research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 4-({(1E,2E)-3-[3-(4-fluoro­phen­yl)-1-iso­propyl-1H-indol-2-yl]allyl­­idene}amino)-5-methyl-1H-1,2,4-triazole-5(4H)-thione

aDepartment of Chemistry, KLS's Gogte Institute of Technology, Jnana Ganga, Udyambag, Belagavi 590 008 Karnataka, India, bUniversity Malaysia Pahang, Faculty of Industrial Sciences and Technology, 26300 Gambang, Kuantan, Pahang, Malaysia, cSchool of Chemical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and dX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: lutfor73@gmail.com

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 12 October 2015; accepted 24 October 2015; online 31 October 2015)

The title compound, C23H22FN5S, exists in a trans conformation with respect to the methene C=C and the acyclic N=C bonds. The 1,2,4-triazole-5(4H)-thione ring makes dihedral angles of 88.66 (9) and 84.51 (10)°, respectively, with the indole and benzene rings. In the crystal, mol­ecules are linked by pairs of N—H⋯S hydrogen bonds, forming inversion dimers with an R22(8) ring motif. The dimers are linked via C—H⋯π inter­actions, forming chains along [1-10]. The chains are linked via ππ inter­actions involving inversion-related triazole rings [centroid–centroid distance = 3.4340 (13) Å], forming layers parallel to the ab plane.

1. Chemical context

The synthesis and functionalization of indoles has been a major area of focus for researchers for several decades. Indoles are of great importance in view of their natural occurrence as a prominent sub-structure of a large number of alkaloids (Somei & Yamada, 2003[Somei, M. & Yamada, F. (2003). Nat. Prod. Rep. 20, 216-242.]; Hibino & Choshi, 2002[Hibino, S. & Choshi, T. (2002). Nat. Prod. Rep. 19, 148-180.]) and wide-ranging biological activities (Gribble, 1995[Gribble, G. W. (1995). Comprehensive Heterocyclic Chemistry, edited by C. W. Bird, A. R. Katrizky, C. W. Rees & E. F. V. Scriven, Vol 2., 2nd ed., p. 207. Oxford: Pergamon.]). They also constitute an important moiety of various drugs. In addition, 1,2,4-triazoles are an important class of heterocyclic compounds which are well known for their potential anti­microbial properties. Substituted 1,2,4-triazoles are associated with diverse biological activities such as fungicidal, anti­microbial, anti­convulsant and anti­viral activities (Walser et al., 1991[Walser, A., Flynn, T. & Mason, C. (1991). J. Heterocycl. Chem. 28, 1121-1125.]; Eweiss et al., 1986[Eweiss, N. F., Bahajaj, A. A. & Elsherbini, E. A. (1986). J. Heterocycl. Chem. 23, 1451-1458.]; Bhat et al., 2001[Bhat, A. R., Bhat, G. V. & Shenoy, G. G. (2001). J. Pharm. Pharmacol. 53, 267-272.]; Kitazaki et al., 1996[Kitazaki, T., Tamura, N., Tasaka, A., Matsushita, Y., Hayashi, R., Okonogi, K. & Itoh, K. (1996). Chem. Pharm. Bull. 44, 314-327.]; Todoulou et al., 1994[Todoulou, O. G., Papadaki-Valiraki, A. E., Filippatos, E. C., Ikeda, S. & De Clercq, E. (1994). Eur. J. Med. Chem. 29, 127-131.]). The proper design of indoles and triazoles can be used to prepare Schiff bases. The wide spectrum of biological applications of 1,2,4-triazoles prompted us to synthesize Schiff bases derived from triazole and indole derivatives. The formation of the azomethine functional group CH=N is thought to be the main reason for the biological properties of Schiff bases. We have reported a number of metal complexes of Schiff bases, recently, which possess very good anti­microbial properties (Kulkarni et al., 2009a[Kulkarni, A. D., Patil, S. A. & Badami, P. S. (2009a). J. Sulfur Chem. 30, 145-159.],b[Kulkarni, A. D., Patil, S. A., Naik, V. H. & Badami, P. S. (2009b). Int. J. Electrochem. Sci. 4, 717-729.], 2011[Kulkarni, A. D., Patil, S. A., Naik, V. H. & Badami, P. S. (2011). Med. Chem. Res. 20, 346-354.]).

