)0.0084 (6)0.0018 (6)0.0270 (7)
C110.0370 (5)0.0407 (6)0.0357 (6)0.0032 (4)0.0124 (4)0.0130 (5)
C120.0423 (6)0.0460 (6)0.0399 (6)0.0002 (5)0.0151 (5)0.0194 (5)
C130.0438 (6)0.0503 (6)0.0383 (6)0.0030 (5)0.0088 (5)0.0224 (5)
C140.0380 (5)0.0427 (6)0.0378 (6)0.0026 (5)0.0096 (4)0.0141 (5)
C150.0401 (6)0.0494 (6)0.0469 (6)0.0026 (5)0.0100 (5)0.0251 (5)
C160.0429 (6)0.0510 (7)0.0413 (6)0.0032 (5)0.0073 (5)0.0240 (5)
C170.0390 (6)0.0432 (6)0.0395 (6)0.0040 (5)0.0123 (5)0.0149 (5)
C180.0424 (6)0.0506 (7)0.0512 (7)0.0017 (5)0.0083 (5)0.0256 (6)
C190.0397 (6)0.0505 (7)0.0487 (7)0.0024 (5)0.0066 (5)0.0191 (5)
C200.0434 (6)0.0641 (8)0.0609 (8)0.0070 (6)0.0073 (6)0.0276 (7)
C210.0378 (6)0.0512 (7)0.0484 (7)0.0026 (5)0.0084 (5)0.0229 (5)
C220.0381 (6)0.0529 (7)0.0457 (6)0.0014 (5)0.0045 (5)0.0266 (5)
C230.0332 (5)0.0411 (6)0.0350 (5)0.0034 (4)0.0078 (4)0.0119 (5)
C240.0387 (6)0.0653 (8)0.0511 (7)0.0061 (5)0.0058 (5)0.0332 (6)
C250.0408 (6)0.0771 (9)0.0513 (7)0.0030 (6)0.0006 (5)0.0388 (7)
C260.0393 (6)0.0556 (7)0.0502 (7)0.0022 (5)0.0164 (5)0.0177 (6)
C270.0408 (6)0.0571 (7)0.0428 (6)0.0000 (5)0.0119 (5)0.0202 (5)
C280.0334 (5)0.0388 (6)0.0388 (6)0.0033 (4)0.0103 (4)0.0101 (5)
C290.0356 (5)0.0474 (6)0.0486 (7)0.0004 (5)0.0120 (5)0.0210 (5)
C300.0376 (6)0.0494 (7)0.0489 (7)0.0036 (5)0.0072 (5)0.0200 (5)
C310.0322 (5)0.0482 (6)0.0397 (6)0.0003 (5)0.0050 (4)0.0178 (5)
C320.0342 (5)0.0483 (6)0.0398 (6)0.0008 (5)0.0079 (4)0.0169 (5)
Geometric parameters (Å, º) top
O1—C71.3136 (14)C13—C141.3891 (15)
O1—H10.963 (19)C13—H130.9300
O2—C71.2108 (14)C14—C151.3885 (16)
O3—C41.3638 (13)C15—C161.3821 (16)
O3—C81.4297 (13)C15—H150.9300
O4—C171.3157 (14)C16—H160.9300
O4—H41.01 (2)C18—C191.4969 (16)
O5—C171.2110 (14)C18—H18A0.9700
O6—C141.3628 (13)C18—H18B0.9700
O6—C181.4355 (13)C19—C201.5245 (16)
N1—C251.3264 (15)C19—H19A0.9700
N1—C211.3294 (15)C19—H19B0.9700
N2—C301.3277 (15)C20—H20A0.9600
N2—C261.3352 (16)C20—H20B0.9600
C1—C61.3828 (15)C20—H20C0.9600
C1—C21.3935 (15)C21—C221.3754 (16)
C1—C71.4815 (15)C21—H210.9300
C2—C31.3778 (15)C22—C231.3841 (15)
C2—H20.9300C22—H220.9300
C3—C41.3881 (15)C23—C241.3770 (16)
C3—H30.9300C23—C311.5079 (15)
C4—C51.3897 (16)C24—C251.3840 (16)
C5—C61.3810 (15)C24—H240.9300
C5—H50.9300C25—H250.9300
C6—H60.9300C26—C271.3766 (17)
C8—C91.5002 (16)C26—H260.9300
C8—H8A0.9700C27—C281.3841 (15)
C8—H8B0.9700C27—H270.9300
C9—C101.5211 (16)C28—C291.3812 (16)
C9—H9A0.9700C28—C321.5084 (15)
C9—H9B0.9700C29—C301.3846 (16)
C10—H10A0.9600C29—H290.9300
C10—H10B0.9600C30—H300.9300
C10—H10C0.9600C31—C321.5113 (16)
C11—C161.3842 (15)C31—H31A0.9700
C11—C121.3903 (16)C31—H31B0.9700
C11—C171.4846 (16)C32—H32A0.9700
C12—C131.3761 (16)C32—H32B0.9700
C12—H120.9300
C7—O1—H1109.0 (11)O5—C17—O4122.94 (10)
C4—O3—C8117.37 (9)O5—C17—C11122.69 (10)
C17—O4—H4111.7 (11)O4—C17—C11114.38 (10)
C14—O6—C18116.48 (9)O6—C18—C19110.74 (10)
C25—N1—C21117.15 (10)O6—C18—H18A109.5
C30—N2—C26117.12 (10)C19—C18—H18A109.5
C6—C1—C2118.76 (10)O6—C18—H18B109.5
C6—C1—C7119.13 (10)C19—C18—H18B109.5
C2—C1—C7122.11 (10)H18A—C18—H18B108.1
C3—C2—C1120.48 (10)C18—C19—C20109.14 (10)
C3—C2—H2119.8C18—C19—H19A109.9
C1—C2—H2119.8C20—C19—H19A109.9
C2—C3—C4120.17 (10)C18—C19—H19B109.9
C2—C3—H3119.9C20—C19—H19B109.9
C4—C3—H3119.9H19A—C19—H19B108.3
O3—C4—C3116.02 (10)C19—C20—H20A109.5
O3—C4—C5124.12 (10)C19—C20—H20B109.5
C3—C4—C5119.85 (10)H20A—C20—H20B109.5
C6—C5—C4119.36 (10)C19—C20—H20C109.5
C6—C5—H5120.3H20A—C20—H20C109.5
C4—C5—H5120.3H20B—C20—H20C109.5
C5—C6—C1121.37 (10)N1—C21—C22122.90 (10)
C5—C6—H6119.3N1—C21—H21118.6
C1—C6—H6119.3C22—C21—H21118.6
O2—C7—O1122.92 (10)C21—C22—C23120.34 (11)
O2—C7—C1122.94 (10)C21—C22—H22119.8
O1—C7—C1114.14 (10)C23—C22—H22119.8
O3—C8—C9109.94 (10)C24—C23—C22116.51 (10)
O3—C8—H8A109.7C24—C23—C31123.83 (10)
C9—C8—H8A109.7C22—C23—C31119.66 (10)
O3—C8—H8B109.7C23—C24—C25119.76 (11)
C9—C8—H8B109.7C23—C24—H24120.1
H8A—C8—H8B108.2C25—C24—H24120.1
C8—C9—C10109.84 (10)N1—C25—C24123.33 (11)
C8—C9—H9A109.7N1—C25—H25118.3
C10—C9—H9A109.7C24—C25—H25118.3
C8—C9—H9B109.7N2—C26—C27123.04 (11)
C10—C9—H9B109.7N2—C26—H26118.5
H9A—C9—H9B108.2C27—C26—H26118.5
C9—C10—H10A109.5C26—C27—C28120.05 (11)
C9—C10—H10B109.5C26—C27—H27120.0
H10A—C10—H10B109.5C28—C27—H27120.0
C9—C10—H10C109.5C29—C28—C27116.80 (10)
H10A—C10—H10C109.5C29—C28—C32123.87 (10)
H10B—C10—H10C109.5C27—C28—C32119.32 (10)
C16—C11—C12118.39 (10)C28—C29—C30119.67 (10)
C16—C11—C17118.83 (10)C28—C29—H29120.2
C12—C11—C17122.78 (10)C30—C29—H29120.2
C13—C12—C11120.97 (10)N2—C30—C29123.30 (11)
C13—C12—H12119.5N2—C30—H30118.3
C11—C12—H12119.5C29—C30—H30118.3
C12—C13—C14120.07 (10)C23—C31—C32115.61 (10)
C12—C13—H13120.0C23—C31—H31A108.4
C14—C13—H13120.0C32—C31—H31A108.4
O6—C14—C15124.08 (10)C23—C31—H31B108.4
O6—C14—C13116.27 (10)C32—C31—H31B108.4
C15—C14—C13119.64 (10)H31A—C31—H31B107.4
C16—C15—C14119.53 (10)C28—C32—C31115.92 (10)
C16—C15—H15120.2C28—C32—H32A108.3
C14—C15—H15120.2C31—C32—H32A108.3
C15—C16—C11121.38 (11)C28—C32—H32B108.3
C15—C16—H16119.3C31—C32—H32B108.3
C11—C16—H16119.3H32A—C32—H32B107.4
C6—C1—C2—C30.05 (16)C17—C11—C16—C15179.52 (10)
C7—C1—C2—C3179.81 (10)C16—C11—C17—O54.84 (17)
C1—C2—C3—C40.79 (17)C12—C11—C17—O5175.67 (11)
C8—O3—C4—C3179.71 (10)C16—C11—C17—O4175.24 (9)
C8—O3—C4—C50.69 (16)C12—C11—C17—O44.25 (16)
C2—C3—C4—O3179.73 (10)C14—O6—C18—C19178.58 (9)
C2—C3—C4—C51.21 (17)O6—C18—C19—C20179.25 (10)
O3—C4—C5—C6179.77 (10)C25—N1—C21—C220.98 (18)
C3—C4—C5—C60.78 (17)N1—C21—C22—C230.30 (19)
C4—C5—C6—C10.06 (17)C21—C22—C23—C240.73 (18)
C2—C1—C6—C50.48 (17)C21—C22—C23—C31179.59 (10)
C7—C1—C6—C5179.76 (10)C22—C23—C24—C251.05 (18)
C6—C1—C7—O28.98 (17)C31—C23—C24—C25179.28 (11)
C2—C1—C7—O2170.78 (11)C21—N1—C25—C240.6 (2)
C6—C1—C7—O1171.02 (10)C23—C24—C25—N10.4 (2)
C2—C1—C7—O19.22 (15)C30—N2—C26—C270.28 (18)
C4—O3—C8—C9179.75 (10)N2—C26—C27—C280.30 (19)
O3—C8—C9—C10176.05 (10)C26—C27—C28—C291.34 (17)
C16—C11—C12—C130.19 (17)C26—C27—C28—C32177.13 (10)
C17—C11—C12—C13179.68 (10)C27—C28—C29—C301.82 (17)
C11—C12—C13—C140.47 (17)C32—C28—C29—C30176.57 (10)
C18—O6—C14—C155.71 (16)C26—N2—C30—C290.25 (17)
C18—O6—C14—C13175.08 (10)C28—C29—C30—N21.35 (18)
C12—C13—C14—O6179.62 (10)C24—C23—C31—C323.71 (17)
C12—C13—C14—C150.37 (17)C22—C23—C31—C32176.64 (10)
O6—C14—C15—C16178.80 (10)C29—C28—C32—C3111.42 (17)
C13—C14—C15—C160.39 (17)C27—C28—C32—C31170.22 (10)
C14—C15—C16—C111.07 (18)C23—C31—C32—C28179.72 (9)
C12—C11—C16—C150.96 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.966 (18)1.657 (19)2.6207 (17)175.4 (16)
O4—H4···N21.010 (19)1.610 (19)2.6198 (17)179 (2)
C6—H6···O2i0.932.553.376 (2)149
C27—H27···O5ii0.932.523.389 (2)156
Symmetry codes: (i) x2, y, z+1; (ii) x+1, y+1, z+1.
(III) 4-n-Butoxybenzoic acid–1,2-bis(pyridin-4-yl)ethane (2/1) top
Crystal data top
2C11H14O3·C12H12N2Z = 2
Mr = 572.68F(000) = 612.00
Triclinic, P1Dx = 1.289 Mg m3
a = 7.702 (2) ÅMo Kα radiation, λ = 0.71075 Å
b = 10.726 (4) ÅCell parameters from 15221 reflections
c = 19.010 (7) Åθ = 3.0–30.2°
α = 83.861 (17)°µ = 0.09 mm1
β = 78.794 (16)°T = 93 K
γ = 73.612 (15)°Block, colorless
V = 1475.5 (9) Å30.40 × 0.20 × 0.10 mm
Data collection top
Rigaku R-AXIS RAPIDII
diffractometer
5219 reflections with I > 2σ(I)
Detector resolution: 10.000 pixels mm-1Rint = 0.021
ω scansθmax = 27.5°, θmin = 3.0°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 910
Tmin = 0.768, Tmax = 0.991k = 1213
14444 measured reflectionsl = 2424
6670 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: mixed
wR(F2) = 0.129H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0705P)2 + 0.390P]
where P = (Fo2 + 2Fc2)/3
6670 reflections(Δ/σ)max = 0.001
389 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.36 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Reflections were merged by SHELXL according to the crystal class for the calculation of statistics and refinement.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.51653 (13)0.27771 (9)0.61192 (5)0.0218 (2)
O20.64354 (14)0.06698 (9)0.59129 (5)0.0236 (2)
O30.68036 (13)0.09242 (9)0.92200 (5)0.0209 (2)
O40.22564 (13)0.47777 (10)0.13269 (5)0.0230 (2)
O50.11681 (15)0.69204 (10)0.11701 (5)0.0309 (3)
O60.08262 (14)0.65267 (9)0.44591 (5)0.0225 (2)
N10.45623 (15)0.30647 (11)0.47936 (6)0.0192 (2)
N20.28494 (16)0.44868 (12)0.00061 (6)0.0218 (3)
C10.62039 (17)0.13761 (13)0.70801 (7)0.0163 (3)
C20.56165 (17)0.24210 (13)0.75274 (7)0.0182 (3)
H20.50500.32650.73430.022*
C30.58528 (18)0.22352 (13)0.82341 (7)0.0193 (3)
H30.54600.29530.85330.023*
C40.66680 (17)0.09943 (13)0.85130 (7)0.0178 (3)
C50.72677 (18)0.00590 (13)0.80742 (7)0.0182 (3)
H50.78300.09040.82600.022*
C60.70292 (17)0.01481 (13)0.73615 (7)0.0176 (3)
H60.74390.05650.70590.021*
C70.59569 (17)0.15588 (13)0.63141 (7)0.0171 (3)
C80.76407 (18)0.03082 (13)0.95543 (7)0.0191 (3)
H8A0.89370.06350.93210.023*
H8B0.69770.09570.95140.023*
C90.75313 (18)0.00767 (14)1.03313 (7)0.0201 (3)
H9A0.62240.02411.05540.024*
H9B0.81400.06121.03580.024*
C100.84284 (19)0.12942 (14)1.07582 (7)0.0234 (3)
H10A0.78230.19851.07330.028*
H10B0.97380.16111.05390.028*
C110.8294 (2)0.10349 (16)1.15397 (7)0.0275 (3)
H11A0.70000.07011.17550.041*
H11B0.89580.03901.15680.041*
H11C0.88360.18461.18000.041*
C120.13736 (17)0.61449 (13)0.23165 (7)0.0186 (3)
C130.14716 (18)0.50757 (13)0.26965 (7)0.0200 (3)
H130.16740.42320.24620.024*
C140.12777 (18)0.52337 (13)0.34095 (7)0.0206 (3)
H140.13310.45020.36620.025*
C150.10025 (17)0.64686 (13)0.37591 (7)0.0182 (3)
C160.09327 (18)0.75389 (13)0.33906 (7)0.0192 (3)
H160.07640.83790.36290.023*
C170.11117 (17)0.73674 (13)0.26720 (7)0.0189 (3)
H170.10540.80990.24180.023*
C180.15721 (18)0.60009 (14)0.15474 (7)0.0205 (3)
C190.02570 (19)0.77902 (13)0.48132 (7)0.0196 (3)
H19A0.12330.82460.48710.024*
H19B0.08710.83240.45280.024*
C200.01042 (18)0.75828 (13)0.55364 (7)0.0199 (3)
H20A0.09720.70360.54730.024*
H20B0.10590.71140.58310.024*
C210.0906 (2)0.88721 (14)0.59280 (7)0.0244 (3)
H21A0.21010.93170.56440.029*
H21B0.00700.94370.59640.029*
C220.1187 (2)0.86963 (16)0.66777 (8)0.0279 (3)
H22A0.00000.82880.69680.042*
H22B0.17230.95470.69030.042*
H22C0.20170.81410.66450.042*
C230.48692 (18)0.19855 (13)0.44432 (7)0.0200 (3)
H230.52830.11660.46880.024*
C240.46126 (18)0.20069 (13)0.37437 (7)0.0197 (3)
H240.48510.12140.35170.024*
C250.40048 (17)0.31899 (13)0.33696 (7)0.0176 (3)
C260.3688 (2)0.43079 (13)0.37340 (7)0.0224 (3)
H260.32790.51400.35020.027*
C270.3969 (2)0.42053 (14)0.44380 (7)0.0227 (3)
H270.37290.49820.46800.027*
C280.18349 (19)0.54309 (15)0.04192 (7)0.0249 (3)
H280.09360.61160.02300.030*
C290.20326 (19)0.54573 (14)0.11249 (7)0.0224 (3)
H290.12780.61510.14090.027*
C300.33331 (17)0.44704 (13)0.14174 (7)0.0176 (3)
C310.43955 (19)0.34872 (13)0.09681 (7)0.0213 (3)
H310.53100.27920.11410.026*
C320.41101 (19)0.35308 (14)0.02703 (7)0.0221 (3)
H320.48420.28510.00280.027*
C330.37029 (19)0.32021 (13)0.26098 (7)0.0203 (3)
H33A0.25470.29620.26220.024*
H33B0.47170.25250.23550.024*
C340.35958 (18)0.44973 (12)0.21788 (7)0.0174 (3)
H34A0.25620.51730.24250.021*
H34B0.47410.47490.21720.021*
H10.497 (3)0.288 (2)0.5597 (13)0.060 (7)*
H40.247 (3)0.468 (2)0.0805 (14)0.069 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0304 (5)0.0184 (5)0.0149 (5)0.0016 (4)0.0083 (4)0.0015 (4)
O20.0355 (6)0.0196 (5)0.0155 (5)0.0052 (4)0.0069 (4)0.0011 (4)
O30.0293 (5)0.0204 (5)0.0122 (5)0.0023 (4)0.0087 (4)0.0002 (4)
O40.0268 (5)0.0238 (5)0.0158 (5)0.0011 (4)0.0076 (4)0.0015 (4)
O50.0420 (6)0.0285 (6)0.0196 (5)0.0005 (5)0.0105 (4)0.0044 (4)
O60.0329 (5)0.0204 (5)0.0124 (5)0.0031 (4)0.0067 (4)0.0009 (4)
N10.0218 (6)0.0222 (6)0.0131 (5)0.0046 (5)0.0048 (4)0.0013 (4)
N20.0261 (6)0.0261 (6)0.0139 (5)0.0077 (5)0.0062 (4)0.0020 (4)
C10.0165 (6)0.0193 (6)0.0134 (6)0.0050 (5)0.0039 (4)0.0012 (5)
C20.0203 (6)0.0167 (6)0.0166 (6)0.0032 (5)0.0052 (5)0.0022 (5)
C30.0231 (7)0.0183 (6)0.0160 (6)0.0037 (5)0.0044 (5)0.0023 (5)
C40.0174 (6)0.0231 (7)0.0131 (6)0.0053 (5)0.0044 (4)0.0006 (5)
C50.0197 (6)0.0169 (6)0.0167 (6)0.0020 (5)0.0055 (5)0.0017 (5)
C60.0185 (6)0.0177 (6)0.0157 (6)0.0030 (5)0.0028 (5)0.0026 (5)
C70.0181 (6)0.0188 (6)0.0151 (6)0.0063 (5)0.0036 (4)0.0013 (5)
C80.0204 (6)0.0201 (7)0.0163 (6)0.0028 (5)0.0069 (5)0.0015 (5)
C90.0196 (6)0.0257 (7)0.0142 (6)0.0044 (5)0.0046 (5)0.0017 (5)
C100.0245 (7)0.0277 (7)0.0158 (7)0.0040 (6)0.0055 (5)0.0036 (5)
C110.0292 (8)0.0367 (8)0.0166 (7)0.0087 (6)0.0079 (5)0.0049 (6)
C120.0151 (6)0.0233 (7)0.0152 (6)0.0017 (5)0.0037 (5)0.0008 (5)
C130.0213 (7)0.0196 (6)0.0172 (6)0.0026 (5)0.0051 (5)0.0025 (5)
C140.0253 (7)0.0176 (6)0.0184 (7)0.0036 (5)0.0053 (5)0.0018 (5)
C150.0180 (6)0.0216 (7)0.0129 (6)0.0024 (5)0.0029 (4)0.0003 (5)
C160.0196 (6)0.0191 (6)0.0170 (6)0.0031 (5)0.0034 (5)0.0020 (5)
C170.0186 (6)0.0195 (6)0.0182 (6)0.0033 (5)0.0042 (5)0.0026 (5)
C180.0181 (6)0.0263 (7)0.0155 (6)0.0029 (5)0.0043 (5)0.0007 (5)
C190.0244 (7)0.0187 (6)0.0143 (6)0.0036 (5)0.0050 (5)0.0020 (5)
C200.0223 (7)0.0227 (7)0.0141 (6)0.0049 (5)0.0044 (5)0.0004 (5)
C210.0274 (7)0.0260 (7)0.0171 (7)0.0017 (6)0.0069 (5)0.0011 (5)
C220.0291 (8)0.0355 (8)0.0200 (7)0.0086 (6)0.0102 (6)0.0053 (6)
C230.0227 (7)0.0197 (6)0.0171 (6)0.0044 (5)0.0058 (5)0.0026 (5)
C240.0239 (7)0.0182 (6)0.0174 (6)0.0054 (5)0.0051 (5)0.0005 (5)
C250.0169 (6)0.0220 (7)0.0137 (6)0.0055 (5)0.0029 (4)0.0009 (5)
C260.0312 (7)0.0177 (6)0.0167 (7)0.0020 (6)0.0086 (5)0.0015 (5)
C270.0312 (7)0.0196 (7)0.0166 (7)0.0032 (6)0.0077 (5)0.0018 (5)
C280.0250 (7)0.0280 (7)0.0189 (7)0.0005 (6)0.0079 (5)0.0010 (5)
C290.0234 (7)0.0246 (7)0.0162 (6)0.0011 (6)0.0037 (5)0.0017 (5)
C300.0195 (6)0.0215 (6)0.0133 (6)0.0078 (5)0.0038 (5)0.0010 (5)
C310.0246 (7)0.0208 (7)0.0170 (7)0.0020 (5)0.0069 (5)0.0007 (5)
C320.0282 (7)0.0224 (7)0.0153 (6)0.0056 (6)0.0040 (5)0.0015 (5)
C330.0286 (7)0.0202 (7)0.0136 (6)0.0074 (5)0.0070 (5)0.0004 (5)
C340.0220 (6)0.0186 (6)0.0123 (6)0.0049 (5)0.0051 (5)0.0010 (5)
Geometric parameters (Å, º) top
O1—C71.3234 (16)C14—C151.3962 (19)
O1—H11.02 (2)C14—H140.9500
O2—C71.2144 (17)C15—C161.391 (2)
O3—C41.3606 (16)C16—C171.3871 (19)
O3—C81.4372 (16)C16—H160.9500
O4—C181.3240 (17)C17—H170.9500
O4—H41.03 (3)C19—C201.5053 (18)
O5—C181.2146 (18)C19—H19A0.9900
O6—C151.3568 (16)C19—H19B0.9900
O6—C191.4374 (16)C20—C211.5246 (19)
N1—C231.3374 (18)C20—H20A0.9900
N1—C271.3380 (18)C20—H20B0.9900
N2—C281.3314 (18)C21—C221.521 (2)
N2—C321.3384 (18)C21—H21A0.9900
C1—C61.3906 (18)C21—H21B0.9900
C1—C21.3971 (18)C22—H22A0.9800
C1—C71.4903 (18)C22—H22B0.9800
C2—C31.3764 (18)C22—H22C0.9800
C2—H20.9500C23—C241.3788 (19)
C3—C41.3977 (18)C23—H230.9500
C3—H30.9500C24—C251.3915 (18)
C4—C51.3939 (19)C24—H240.9500
C5—C61.3887 (18)C25—C261.3871 (19)
C5—H50.9500C25—C331.5051 (18)
C6—H60.9500C26—C271.3849 (19)
C8—C91.5062 (19)C26—H260.9500
C8—H8A0.9900C27—H270.9500
C8—H8B0.9900C28—C291.3833 (19)
C9—C101.5243 (19)C28—H280.9500
C9—H9A0.9900C29—C301.3875 (19)
C9—H9B0.9900C29—H290.9500
C10—C111.519 (2)C30—C311.3946 (19)
C10—H10A0.9900C30—C341.5044 (18)
C10—H10B0.9900C31—C321.3799 (19)
C11—H11A0.9800C31—H310.9500
C11—H11B0.9800C32—H320.9500
C11—H11C0.9800C33—C341.5251 (19)
C12—C171.3895 (19)C33—H33A0.9900
C12—C131.396 (2)C33—H33B0.9900
C12—C181.4865 (18)C34—H34A0.9900
C13—C141.3796 (19)C34—H34B0.9900
C13—H130.9500
C7—O1—H1112.6 (13)O5—C18—O4124.19 (13)
C4—O3—C8119.21 (10)O5—C18—C12122.87 (13)
C18—O4—H4113.1 (13)O4—C18—C12112.93 (12)
C15—O6—C19117.94 (10)O6—C19—C20107.13 (11)
C23—N1—C27117.21 (12)O6—C19—H19A110.3
C28—N2—C32117.67 (12)C20—C19—H19A110.3
C6—C1—C2118.85 (12)O6—C19—H19B110.3
C6—C1—C7119.97 (12)C20—C19—H19B110.3
C2—C1—C7121.18 (12)H19A—C19—H19B108.5
C3—C2—C1120.44 (12)C19—C20—C21111.41 (11)
C3—C2—H2119.8C19—C20—H20A109.3
C1—C2—H2119.8C21—C20—H20A109.3
C2—C3—C4120.22 (12)C19—C20—H20B109.3
C2—C3—H3119.9C21—C20—H20B109.3
C4—C3—H3119.9H20A—C20—H20B108.0
O3—C4—C5124.82 (12)C22—C21—C20112.54 (12)
O3—C4—C3115.04 (11)C22—C21—H21A109.1
C5—C4—C3120.13 (12)C20—C21—H21A109.1
C6—C5—C4118.85 (12)C22—C21—H21B109.1
C6—C5—H5120.6C20—C21—H21B109.1
C4—C5—H5120.6H21A—C21—H21B107.8
C5—C6—C1121.50 (12)C21—C22—H22A109.5
C5—C6—H6119.3C21—C22—H22B109.5
C1—C6—H6119.3H22A—C22—H22B109.5
O2—C7—O1123.76 (12)C21—C22—H22C109.5
O2—C7—C1122.85 (12)H22A—C22—H22C109.5
O1—C7—C1113.38 (11)H22B—C22—H22C109.5
O3—C8—C9106.52 (11)N1—C23—C24123.07 (12)
O3—C8—H8A110.4N1—C23—H23118.5
C9—C8—H8A110.4C24—C23—H23118.5
O3—C8—H8B110.4C23—C24—C25120.01 (12)
C9—C8—H8B110.4C23—C24—H24120.0
H8A—C8—H8B108.6C25—C24—H24120.0
C8—C9—C10112.97 (12)C26—C25—C24116.82 (12)
C8—C9—H9A109.0C26—C25—C33123.58 (12)
C10—C9—H9A109.0C24—C25—C33119.59 (12)
C8—C9—H9B109.0C27—C26—C25119.72 (13)
C10—C9—H9B109.0C27—C26—H26120.1
H9A—C9—H9B107.8C25—C26—H26120.1
C11—C10—C9111.88 (12)N1—C27—C26123.16 (13)
C11—C10—H10A109.2N1—C27—H27118.4
C9—C10—H10A109.2C26—C27—H27118.4
C11—C10—H10B109.2N2—C28—C29122.87 (13)
C9—C10—H10B109.2N2—C28—H28118.6
H10A—C10—H10B107.9C29—C28—H28118.6
C10—C11—H11A109.5C28—C29—C30119.95 (13)
C10—C11—H11B109.5C28—C29—H29120.0
H11A—C11—H11B109.5C30—C29—H29120.0
C10—C11—H11C109.5C29—C30—C31116.87 (12)
H11A—C11—H11C109.5C29—C30—C34120.72 (12)
H11B—C11—H11C109.5C31—C30—C34122.39 (12)
C17—C12—C13118.89 (12)C32—C31—C30119.61 (12)
C17—C12—C18119.51 (12)C32—C31—H31120.2
C13—C12—C18121.60 (12)C30—C31—H31120.2
C14—C13—C12120.56 (13)N2—C32—C31123.03 (13)
C14—C13—H13119.7N2—C32—H32118.5
C12—C13—H13119.7C31—C32—H32118.5
C13—C14—C15119.97 (13)C25—C33—C34115.09 (11)
C13—C14—H14120.0C25—C33—H33A108.5
C15—C14—H14120.0C34—C33—H33A108.5
O6—C15—C16124.24 (12)C25—C33—H33B108.5
O6—C15—C14115.68 (12)C34—C33—H33B108.5
C16—C15—C14120.08 (12)H33A—C33—H33B107.5
C17—C16—C15119.31 (12)C30—C34—C33113.82 (11)
C17—C16—H16120.3C30—C34—H34A108.8
C15—C16—H16120.3C33—C34—H34A108.8
C16—C17—C12121.17 (12)C30—C34—H34B108.8
C16—C17—H17119.4C33—C34—H34B108.8
C12—C17—H17119.4H34A—C34—H34B107.7
C6—C1—C2—C30.01 (19)C18—C12—C17—C16179.58 (11)
C7—C1—C2—C3179.91 (12)C17—C12—C18—O514.7 (2)
C1—C2—C3—C40.6 (2)C13—C12—C18—O5166.26 (14)
C8—O3—C4—C50.84 (19)C17—C12—C18—O4164.26 (12)
C8—O3—C4—C3179.33 (11)C13—C12—C18—O414.75 (18)
C2—C3—C4—O3179.01 (12)C15—O6—C19—C20171.63 (10)
C2—C3—C4—C50.8 (2)O6—C19—C20—C21174.20 (11)
O3—C4—C5—C6179.42 (12)C19—C20—C21—C22176.83 (12)
C3—C4—C5—C60.40 (19)C27—N1—C23—C240.4 (2)
C4—C5—C6—C10.23 (19)N1—C23—C24—C250.1 (2)
C2—C1—C6—C50.43 (19)C23—C24—C25—C260.1 (2)
C7—C1—C6—C5179.47 (12)C23—C24—C25—C33179.12 (12)
C6—C1—C7—O20.6 (2)C24—C25—C26—C270.4 (2)
C2—C1—C7—O2179.28 (13)C33—C25—C26—C27178.76 (13)
C6—C1—C7—O1179.56 (11)C23—N1—C27—C260.7 (2)
C2—C1—C7—O10.54 (17)C25—C26—C27—N10.8 (2)
C4—O3—C8—C9178.27 (11)C32—N2—C28—C290.1 (2)
O3—C8—C9—C10178.06 (11)N2—C28—C29—C300.0 (2)
C8—C9—C10—C11179.82 (12)C28—C29—C30—C310.2 (2)
C17—C12—C13—C141.19 (19)C28—C29—C30—C34178.69 (13)
C18—C12—C13—C14179.80 (12)C29—C30—C31—C320.4 (2)
C12—C13—C14—C150.8 (2)C34—C30—C31—C32178.80 (13)
C19—O6—C15—C169.84 (19)C28—N2—C32—C310.1 (2)
C19—O6—C15—C14170.46 (11)C30—C31—C32—N20.3 (2)
C13—C14—C15—O6179.97 (11)C26—C25—C33—C3418.14 (19)
C13—C14—C15—C160.3 (2)C24—C25—C33—C34162.70 (12)
O6—C15—C16—C17179.36 (12)C29—C30—C34—C33133.61 (14)
C14—C15—C16—C170.95 (19)C31—C30—C34—C3348.02 (17)
C15—C16—C17—C120.52 (19)C25—C33—C34—C30178.79 (10)
C13—C12—C17—C160.54 (19)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C1–C6 and C12–C17 rings, respectively.
D—H···AD—HH···AD···AD—H···A
O1—H1···N11.02 (2)1.60 (2)2.6209 (18)177 (2)
O4—H4···N21.03 (3)1.58 (3)2.6092 (18)178.1 (19)
C32—H32···O3i0.952.573.524 (2)177
C11—H11A···Cg1ii0.982.803.662 (2)148
C33—H33A···Cg2iii0.992.743.598 (2)145
Symmetry codes: (i) x, y, z1; (ii) x+1, y, z+2; (iii) x, y+1, z.
 

References

First citationAakeröy, C. B., Desper, J. & Urbina, J. F. (2005). CrystEngComm, 7, 193–201.  Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G., Siliqi, D. & Spagna, R. (2007). J. Appl. Cryst. 40, 609–613.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationClauss, J., Duer, M. J., Gladden, L. F., Griffin, A. C., Jariwala, C. P. & Stourton, C. (1996). J. Chem. Soc. Faraday Trans. 92, 811–817.  CrossRef CAS Web of Science Google Scholar
First citationDuer, M. J., Gladden, L. F., Griffin, A. C., Jariwala, C. P. & Stourton, C. (1996). J. Chem. Soc. Faraday Trans. 92, 803–810.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.  Web of Science CSD CrossRef CAS Google Scholar
First citationGrunert, M., Howie, A., Kaeding, A. & Imrie, C. T. (1997). J. Mater. Chem. 7, 211–214.  CSD CrossRef CAS Web of Science Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationKato, T., Fréchet, J. M. J., Wilson, P. G., Saito, T., Uryu, T., Fujishima, A., Jin, C. & Kaneuchi, F. (1993). Chem. Mater. 5, 1094–1100.  CrossRef CAS Web of Science Google Scholar
First citationKato, T., Wilson, P. G., Fujishima, A. & Fréchet, J. M. J. (1990). Chem. Lett. pp. 2003–2006.  CrossRef Web of Science Google Scholar
First citationMukherjee, A. & Desiraju, G. R. (2014). Cryst. Growth Des. 14, 1375–1385.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku (2006). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTabuchi, Y., Gotoh, K. & Ishida, H. (2015). Acta Cryst. E71, 1290–1295.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds