research communications
E,2E)-3-[3-(4-fluorophenyl)-1-isopropyl-1H-indol-2-yl]allylidene}amino)-5-methyl-1H-1,2,4-triazole-5(4H)-thione
of 4-({(1aDepartment of Chemistry, KLS's Gogte Institute of Technology, Jnana Ganga, Udyambag, Belagavi 590 008 Karnataka, India, bUniversity Malaysia Pahang, Faculty of Industrial Sciences and Technology, 26300 Gambang, Kuantan, Pahang, Malaysia, cSchool of Chemical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and dX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: lutfor73@gmail.com
The title compound, C23H22FN5S, exists in a trans conformation with respect to the methene C=C and the acyclic N=C bonds. The 1,2,4-triazole-5(4H)-thione ring makes dihedral angles of 88.66 (9) and 84.51 (10)°, respectively, with the indole and benzene rings. In the crystal, molecules are linked by pairs of N—H⋯S hydrogen bonds, forming inversion dimers with an R22(8) ring motif. The dimers are linked via C—H⋯π interactions, forming chains along [1-10]. The chains are linked via π—π interactions involving inversion-related triazole rings [centroid–centroid distance = 3.4340 (13) Å], forming layers parallel to the ab plane.
Keywords: crystal structure; 1,2,4-triazole-5(4H)-thione; indole; Schiff base; N—H⋯S hydrogen bonds; C—H⋯π and π–π interactions.
CCDC reference: 1433130
1. Chemical context
The synthesis and functionalization of indoles has been a major area of focus for researchers for several decades. Indoles are of great importance in view of their natural occurrence as a prominent sub-structure of a large number of ; Hibino & Choshi, 2002) and wide-ranging biological activities (Gribble, 1995). They also constitute an important moiety of various drugs. In addition, 1,2,4-triazoles are an important class of which are well known for their potential antimicrobial properties. Substituted 1,2,4-triazoles are associated with diverse biological activities such as fungicidal, antimicrobial, anticonvulsant and antiviral activities (Walser et al., 1991; Eweiss et al., 1986; Bhat et al., 2001; Kitazaki et al., 1996; Todoulou et al., 1994). The proper design of indoles and triazoles can be used to prepare The wide spectrum of biological applications of 1,2,4-triazoles prompted us to synthesize derived from triazole and indole derivatives. The formation of the azomethine CH=N is thought to be the main reason for the biological properties of We have reported a number of metal complexes of recently, which possess very good antimicrobial properties (Kulkarni et al., 2009a,b, 2011).
(Somei & Yamada, 20032. Structural commentary
The title compound, Fig. 1, exists in a trans conformations with respect to the methene C9=C10 [1.322 (2) Å] and acyclic N2=C11 bonds [1.278 (2) Å]. The triazole ring is almost planar [maximum deviation of 0.011 (2) Å for atom C13], as is the indole ring [maximum deviation of 0.031 (2) Å for atom C4]. The triazole ring is almost normal to both the indole and benzene rings with dihedral angles of 88.66 (9) and 84.51 (10)°, respectively, while the indole and benzene ring are inclined to one another by 61.25 (8)°. The bond lengths and angles in the triazole-thione moiety of the title molecule are comparable to those reported for related compounds (Fun et al., 2008; Goh et al., 2009; Asad et al., 2010).
3. Supramolecular features
In the crystal, molecules are linked via pairs of N4—H4B⋯S1 hydrogen bonds, forming inversion dimers with an (8)ring motif (Table 1 and Fig. 2). The dimers are linked by C—H⋯π interactions (Table 1), forming chains along [10]. The chains are linked by slipped parallel π–·π interactions involving inversion-related triazole rings [Cg2⋯Cg2i = 3.4339 (13) Å; Cg2 is the centroid of the triazole ring (N3–N5/C12/C13); interplanar distance = 3.3696 (8) Å, slippage = 0.662 Å; symmetry code: (i) −x, −y + 1, −z + 2], forming layers parallel to the ab plane.
4. Database survey
A search of the Cambridge Structural Database (CSD, Version 35.6, last update May 2015; Groom and Allen, 2014) revealed the presence of 60 structures containing the triazole-thione moiety but only four structures containing the fluvastatin [systematic name: (3R,5S,6E)-7-[3-(4-fluorophenyl)-1-(propan-2-yl)-1H-indol-2-yl]-3,5-dihydroxyhept-6-enoic acid] nucleus. These include 5-[3-(4-fluorophenyl)-1-isopropyl-1H-indol-2-yl]-1-(X)penta-2,4-diene-1-one (Kalalbandi et al., 2015), where X = 4-nitrophenyl (NUHNAH), 2-hydroxyphenyl (NUHNEL), 4-methoxyphenyl (NUHNIP) and 4-chlorophenyl (NUHNOV). In the four compounds, the 4-fluorophenyl ring of the fluvastatin nucleus is inclined to the indole ring by dihedral angles ranging from ca 46.66 to 68.59°, compared to 61.25 (8)° for the title compound.
5. Synthesis and crystallization
The title compound was synthesized following a reported procedure (Kulkarni et al., 2011). A hot ethanolic solution (60 ml) of 3-substituted-4-amino-5-mercapto-1,2,4-triazole (0.01 mol) and fluvastatin (0.01 mol) were refluxed for 4–5 h with addition of 4–5 drops of concentrated hydrochloric acid. The precipitate obtained after evaporation of the solvent was filtered and washed with cold ethanol and recrystallized from hot ethanol. Crystals suitable for single-crystal were obtained by slow evaporation of a solution in chloroform (yield: 76%; m.p.: 469 K). 1H NMR (d6-DMSO): 10.6 (s, 1H, NH), 10.04 (s, 1H, CH=N), 7.1–7.6 (m, 8H, Ar–H), 6.47–6.56 (d, 2H, –CH=CH–), 2.38 (s, 1H, –CH3), 6.47–6.56 (s, 6H, isopropyl group). IR (KBr) cm−1: 3220, 3180 (N—H), 2753 (C—H), 1619 (C=N), 1500–1600 47 (C=C), 1102 (C=S). FAB MS: m/z 419. Elemental analysis: observed (calculated for C23H22FN5S) C, 65.94 (65.87); H, 5.19 (5.25); N, 16.66 (16.71) %.
6. Refinement
Crystal data, data collection and structure . The N-bound H atom was located in a difference Fourier map and freely refined. The C-bound H atoms were positioned geometrically [C—H = 0.93–0.98 Å] and refined using a riding model with Uiso(H) = 1.5Ueq(C-methyl) and 1.2Ueq(C) for other H atoms.
details are summarized in Table 2Supporting information
CCDC reference: 1433130
https://doi.org/10.1107/S2056989015020101/su5226sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989015020101/su5226Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989015020101/su5226Isup3.cml
Data collection: APEX2 (Bruker, 2009); cell
SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: SHELXL2013 (Sheldrick, 2015) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2013 (Sheldrick, 2015) and PLATON (Spek, 2009).C23H22FN5S | F(000) = 880 |
Mr = 419.51 | Dx = 1.286 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 6.4388 (8) Å | Cell parameters from 5835 reflections |
b = 23.482 (3) Å | θ = 2.8–27.5° |
c = 14.572 (3) Å | µ = 0.18 mm−1 |
β = 100.5009 (19)° | T = 297 K |
V = 2166.3 (6) Å3 | Block, yellow |
Z = 4 | 0.40 × 0.27 × 0.09 mm |
Bruker APEXII DUO CCD area-detector diffractometer | 5094 independent reflections |
Radiation source: fine-focus sealed tube | 3393 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.041 |
φ and ω scans | θmax = 27.8°, θmin = 1.7° |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | h = −8→8 |
Tmin = 0.779, Tmax = 0.932 | k = −30→30 |
24228 measured reflections | l = −19→18 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.046 | Hydrogen site location: mixed |
wR(F2) = 0.127 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.04 | w = 1/[σ2(Fo2) + (0.0559P)2 + 0.3794P] where P = (Fo2 + 2Fc2)/3 |
5094 reflections | (Δ/σ)max = 0.001 |
278 parameters | Δρmax = 0.24 e Å−3 |
0 restraints | Δρmin = −0.19 e Å−3 |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.39854 (8) | 0.40778 (2) | 0.98203 (4) | 0.06099 (17) | |
F1 | 0.5717 (2) | 0.13276 (6) | 1.27264 (9) | 0.0912 (4) | |
N1 | −0.3776 (2) | 0.17803 (6) | 0.86118 (10) | 0.0523 (4) | |
N2 | 0.0328 (2) | 0.36814 (6) | 1.09831 (11) | 0.0512 (4) | |
N3 | 0.0953 (2) | 0.42497 (6) | 1.09021 (10) | 0.0464 (3) | |
N4 | 0.2694 (3) | 0.49906 (7) | 1.07257 (11) | 0.0540 (4) | |
H4B | 0.358 (3) | 0.5255 (9) | 1.0558 (15) | 0.073 (7)* | |
N5 | 0.1315 (3) | 0.51498 (7) | 1.13047 (11) | 0.0564 (4) | |
C1 | −0.4000 (3) | 0.12025 (8) | 0.87117 (12) | 0.0497 (4) | |
C2 | −0.5378 (3) | 0.08101 (9) | 0.81951 (14) | 0.0598 (5) | |
H2A | −0.6413 | 0.0929 | 0.7702 | 0.072* | |
C3 | −0.5163 (3) | 0.02485 (9) | 0.84345 (15) | 0.0655 (6) | |
H3A | −0.6061 | −0.0017 | 0.8093 | 0.079* | |
C4 | −0.3635 (3) | 0.00615 (9) | 0.91768 (15) | 0.0636 (5) | |
H4A | −0.3509 | −0.0325 | 0.9313 | 0.076* | |
C5 | −0.2315 (3) | 0.04425 (8) | 0.97074 (14) | 0.0547 (5) | |
H5A | −0.1318 | 0.0318 | 1.0211 | 0.066* | |
C6 | −0.2489 (3) | 0.10201 (7) | 0.94809 (12) | 0.0457 (4) | |
C7 | −0.1334 (3) | 0.15099 (7) | 0.98611 (11) | 0.0446 (4) | |
C8 | −0.2146 (3) | 0.19687 (8) | 0.93150 (12) | 0.0474 (4) | |
C9 | −0.1544 (3) | 0.25633 (8) | 0.93989 (13) | 0.0529 (4) | |
H9A | −0.1696 | 0.2772 | 0.8848 | 0.063* | |
C10 | −0.0801 (3) | 0.28383 (8) | 1.01813 (13) | 0.0503 (4) | |
H10A | −0.0641 | 0.2640 | 1.0743 | 0.060* | |
C11 | −0.0232 (3) | 0.34278 (8) | 1.02010 (13) | 0.0498 (4) | |
H11A | −0.0270 | 0.3626 | 0.9646 | 0.060* | |
C12 | 0.2548 (3) | 0.44453 (8) | 1.04702 (12) | 0.0478 (4) | |
C13 | 0.0300 (3) | 0.46845 (8) | 1.14103 (13) | 0.0507 (4) | |
C14 | −0.1374 (3) | 0.46154 (10) | 1.19744 (16) | 0.0702 (6) | |
H14A | −0.2661 | 0.4498 | 1.1578 | 0.105* | |
H14B | −0.1598 | 0.4971 | 1.2265 | 0.105* | |
H14C | −0.0951 | 0.4332 | 1.2446 | 0.105* | |
C15 | −0.4963 (3) | 0.21375 (9) | 0.78577 (13) | 0.0592 (5) | |
H15A | −0.4358 | 0.2520 | 0.7967 | 0.071* | |
C16 | −0.7234 (4) | 0.22020 (12) | 0.79263 (17) | 0.0881 (8) | |
H16A | −0.7933 | 0.2432 | 0.7418 | 0.132* | |
H16B | −0.7342 | 0.2382 | 0.8508 | 0.132* | |
H16C | −0.7888 | 0.1833 | 0.7897 | 0.132* | |
C17 | −0.4518 (4) | 0.19635 (11) | 0.69253 (15) | 0.0850 (7) | |
H17A | −0.5220 | 0.2219 | 0.6456 | 0.127* | |
H17B | −0.5024 | 0.1583 | 0.6785 | 0.127* | |
H17C | −0.3023 | 0.1976 | 0.6937 | 0.127* | |
C18 | 0.0509 (3) | 0.14878 (7) | 1.06333 (12) | 0.0446 (4) | |
C19 | 0.0324 (3) | 0.12700 (8) | 1.15036 (13) | 0.0536 (5) | |
H19A | −0.0996 | 0.1158 | 1.1611 | 0.064* | |
C20 | 0.2057 (3) | 0.12172 (9) | 1.22087 (14) | 0.0604 (5) | |
H20A | 0.1915 | 0.1075 | 1.2789 | 0.072* | |
C21 | 0.3980 (3) | 0.13781 (9) | 1.20369 (14) | 0.0602 (5) | |
C22 | 0.4252 (3) | 0.15878 (9) | 1.11945 (15) | 0.0624 (5) | |
H22A | 0.5585 | 0.1693 | 1.1094 | 0.075* | |
C23 | 0.2508 (3) | 0.16406 (8) | 1.04971 (13) | 0.0548 (5) | |
H23A | 0.2676 | 0.1783 | 0.9919 | 0.066* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0679 (3) | 0.0568 (3) | 0.0619 (3) | −0.0073 (2) | 0.0215 (3) | −0.0065 (2) |
F1 | 0.0731 (8) | 0.1057 (11) | 0.0794 (9) | 0.0101 (7) | −0.0271 (7) | 0.0028 (8) |
N1 | 0.0596 (9) | 0.0492 (9) | 0.0423 (8) | 0.0011 (7) | −0.0065 (7) | 0.0004 (7) |
N2 | 0.0588 (9) | 0.0437 (8) | 0.0510 (9) | −0.0046 (7) | 0.0099 (7) | −0.0012 (7) |
N3 | 0.0505 (8) | 0.0427 (8) | 0.0439 (8) | −0.0035 (6) | 0.0032 (7) | −0.0005 (6) |
N4 | 0.0575 (9) | 0.0487 (9) | 0.0558 (10) | −0.0077 (8) | 0.0106 (8) | −0.0006 (7) |
N5 | 0.0577 (9) | 0.0509 (9) | 0.0594 (10) | −0.0023 (8) | 0.0073 (8) | −0.0055 (8) |
C1 | 0.0537 (10) | 0.0520 (11) | 0.0423 (10) | −0.0005 (8) | 0.0059 (8) | −0.0043 (8) |
C2 | 0.0636 (12) | 0.0635 (13) | 0.0485 (11) | −0.0081 (10) | 0.0005 (9) | −0.0069 (9) |
C3 | 0.0713 (13) | 0.0632 (13) | 0.0612 (13) | −0.0189 (11) | 0.0100 (11) | −0.0146 (10) |
C4 | 0.0787 (14) | 0.0463 (11) | 0.0681 (13) | −0.0077 (10) | 0.0197 (12) | −0.0062 (10) |
C5 | 0.0589 (11) | 0.0493 (11) | 0.0564 (11) | 0.0029 (9) | 0.0121 (9) | 0.0011 (9) |
C6 | 0.0490 (10) | 0.0459 (10) | 0.0424 (9) | 0.0021 (8) | 0.0091 (8) | −0.0026 (8) |
C7 | 0.0495 (10) | 0.0432 (9) | 0.0402 (9) | 0.0031 (8) | 0.0061 (8) | −0.0008 (7) |
C8 | 0.0523 (10) | 0.0471 (10) | 0.0407 (9) | 0.0010 (8) | 0.0023 (8) | −0.0023 (8) |
C9 | 0.0603 (11) | 0.0470 (10) | 0.0474 (10) | 0.0030 (8) | −0.0005 (9) | 0.0053 (8) |
C10 | 0.0557 (10) | 0.0455 (10) | 0.0495 (10) | 0.0001 (8) | 0.0091 (8) | 0.0010 (8) |
C11 | 0.0499 (10) | 0.0483 (10) | 0.0494 (11) | −0.0007 (8) | 0.0040 (8) | 0.0022 (8) |
C12 | 0.0503 (10) | 0.0486 (10) | 0.0416 (9) | −0.0048 (8) | 0.0007 (8) | 0.0028 (8) |
C13 | 0.0515 (10) | 0.0502 (11) | 0.0481 (10) | 0.0006 (8) | 0.0029 (8) | −0.0056 (8) |
C14 | 0.0722 (13) | 0.0654 (13) | 0.0783 (15) | −0.0021 (11) | 0.0277 (12) | −0.0120 (11) |
C15 | 0.0663 (12) | 0.0599 (12) | 0.0457 (11) | 0.0063 (10) | −0.0046 (9) | 0.0045 (9) |
C16 | 0.0896 (17) | 0.0990 (19) | 0.0737 (15) | 0.0358 (15) | 0.0092 (13) | 0.0178 (14) |
C17 | 0.1087 (19) | 0.0920 (18) | 0.0548 (13) | 0.0203 (15) | 0.0165 (13) | 0.0172 (12) |
C18 | 0.0495 (10) | 0.0391 (9) | 0.0436 (9) | 0.0042 (7) | 0.0041 (8) | −0.0019 (7) |
C19 | 0.0544 (10) | 0.0573 (11) | 0.0481 (10) | 0.0006 (9) | 0.0064 (8) | 0.0038 (9) |
C20 | 0.0727 (13) | 0.0614 (12) | 0.0437 (10) | 0.0064 (10) | 0.0016 (9) | 0.0065 (9) |
C21 | 0.0584 (12) | 0.0567 (12) | 0.0572 (12) | 0.0080 (9) | −0.0111 (9) | −0.0031 (10) |
C22 | 0.0464 (10) | 0.0647 (13) | 0.0736 (14) | 0.0022 (9) | 0.0042 (10) | −0.0006 (11) |
C23 | 0.0555 (11) | 0.0580 (11) | 0.0508 (11) | 0.0036 (9) | 0.0094 (9) | 0.0054 (9) |
S1—C12 | 1.6785 (19) | C9—H9A | 0.9300 |
F1—C21 | 1.365 (2) | C10—C11 | 1.431 (3) |
N1—C1 | 1.375 (2) | C10—H10A | 0.9300 |
N1—C8 | 1.398 (2) | C11—H11A | 0.9300 |
N1—C15 | 1.480 (2) | C13—C14 | 1.479 (3) |
N2—C11 | 1.278 (2) | C14—H14A | 0.9600 |
N2—N3 | 1.405 (2) | C14—H14B | 0.9600 |
N3—C13 | 1.372 (2) | C14—H14C | 0.9600 |
N3—C12 | 1.377 (2) | C15—C16 | 1.491 (3) |
N4—C12 | 1.332 (2) | C15—C17 | 1.496 (3) |
N4—N5 | 1.383 (2) | C15—H15A | 0.9800 |
N4—H4B | 0.91 (2) | C16—H16A | 0.9600 |
N5—C13 | 1.297 (2) | C16—H16B | 0.9600 |
C1—C2 | 1.400 (3) | C16—H16C | 0.9600 |
C1—C6 | 1.410 (2) | C17—H17A | 0.9600 |
C2—C3 | 1.365 (3) | C17—H17B | 0.9600 |
C2—H2A | 0.9300 | C17—H17C | 0.9600 |
C3—C4 | 1.394 (3) | C18—C23 | 1.385 (2) |
C3—H3A | 0.9300 | C18—C19 | 1.393 (2) |
C4—C5 | 1.371 (3) | C19—C20 | 1.377 (3) |
C4—H4A | 0.9300 | C19—H19A | 0.9300 |
C5—C6 | 1.396 (3) | C20—C21 | 1.361 (3) |
C5—H5A | 0.9300 | C20—H20A | 0.9300 |
C6—C7 | 1.426 (2) | C21—C22 | 1.363 (3) |
C7—C8 | 1.384 (2) | C22—C23 | 1.376 (3) |
C7—C18 | 1.480 (2) | C22—H22A | 0.9300 |
C8—C9 | 1.448 (3) | C23—H23A | 0.9300 |
C9—C10 | 1.322 (2) | ||
C1—N1—C8 | 108.31 (14) | N3—C12—S1 | 128.32 (14) |
C1—N1—C15 | 126.00 (15) | N5—C13—N3 | 110.63 (16) |
C8—N1—C15 | 125.60 (16) | N5—C13—C14 | 126.34 (17) |
C11—N2—N3 | 113.96 (15) | N3—C13—C14 | 123.02 (17) |
C13—N3—C12 | 109.04 (15) | C13—C14—H14A | 109.5 |
C13—N3—N2 | 122.74 (14) | C13—C14—H14B | 109.5 |
C12—N3—N2 | 127.16 (15) | H14A—C14—H14B | 109.5 |
C12—N4—N5 | 114.22 (16) | C13—C14—H14C | 109.5 |
C12—N4—H4B | 126.7 (14) | H14A—C14—H14C | 109.5 |
N5—N4—H4B | 119.1 (14) | H14B—C14—H14C | 109.5 |
C13—N5—N4 | 103.77 (15) | N1—C15—C16 | 112.83 (18) |
N1—C1—C2 | 131.40 (17) | N1—C15—C17 | 111.16 (17) |
N1—C1—C6 | 108.25 (15) | C16—C15—C17 | 116.2 (2) |
C2—C1—C6 | 120.35 (18) | N1—C15—H15A | 105.2 |
C3—C2—C1 | 118.28 (19) | C16—C15—H15A | 105.2 |
C3—C2—H2A | 120.9 | C17—C15—H15A | 105.2 |
C1—C2—H2A | 120.9 | C15—C16—H16A | 109.5 |
C2—C3—C4 | 121.82 (19) | C15—C16—H16B | 109.5 |
C2—C3—H3A | 119.1 | H16A—C16—H16B | 109.5 |
C4—C3—H3A | 119.1 | C15—C16—H16C | 109.5 |
C5—C4—C3 | 120.6 (2) | H16A—C16—H16C | 109.5 |
C5—C4—H4A | 119.7 | H16B—C16—H16C | 109.5 |
C3—C4—H4A | 119.7 | C15—C17—H17A | 109.5 |
C4—C5—C6 | 119.07 (19) | C15—C17—H17B | 109.5 |
C4—C5—H5A | 120.5 | H17A—C17—H17B | 109.5 |
C6—C5—H5A | 120.5 | C15—C17—H17C | 109.5 |
C5—C6—C1 | 119.82 (17) | H17A—C17—H17C | 109.5 |
C5—C6—C7 | 132.71 (17) | H17B—C17—H17C | 109.5 |
C1—C6—C7 | 107.42 (15) | C23—C18—C19 | 117.50 (17) |
C8—C7—C6 | 106.79 (15) | C23—C18—C7 | 121.29 (16) |
C8—C7—C18 | 129.11 (16) | C19—C18—C7 | 121.02 (16) |
C6—C7—C18 | 123.81 (15) | C20—C19—C18 | 121.35 (18) |
C7—C8—N1 | 109.23 (15) | C20—C19—H19A | 119.3 |
C7—C8—C9 | 129.40 (16) | C18—C19—H19A | 119.3 |
N1—C8—C9 | 121.36 (16) | C21—C20—C19 | 118.57 (18) |
C10—C9—C8 | 126.37 (17) | C21—C20—H20A | 120.7 |
C10—C9—H9A | 116.8 | C19—C20—H20A | 120.7 |
C8—C9—H9A | 116.8 | C20—C21—C22 | 122.43 (18) |
C9—C10—C11 | 122.75 (17) | C20—C21—F1 | 119.42 (19) |
C9—C10—H10A | 118.6 | C22—C21—F1 | 118.15 (19) |
C11—C10—H10A | 118.6 | C21—C22—C23 | 118.45 (19) |
N2—C11—C10 | 119.87 (17) | C21—C22—H22A | 120.8 |
N2—C11—H11A | 120.1 | C23—C22—H22A | 120.8 |
C10—C11—H11A | 120.1 | C22—C23—C18 | 121.70 (18) |
N4—C12—N3 | 102.30 (15) | C22—C23—H23A | 119.2 |
N4—C12—S1 | 129.35 (14) | C18—C23—H23A | 119.2 |
C11—N2—N3—C13 | 135.05 (17) | N3—N2—C11—C10 | 176.73 (15) |
C11—N2—N3—C12 | −58.1 (2) | C9—C10—C11—N2 | 174.77 (18) |
C12—N4—N5—C13 | 0.3 (2) | N5—N4—C12—N3 | 1.0 (2) |
C8—N1—C1—C2 | −179.70 (19) | N5—N4—C12—S1 | −177.04 (13) |
C15—N1—C1—C2 | −3.0 (3) | C13—N3—C12—N4 | −1.95 (18) |
C8—N1—C1—C6 | −0.5 (2) | N2—N3—C12—N4 | −170.26 (15) |
C15—N1—C1—C6 | 176.20 (16) | C13—N3—C12—S1 | 176.15 (14) |
N1—C1—C2—C3 | 176.7 (2) | N2—N3—C12—S1 | 7.8 (2) |
C6—C1—C2—C3 | −2.4 (3) | N4—N5—C13—N3 | −1.6 (2) |
C1—C2—C3—C4 | 0.6 (3) | N4—N5—C13—C14 | 179.73 (18) |
C2—C3—C4—C5 | 1.4 (3) | C12—N3—C13—N5 | 2.3 (2) |
C3—C4—C5—C6 | −1.5 (3) | N2—N3—C13—N5 | 171.27 (15) |
C4—C5—C6—C1 | −0.4 (3) | C12—N3—C13—C14 | −178.93 (17) |
C4—C5—C6—C7 | −177.33 (19) | N2—N3—C13—C14 | −10.0 (3) |
N1—C1—C6—C5 | −176.99 (16) | C1—N1—C15—C16 | 69.7 (3) |
C2—C1—C6—C5 | 2.3 (3) | C8—N1—C15—C16 | −114.2 (2) |
N1—C1—C6—C7 | 0.7 (2) | C1—N1—C15—C17 | −62.8 (3) |
C2—C1—C6—C7 | −179.99 (17) | C8—N1—C15—C17 | 113.3 (2) |
C5—C6—C7—C8 | 176.61 (19) | C8—C7—C18—C23 | −58.3 (3) |
C1—C6—C7—C8 | −0.63 (19) | C6—C7—C18—C23 | 114.7 (2) |
C5—C6—C7—C18 | 2.3 (3) | C8—C7—C18—C19 | 126.8 (2) |
C1—C6—C7—C18 | −174.99 (15) | C6—C7—C18—C19 | −60.2 (2) |
C6—C7—C8—N1 | 0.35 (19) | C23—C18—C19—C20 | 1.1 (3) |
C18—C7—C8—N1 | 174.31 (16) | C7—C18—C19—C20 | 176.15 (17) |
C6—C7—C8—C9 | 179.80 (18) | C18—C19—C20—C21 | −0.6 (3) |
C18—C7—C8—C9 | −6.2 (3) | C19—C20—C21—C22 | −0.1 (3) |
C1—N1—C8—C7 | 0.1 (2) | C19—C20—C21—F1 | −179.84 (17) |
C15—N1—C8—C7 | −176.62 (17) | C20—C21—C22—C23 | 0.4 (3) |
C1—N1—C8—C9 | −179.43 (17) | F1—C21—C22—C23 | −179.90 (18) |
C15—N1—C8—C9 | 3.9 (3) | C21—C22—C23—C18 | 0.1 (3) |
C7—C8—C9—C10 | −31.3 (3) | C19—C18—C23—C22 | −0.8 (3) |
N1—C8—C9—C10 | 148.07 (19) | C7—C18—C23—C22 | −175.87 (17) |
C8—C9—C10—C11 | 179.64 (17) |
Cg1 is the centroid of the C18–C23 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
N4—H4B···S1i | 0.91 (2) | 2.35 (2) | 3.257 (2) | 177.1 (15) |
C4—H4A···Cg1ii | 0.93 | 2.93 | 3.724 (2) | 144 |
Symmetry codes: (i) −x+1, −y+1, −z+2; (ii) −x, −y, −z+2. |
Acknowledgements
This research was supported by a PRGS Research Grant (No. RDU 130803).
References
Asad, M., Oo, C.-W., Osman, H., Yeap, C. S. & Fun, H.-K. (2010). Acta Cryst. E66, o2861–o2862. Web of Science CSD CrossRef IUCr Journals Google Scholar
Bhat, A. R., Bhat, G. V. & Shenoy, G. G. (2001). J. Pharm. Pharmacol. 53, 267–272. CrossRef PubMed CAS Google Scholar
Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Eweiss, N. F., Bahajaj, A. A. & Elsherbini, E. A. (1986). J. Heterocycl. Chem. 23, 1451–1458. CrossRef CAS Google Scholar
Fun, H.-K., Jebas, S. R., Sujith, K. V., Patil, P. S., Kalluraya, B. & Dharmaprakash, S. M. (2008). Acta Cryst. E64, o1528–o1529. Web of Science CSD CrossRef IUCr Journals Google Scholar
Goh, J. H., Fun, H.-K., Adhikari, A. & Kalluraya, B. (2009). Acta Cryst. E65, o3235–o3236. CrossRef IUCr Journals Google Scholar
Gribble, G. W. (1995). Comprehensive Heterocyclic Chemistry, edited by C. W. Bird, A. R. Katrizky, C. W. Rees & E. F. V. Scriven, Vol 2., 2nd ed., p. 207. Oxford: Pergamon. Google Scholar
Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671. Web of Science CSD CrossRef CAS Google Scholar
Hibino, S. & Choshi, T. (2002). Nat. Prod. Rep. 19, 148–180. Web of Science CrossRef PubMed CAS Google Scholar
Kalalbandi, V. K. A., Seetharamappa, J. & Katrahalli, U. (2015). RSC Adv. 5, 38748–38759. Web of Science CSD CrossRef CAS Google Scholar
Kitazaki, T., Tamura, N., Tasaka, A., Matsushita, Y., Hayashi, R., Okonogi, K. & Itoh, K. (1996). Chem. Pharm. Bull. 44, 314–327. CrossRef CAS PubMed Google Scholar
Kulkarni, A. D., Patil, S. A. & Badami, P. S. (2009a). J. Sulfur Chem. 30, 145–159. CrossRef CAS Google Scholar
Kulkarni, A. D., Patil, S. A., Naik, V. H. & Badami, P. S. (2009b). Int. J. Electrochem. Sci. 4, 717–729. CAS Google Scholar
Kulkarni, A. D., Patil, S. A., Naik, V. H. & Badami, P. S. (2011). Med. Chem. Res. 20, 346–354. Web of Science CrossRef CAS Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Somei, M. & Yamada, F. (2003). Nat. Prod. Rep. 20, 216–242. Web of Science CrossRef PubMed CAS Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Todoulou, O. G., Papadaki-Valiraki, A. E., Filippatos, E. C., Ikeda, S. & De Clercq, E. (1994). Eur. J. Med. Chem. 29, 127–131. CrossRef CAS Google Scholar
Walser, A., Flynn, T. & Mason, C. (1991). J. Heterocycl. Chem. 28, 1121–1125. CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.