2. Structural commentary

The title compound, Fig. 1[link], exists in a trans conformations with respect to the methene C9=C10 [1.322 (2) Å] and acyclic N2=C11 bonds [1.278 (2) Å]. The triazole ring is almost planar [maximum deviation of 0.011 (2) Å for atom C13], as is the indole ring [maximum deviation of 0.031 (2) Å for atom C4]. The triazole ring is almost normal to both the indole and benzene rings with dihedral angles of 88.66 (9) and 84.51 (10)°, respectively, while the indole and benzene ring are inclined to one another by 61.25 (8)°. The bond lengths and angles in the triazole-thione moiety of the title mol­ecule are comparable to those reported for related compounds (Fun et al., 2008[Fun, H.-K., Jebas, S. R., Sujith, K. V., Patil, P. S., Kalluraya, B. & Dharmaprakash, S. M. (2008). Acta Cryst. E64, o1528-o1529.]; Goh et al., 2009[Goh, J. H., Fun, H.-K., Adhikari, A. & Kalluraya, B. (2009). Acta Cryst. E65, o3235-o3236.]; Asad et al., 2010[Asad, M., Oo, C.-W., Osman, H., Yeap, C. S. & Fun, H.-K. (2010). Acta Cryst. E66, o2861-o2862.]).

[Scheme 1]
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 30% probability level.

3. Supra­molecular features

In the crystal, mol­ecules are linked via pairs of N4—H4B⋯S1 hydrogen bonds, forming inversion dimers with an [R_{2}^{2}](8)ring motif (Table 1[link] and Fig. 2[link]). The dimers are linked by C—H⋯π inter­actions (Table 1[link]), forming chains along [1[\overline{1}]0]. The chains are linked by slipped parallel π–·π inter­actions involving inversion-related triazole rings [Cg2⋯Cg2i = 3.4339 (13) Å; Cg2 is the centroid of the triazole ring (N3–N5/C12/C13); inter­planar distance = 3.3696 (8) Å, slippage = 0.662 Å; symmetry code: (i) −x, −y + 1, −z + 2], forming layers parallel to the ab plane.

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C18–C23 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4B⋯S1i 0.91 (2) 2.35 (2) 3.257 (2) 177.1 (15)
C4—H4ACg1ii 0.93 2.93 3.724 (2) 144
Symmetry codes: (i) -x+1, -y+1, -z+2; (ii) -x, -y, -z+2.
[Figure 2]
Figure 2
The crystal packing of the title compound viewed along the a axis. The N—H⋯S hydrogen bonds are shown as dashed lines (see Table 1[link]). H atoms not involved in hydrogen bonding have been omitted for clarity.

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 35.6, last update May 2015; Groom and Allen, 2014[Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662-671.]) revealed the presence of 60 structures containing the triazole-thione moiety but only four structures containing the fluvastatin [systematic name: (3R,5S,6E)-7-[3-(4-fluoro­phen­yl)-1-(propan-2-yl)-1H-indol-2-yl]-3,5-di­hydroxy­hept-6-enoic acid] nucleus. These include 5-[3-(4-fluoro­phen­yl)-1-isopropyl-1H-indol-2-yl]-1-(X)penta-2,4-diene-1-one (Kalalbandi et al., 2015[Kalalbandi, V. K. A., Seetharamappa, J. & Katrahalli, U. (2015). RSC Adv. 5, 38748-38759.]), where X = 4-nitro­phenyl (NUHNAH), 2-hy­droxy­phenyl (NUHNEL), 4-meth­oxy­phenyl (NUHNIP) and 4-chloro­phenyl (NUHNOV). In the four compounds, the 4-fluoro­phenyl ring of the fluvastatin nucleus is inclined to the indole ring by dihedral angles ranging from ca 46.66 to 68.59°, compared to 61.25 (8)° for the title compound.

5. Synthesis and crystallization

The title compound was synthesized following a reported procedure (Kulkarni et al., 2011[Kulkarni, A. D., Patil, S. A., Naik, V. H. & Badami, P. S. (2011). Med. Chem. Res. 20, 346-354.]). A hot ethano­lic solution (60 ml) of 3-substituted-4-amino-5-mercapto-1,2,4-triazole (0.01 mol) and fluvastatin (0.01 mol) were refluxed for 4–5 h with addition of 4–5 drops of concentrated hydro­chloric acid. The precipitate obtained after evaporation of the solvent was filtered and washed with cold ethanol and recrystallized from hot ethanol. Crystals suitable for single-crystal diffraction analysis were obtained by slow evaporation of a solution in chloro­form (yield: 76%; m.p.: 469 K). 1H NMR (d6-DMSO): 10.6 (s, 1H, NH), 10.04 (s, 1H, CH=N), 7.1–7.6 (m, 8H, Ar–H), 6.47–6.56 (d, 2H, –CH=CH–), 2.38 (s, 1H, –CH3), 6.47–6.56 (s, 6H, isopropyl group). IR (KBr) cm−1: 3220, 3180 (N—H), 2753 (C—H), 1619 (C=N), 1500–1600 47 (C=C), 1102 (C=S). FAB MS: m/z 419. Elemental analysis: observed (calculated for C23H22FN5S) C, 65.94 (65.87); H, 5.19 (5.25); N, 16.66 (16.71) %.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The N-bound H atom was located in a difference Fourier map and freely refined. The C-bound H atoms were positioned geometrically [C—H = 0.93–0.98 Å] and refined using a riding model with Uiso(H) = 1.5Ueq(C-meth­yl) and 1.2Ueq(C) for other H atoms.

Table 2
Experimental details

Crystal data
Chemical formula C23H22FN5S
Mr 419.51
Crystal system, space group Monoclinic, P21/c
Temperature (K) 297
a, b, c (Å) 6.4388 (8), 23.482 (3), 14.572 (3)
β (°) 100.5009 (19)
V3) 2166.3 (6)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.18
Crystal size (mm) 0.40 × 0.27 × 0.09
 
Data collection
Diffractometer Bruker APEXII DUO CCD area-detector
Absorption correction Multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.779, 0.932
No. of measured, independent and observed [I > 2σ(I)] reflections 24228, 5094, 3393
Rint 0.041
(sin θ/λ)max−1) 0.657
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.127, 1.04
No. of reflections 5094
No. of parameters 278
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.24, −0.19
Computer programs: APEX2 and SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2013 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: SHELXL2013 (Sheldrick, 2015) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2013 (Sheldrick, 2015) and PLATON (Spek, 2009).

4-({(1E,2E)-3-[3-(4-Fluorophenyl)-1-isopropyl-1H-indol-2-yl]allylidene}amino)-5-methyl-1H-1,2,4-triazole-5(4H)-thione top
Crystal data top
C23H22FN5SF(000) = 880
Mr = 419.51Dx = 1.286 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 6.4388 (8) ÅCell parameters from 5835 reflections
b = 23.482 (3) Åθ = 2.8–27.5°
c = 14.572 (3) ŵ = 0.18 mm1
β = 100.5009 (19)°T = 297 K
V = 2166.3 (6) Å3Block, yellow
Z = 40.40 × 0.27 × 0.09 mm
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
5094 independent reflections
Radiation source: fine-focus sealed tube3393 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
φ and ω scansθmax = 27.8°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 88
Tmin = 0.779, Tmax = 0.932k = 3030
24228 measured reflectionsl = 1918
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: mixed
wR(F2) = 0.127H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0559P)2 + 0.3794P]
where P = (Fo2 + 2Fc2)/3
5094 reflections(Δ/σ)max = 0.001
278 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.19 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.39854 (8)0.40778 (2)0.98203 (4)0.06099 (17)
F10.5717 (2)0.13276 (6)1.27264 (9)0.0912 (4)
N10.3776 (2)0.17803 (6)0.86118 (10)0.0523 (4)
N20.0328 (2)0.36814 (6)1.09831 (11)0.0512 (4)
N30.0953 (2)0.42497 (6)1.09021 (10)0.0464 (3)
N40.2694 (3)0.49906 (7)1.07257 (11)0.0540 (4)
H4B0.358 (3)0.5255 (9)1.0558 (15)0.073 (7)*
N50.1315 (3)0.51498 (7)1.13047 (11)0.0564 (4)
C10.4000 (3)0.12025 (8)0.87117 (12)0.0497 (4)
C20.5378 (3)0.08101 (9)0.81951 (14)0.0598 (5)
H2A0.64130.09290.77020.072*
C30.5163 (3)0.02485 (9)0.84345 (15)0.0655 (6)
H3A0.60610.00170.80930.079*
C40.3635 (3)0.00615 (9)0.91768 (15)0.0636 (5)
H4A0.35090.03250.93130.076*
C50.2315 (3)0.04425 (8)0.97074 (14)0.0547 (5)
H5A0.13180.03181.02110.066*
C60.2489 (3)0.10201 (7)0.94809 (12)0.0457 (4)
C70.1334 (3)0.15099 (7)0.98611 (11)0.0446 (4)
C80.2146 (3)0.19687 (8)0.93150 (12)0.0474 (4)
C90.1544 (3)0.25633 (8)0.93989 (13)0.0529 (4)
H9A0.16960.27720.88480.063*
C100.0801 (3)0.28383 (8)1.01813 (13)0.0503 (4)
H10A0.06410.26401.07430.060*
C110.0232 (3)0.34278 (8)1.02010 (13)0.0498 (4)
H11A0.02700.36260.96460.060*
C120.2548 (3)0.44453 (8)1.04702 (12)0.0478 (4)
C130.0300 (3)0.46845 (8)1.14103 (13)0.0507 (4)
C140.1374 (3)0.46154 (10)1.19744 (16)0.0702 (6)
H14A0.26610.44981.15780.105*
H14B0.15980.49711.22650.105*
H14C0.09510.43321.24460.105*
C150.4963 (3)0.21375 (9)0.78577 (13)0.0592 (5)
H15A0.43580.25200.79670.071*
C160.7234 (4)0.22020 (12)0.79263 (17)0.0881 (8)
H16A0.79330.24320.74180.132*
H16B0.73420.23820.85080.132*
H16C0.78880.18330.78970.132*
C170.4518 (4)0.19635 (11)0.69253 (15)0.0850 (7)
H17A0.52200.22190.64560.127*
H17B0.50240.15830.67850.127*
H17C0.30230.19760.69370.127*
C180.0509 (3)0.14878 (7)1.06333 (12)0.0446 (4)
C190.0324 (3)0.12700 (8)1.15036 (13)0.0536 (5)
H19A0.09960.11581.16110.064*
C200.2057 (3)0.12172 (9)1.22087 (14)0.0604 (5)
H20A0.19150.10751.27890.072*
C210.3980 (3)0.13781 (9)1.20369 (14)0.0602 (5)
C220.4252 (3)0.15878 (9)1.11945 (15)0.0624 (5)
H22A0.55850.16931.10940.075*
C230.2508 (3)0.16406 (8)1.04971 (13)0.0548 (5)
H23A0.26760.17830.99190.066*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0679 (3)0.0568 (3)0.0619 (3)0.0073 (2)0.0215 (3)0.0065 (2)
F10.0731 (8)0.1057 (11)0.0794 (9)0.0101 (7)0.0271 (7)0.0028 (8)
N10.0596 (9)0.0492 (9)0.0423 (8)0.0011 (7)0.0065 (7)0.0004 (7)
N20.0588 (9)0.0437 (8)0.0510 (9)0.0046 (7)0.0099 (7)0.0012 (7)
N30.0505 (8)0.0427 (8)0.0439 (8)0.0035 (6)0.0032 (7)0.0005 (6)
N40.0575 (9)0.0487 (9)0.0558 (10)0.0077 (8)0.0106 (8)0.0006 (7)
N50.0577 (9)0.0509 (9)0.0594 (10)0.0023 (8)0.0073 (8)0.0055 (8)
C10.0537 (10)0.0520 (11)0.0423 (10)0.0005 (8)0.0059 (8)0.0043 (8)
C20.0636 (12)0.0635 (13)0.0485 (11)0.0081 (10)0.0005 (9)0.0069 (9)
C30.0713 (13)0.0632 (13)0.0612 (13)0.0189 (11)0.0100 (11)0.0146 (10)
C40.0787 (14)0.0463 (11)0.0681 (13)0.0077 (10)0.0197 (12)0.0062 (10)
C50.0589 (11)0.0493 (11)0.0564 (11)0.0029 (9)0.0121 (9)0.0011 (9)
C60.0490 (10)0.0459 (10)0.0424 (9)0.0021 (8)0.0091 (8)0.0026 (8)
C70.0495 (10)0.0432 (9)0.0402 (9)0.0031 (8)0.0061 (8)0.0008 (7)
C80.0523 (10)0.0471 (10)0.0407 (9)0.0010 (8)0.0023 (8)0.0023 (8)
C90.0603 (11)0.0470 (10)0.0474 (10)0.0030 (8)0.0005 (9)0.0053 (8)
C100.0557 (10)0.0455 (10)0.0495 (10)0.0001 (8)0.0091 (8)0.0010 (8)
C110.0499 (10)0.0483 (10)0.0494 (11)0.0007 (8)0.0040 (8)0.0022 (8)
C120.0503 (10)0.0486 (10)0.0416 (9)0.0048 (8)0.0007 (8)0.0028 (8)
C130.0515 (10)0.0502 (11)0.0481 (10)0.0006 (8)0.0029 (8)0.0056 (8)
C140.0722 (13)0.0654 (13)0.0783 (15)0.0021 (11)0.0277 (12)0.0120 (11)
C150.0663 (12)0.0599 (12)0.0457 (11)0.0063 (10)0.0046 (9)0.0045 (9)
C160.0896 (17)0.0990 (19)0.0737 (15)0.0358 (15)0.0092 (13)0.0178 (14)
C170.1087 (19)0.0920 (18)0.0548 (13)0.0203 (15)0.0165 (13)0.0172 (12)
C180.0495 (10)0.0391 (9)0.0436 (9)0.0042 (7)0.0041 (8)0.0019 (7)
C190.0544 (10)0.0573 (11)0.0481 (10)0.0006 (9)0.0064 (8)0.0038 (9)
C200.0727 (13)0.0614 (12)0.0437 (10)0.0064 (10)0.0016 (9)0.0065 (9)
C210.0584 (12)0.0567 (12)0.0572 (12)0.0080 (9)0.0111 (9)0.0031 (10)
C220.0464 (10)0.0647 (13)0.0736 (14)0.0022 (9)0.0042 (10)0.0006 (11)
C230.0555 (11)0.0580 (11)0.0508 (11)0.0036 (9)0.0094 (9)0.0054 (9)
Geometric parameters (Å, º) top
S1—C121.6785 (19)C9—H9A0.9300
F1—C211.365 (2)C10—C111.431 (3)
N1—C11.375 (2)C10—H10A0.9300
N1—C81.398 (2)C11—H11A0.9300
N1—C151.480 (2)C13—C141.479 (3)
N2—C111.278 (2)C14—H14A0.9600
N2—N31.405 (2)C14—H14B0.9600
N3—C131.372 (2)C14—H14C0.9600
N3—C121.377 (2)C15—C161.491 (3)
N4—C121.332 (2)C15—C171.496 (3)
N4—N51.383 (2)C15—H15A0.9800
N4—H4B0.91 (2)C16—H16A0.9600
N5—C131.297 (2)C16—H16B0.9600
C1—C21.400 (3)C16—H16C0.9600
C1—C61.410 (2)C17—H17A0.9600
C2—C31.365 (3)C17—H17B0.9600
C2—H2A0.9300C17—H17C0.9600
C3—C41.394 (3)C18—C231.385 (2)
C3—H3A0.9300C18—C191.393 (2)
C4—C51.371 (3)C19—C201.377 (3)
C4—H4A0.9300C19—H19A0.9300
C5—C61.396 (3)C20—C211.361 (3)
C5—H5A0.9300C20—H20A0.9300
C6—C71.426 (2)C21—C221.363 (3)
C7—C81.384 (2)C22—C231.376 (3)
C7—C181.480 (2)C22—H22A0.9300
C8—C91.448 (3)C23—H23A0.9300
C9—C101.322 (2)
C1—N1—C8108.31 (14)N3—C12—S1128.32 (14)
C1—N1—C15126.00 (15)N5—C13—N3110.63 (16)
C8—N1—C15125.60 (16)N5—C13—C14126.34 (17)
C11—N2—N3113.96 (15)N3—C13—C14123.02 (17)
C13—N3—C12109.04 (15)C13—C14—H14A109.5
C13—N3—N2122.74 (14)C13—C14—H14B109.5
C12—N3—N2127.16 (15)H14A—C14—H14B109.5
C12—N4—N5114.22 (16)C13—C14—H14C109.5
C12—N4—H4B126.7 (14)H14A—C14—H14C109.5
N5—N4—H4B119.1 (14)H14B—C14—H14C109.5
C13—N5—N4103.77 (15)N1—C15—C16112.83 (18)
N1—C1—C2131.40 (17)N1—C15—C17111.16 (17)
N1—C1—C6108.25 (15)C16—C15—C17116.2 (2)
C2—C1—C6120.35 (18)N1—C15—H15A105.2
C3—C2—C1118.28 (19)C16—C15—H15A105.2
C3—C2—H2A120.9C17—C15—H15A105.2
C1—C2—H2A120.9C15—C16—H16A109.5
C2—C3—C4121.82 (19)C15—C16—H16B109.5
C2—C3—H3A119.1H16A—C16—H16B109.5
C4—C3—H3A119.1C15—C16—H16C109.5
C5—C4—C3120.6 (2)H16A—C16—H16C109.5
C5—C4—H4A119.7H16B—C16—H16C109.5
C3—C4—H4A119.7C15—C17—H17A109.5
C4—C5—C6119.07 (19)C15—C17—H17B109.5
C4—C5—H5A120.5H17A—C17—H17B109.5
C6—C5—H5A120.5C15—C17—H17C109.5
C5—C6—C1119.82 (17)H17A—C17—H17C109.5
C5—C6—C7132.71 (17)H17B—C17—H17C109.5
C1—C6—C7107.42 (15)C23—C18—C19117.50 (17)
C8—C7—C6106.79 (15)C23—C18—C7121.29 (16)
C8—C7—C18129.11 (16)C19—C18—C7121.02 (16)
C6—C7—C18123.81 (15)C20—C19—C18121.35 (18)
C7—C8—N1109.23 (15)C20—C19—H19A119.3
C7—C8—C9129.40 (16)C18—C19—H19A119.3
N1—C8—C9121.36 (16)C21—C20—C19118.57 (18)
C10—C9—C8126.37 (17)C21—C20—H20A120.7
C10—C9—H9A116.8C19—C20—H20A120.7
C8—C9—H9A116.8C20—C21—C22122.43 (18)
C9—C10—C11122.75 (17)C20—C21—F1119.42 (19)
C9—C10—H10A118.6C22—C21—F1118.15 (19)
C11—C10—H10A118.6C21—C22—C23118.45 (19)
N2—C11—C10119.87 (17)C21—C22—H22A120.8
N2—C11—H11A120.1C23—C22—H22A120.8
C10—C11—H11A120.1C22—C23—C18121.70 (18)
N4—C12—N3102.30 (15)C22—C23—H23A119.2
N4—C12—S1129.35 (14)C18—C23—H23A119.2
C11—N2—N3—C13135.05 (17)N3—N2—C11—C10176.73 (15)
C11—N2—N3—C1258.1 (2)C9—C10—C11—N2174.77 (18)
C12—N4—N5—C130.3 (2)N5—N4—C12—N31.0 (2)
C8—N1—C1—C2179.70 (19)N5—N4—C12—S1177.04 (13)
C15—N1—C1—C23.0 (3)C13—N3—C12—N41.95 (18)
C8—N1—C1—C60.5 (2)N2—N3—C12—N4170.26 (15)
C15—N1—C1—C6176.20 (16)C13—N3—C12—S1176.15 (14)
N1—C1—C2—C3176.7 (2)N2—N3—C12—S17.8 (2)
C6—C1—C2—C32.4 (3)N4—N5—C13—N31.6 (2)
C1—C2—C3—C40.6 (3)N4—N5—C13—C14179.73 (18)
C2—C3—C4—C51.4 (3)C12—N3—C13—N52.3 (2)
C3—C4—C5—C61.5 (3)N2—N3—C13—N5171.27 (15)
C4—C5—C6—C10.4 (3)C12—N3—C13—C14178.93 (17)
C4—C5—C6—C7177.33 (19)N2—N3—C13—C1410.0 (3)
N1—C1—C6—C5176.99 (16)C1—N1—C15—C1669.7 (3)
C2—C1—C6—C52.3 (3)C8—N1—C15—C16114.2 (2)
N1—C1—C6—C70.7 (2)C1—N1—C15—C1762.8 (3)
C2—C1—C6—C7179.99 (17)C8—N1—C15—C17113.3 (2)
C5—C6—C7—C8176.61 (19)C8—C7—C18—C2358.3 (3)
C1—C6—C7—C80.63 (19)C6—C7—C18—C23114.7 (2)
C5—C6—C7—C182.3 (3)C8—C7—C18—C19126.8 (2)
C1—C6—C7—C18174.99 (15)C6—C7—C18—C1960.2 (2)
C6—C7—C8—N10.35 (19)C23—C18—C19—C201.1 (3)
C18—C7—C8—N1174.31 (16)C7—C18—C19—C20176.15 (17)
C6—C7—C8—C9179.80 (18)C18—C19—C20—C210.6 (3)
C18—C7—C8—C96.2 (3)C19—C20—C21—C220.1 (3)
C1—N1—C8—C70.1 (2)C19—C20—C21—F1179.84 (17)
C15—N1—C8—C7176.62 (17)C20—C21—C22—C230.4 (3)
C1—N1—C8—C9179.43 (17)F1—C21—C22—C23179.90 (18)
C15—N1—C8—C93.9 (3)C21—C22—C23—C180.1 (3)
C7—C8—C9—C1031.3 (3)C19—C18—C23—C220.8 (3)
N1—C8—C9—C10148.07 (19)C7—C18—C23—C22175.87 (17)
C8—C9—C10—C11179.64 (17)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C18–C23 ring.
D—H···AD—HH···AD···AD—H···A
N4—H4B···S1i0.91 (2)2.35 (2)3.257 (2)177.1 (15)
C4—H4A···Cg1ii0.932.933.724 (2)144
Symmetry codes: (i) x+1, y+1, z+2; (ii) x, y, z+2.
 

Acknowledgements

This research was supported by a PRGS Research Grant (No. RDU 130803).

References

First citationAsad, M., Oo, C.-W., Osman, H., Yeap, C. S. & Fun, H.-K. (2010). Acta Cryst. E66, o2861–o2862.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBhat, A. R., Bhat, G. V. & Shenoy, G. G. (2001). J. Pharm. Pharmacol. 53, 267–272.  CrossRef PubMed CAS Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEweiss, N. F., Bahajaj, A. A. & Elsherbini, E. A. (1986). J. Heterocycl. Chem. 23, 1451–1458.  CrossRef CAS Google Scholar
First citationFun, H.-K., Jebas, S. R., Sujith, K. V., Patil, P. S., Kalluraya, B. & Dharmaprakash, S. M. (2008). Acta Cryst. E64, o1528–o1529.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGoh, J. H., Fun, H.-K., Adhikari, A. & Kalluraya, B. (2009). Acta Cryst. E65, o3235–o3236.  CrossRef IUCr Journals Google Scholar
First citationGribble, G. W. (1995). Comprehensive Heterocyclic Chemistry, edited by C. W. Bird, A. R. Katrizky, C. W. Rees & E. F. V. Scriven, Vol 2., 2nd ed., p. 207. Oxford: Pergamon.  Google Scholar
First citationGroom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.  Web of Science CSD CrossRef CAS Google Scholar
First citationHibino, S. & Choshi, T. (2002). Nat. Prod. Rep. 19, 148–180.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKalalbandi, V. K. A., Seetharamappa, J. & Katrahalli, U. (2015). RSC Adv. 5, 38748–38759.  Web of Science CSD CrossRef CAS Google Scholar
First citationKitazaki, T., Tamura, N., Tasaka, A., Matsushita, Y., Hayashi, R., Okonogi, K. & Itoh, K. (1996). Chem. Pharm. Bull. 44, 314–327.  CrossRef CAS PubMed Google Scholar
First citationKulkarni, A. D., Patil, S. A. & Badami, P. S. (2009a). J. Sulfur Chem. 30, 145–159.  CrossRef CAS Google Scholar
First citationKulkarni, A. D., Patil, S. A., Naik, V. H. & Badami, P. S. (2009b). Int. J. Electrochem. Sci. 4, 717–729.  CAS Google Scholar
First citationKulkarni, A. D., Patil, S. A., Naik, V. H. & Badami, P. S. (2011). Med. Chem. Res. 20, 346–354.  Web of Science CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSomei, M. & Yamada, F. (2003). Nat. Prod. Rep. 20, 216–242.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTodoulou, O. G., Papadaki-Valiraki, A. E., Filippatos, E. C., Ikeda, S. & De Clercq, E. (1994). Eur. J. Med. Chem. 29, 127–131.  CrossRef CAS Google Scholar
First citationWalser, A., Flynn, T. & Mason, C. (1991). J. Heterocycl. Chem. 28, 1121–1125.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds