1. Chemical context
Morpholine (tetrahydro-2-H-1,4-oxazine) is an moderately strong base (pKa = 8.33) and forms salts with a number of organic acids, some having medical applications, e.g. the salicylate (retarcyl, depasol), used as an analgesic, an antipyretic and an anti-inflammatory agent (O'Neil, 2001
). The crystal structures of a number of these morpholinate compounds have been reported, some examples of salts with substituted benzoic acids being the 4-aminosalicylate (André et al., 2009
), and a series of isomeric chloronitrobenzoates (2,4-, 2,5-, 4,2-, 4,3- and 5,2-) (Ishida et al., 2001a
,b
,c
). In these, cation–anion hydrogen-bonding interactions generate either one-dimensional chains or discrete cyclic heterotetrameric structures. Of interest is the mode of hydrogen bonding in crystals of the morpholinium salts of some phenoxyacetic acid analogues, no structures of which have been reported previously. The reaction of morpholine with phenoxyacetic acid (PAA), (4-fluorophenoxy)acetic acid (PFPA) and with the two isomeric homologues, (3,5-dichlorophenoxy)acetic acid (3,5-D) and the herbicidally active (2,4-dichlorophenoxy)acetic acid (2,4-D) (Zumdahl, 2010
), gave the anhydrous salts (I)–(IV), respectively. Their structures and hydrogen-bonding modes are reported on herein.
2. Structural commentary
The asymmetric units of (I)–(IV) comprise a morpholinium cation (B) and a phenoxyacetate anion (A) in (I)
(Fig. 1
), a (4-fluorophenoxy)acetate anion (A) in (II)
(Fig. 2
), a 3,5-dichlorophenoxyacetate anion (A) in (III)
(Fig. 3
) and a (2,4-dichlorophenoxy)acetate anion (A) in (IV)
(Fig. 4
). The conformation of the oxoacetate side chains in the anions of (I)
and (II)
are essentially planar, with the defining torsion angle C1A—O11A—C12A—C13A = 176.75 (14) and 176.53 (14)°, respectively. This antiperiplanar (180±30°) conformation is similar to those of the parent acids PAA (−175.1°; Kennard et al., 1982
), PFPA [176.0 (6)°; Smith et al., 1992
] and their proton-transfer salts, e.g. the ammonium salts of PAA [−177.48 (18)°] and PFPA [−178.98 (17)°] (Smith, 2014
). However, with the 3,5-D and 2,4-D salts, the side-chain conformations are both synclinal (90±30°) [−76.5 (2)° in (III)
and 72.91 (19)° in (IV)], similar to that in the parent acid 2,4-D (75.2°; Smith et al., 1976
), in the tryptaminium salt of 2,4-D [81.2 (6)°; Smith & Lynch, 2015a
] and in the 2:1 salt-adduct of 3,5-D with 4,4′-bipyridine [−71.6 (3)°; Lynch et al., 2003
]. However, in the tryptaminium salt of 3,5-D (Smith & Lynch, 2015b
), the ammonium salts of both 2,4-D (Liu et al., 2009
) and 3,5-D (Smith, 2014
), the antiperiplanar conformation is found [equivalent torsion angles = −166.5 (3), 172.61 (8) and −171.35 (15)°, respectively].
| Figure 1 The atom-numbering scheme and the molecular conformation of the morpholinium cation (B) and the phenoxyacetate anion (A) in (I) , with displacement ellipsoids drawn at the 40% probability level. The cation–anion hydrogen bonds are shown as dashed lines. |
| Figure 2 The atom-numbering scheme and the molecular conformation of the morpholinium cation (B) and the 4-fluorophenoxy)acetate anion (A) in (II) , with displacement ellipsoids drawn at the 40% probability level. The cation–anion hydrogen bond is shown as a dashed line. |
| Figure 3 The atom-numbering scheme and the molecular conformation of the morpholinium cation (B) and the 3,5-D anion (A) in (III) , with displacement ellipsoids drawn at the 40% probability level. The cation–anion hydrogen bonds are shown as dashed lines. |
| Figure 4 The atom-numbering scheme and the molecular conformation of the morpholinium cation (B) and the 2,4-D anion (A) in (IV) , with displacement ellipsoids drawn at the 40% probability level. The cation–anion hydrogen bonds are shown as dashed lines. |
3. Supramolecular features
In the crystals of both (I)
, (III)
and (IV)
, a primary three-centre R12(4) N1B—H⋯(O,O′)carboxyl hydrogen-bonding interaction is present, with the asymmetry in (I)
[N⋯O = 2.7366 (18) and 3.1655 (17) Å] and (IV)
[2.683 (2) and 3.115 (2) Å] being significantly greater than that in (III)
[2.892 (3) and 2.988 (3) Å] (Tables 1
, 3
and 4
). With (II)
, the second N—H⋯O distance is 3.241 (2) Å.
D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A | N1B—H11B⋯O13A | 0.92 (2) | 1.83 (2) | 2.7366 (18) | 169 (2) | N1B—H11B⋯O14A | 0.92 (2) | 2.57 (2) | 3.1655 (17) | 123 (1) | N1B—H12B⋯O14Ai | 0.95 (1) | 1.76 (1) | 2.7061 (17) | 176 (1) | C4A—H4A⋯O4Bii | 0.95 | 2.59 | 3.447 (2) | 151 | C6B—H62B⋯O13Aiii | 0.99 | 2.39 | 3.148 (2) | 133 | Symmetry codes: (i) x-1, y, z; (ii) x+1, y+1, z-1; (iii) -x, -y+1, -z+1. | |
D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A | N1B—H11B⋯O13A | 0.88 (2) | 2.07 (2) | 2.892 (3) | 156 (2) | N1B—H11B⋯O14A | 0.88 (2) | 2.26 (2) | 2.988 (3) | 141 (2) | N1B—H12B⋯O14Ai | 0.88 (2) | 1.87 (2) | 2.737 (3) | 170 (2) | C12A—H12A⋯O13Aii | 0.99 | 2.41 | 3.398 (3) | 173 | Symmetry codes: (i) x-1, y, z; (ii) x+1, y, z. | |
D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A | N1B—H11B⋯O13Ai | 0.91 (2) | 2.56 (2) | 3.115 (2) | 120 (1) | N1B—H11B⋯O14Ai | 0.91 (2) | 1.79 (2) | 2.683 (2) | 169 (2) | N1B—H12B⋯O13A | 0.87 (2) | 1.92 (2) | 2.747 (2) | 158 (2) | C12A—H12A⋯O14Aii | 0.99 | 2.50 | 3.484 (2) | 173 | C2B—H21B⋯O11Aiii | 0.99 | 2.57 | 3.477 (2) | 151 | C5B—H52B⋯O4Biv | 0.99 | 2.58 | 3.489 (3) | 153 | Symmetry codes: (i) -x+1, -y, -z+1; (ii) -x, -y, -z+1; (iii) -x+1, -y+1, -z+1; (iv) . | |
The hydrogen-bonding extensions involving the second aminium H atom of the cation result in different structures in (I)–(III) compared to that in (IV)
. With (I)–(III), the primary heterodimers are all extended along a through an N1B—H⋯O14Ai hydrogen bond (Tables 1
–3![[link]](../../../../../../logos/arrows/e_arr.gif)
, respectively), into one-dimensional ribbon structures (Figs. 5
–7![[link]](../../../../../../logos/arrows/e_arr.gif)
). These ribbon structures provide further examples of the common hydrogen-bonded structure type found among the anhydrous aromatic morpholinium benzoate salts, e.g. with salicylic acid (Smith & Lynch, 2015b
) and with 2-chloro-4-nitrobenzoic acid (Ishida et al., 2001a
). In both of these examples, helical chains extend along 21screw axes in the crystals. Present also in structures of (I)–(IV) are minor weak inter-unit C—H⋯O interactions: in (I)
, C4A—H⋯O4Bii (Table 1
); in (II)
, C4A—H⋯O4Bii; C6B—H⋯O13Aiii (Table 2
): in (III)
, Cl2A—H⋯O13Aii (Table 3
).
D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A | N1B—H11B⋯O14Ai | 0.97 (2) | 1.76 (2) | 2.725 (2) | 175 (2) | N1B—H12B⋯O13A | 0.94 (2) | 1.80 (2) | 2.718 (2) | 165 (2) | C6B—H61B⋯O14Aii | 0.99 | 2.38 | 3.188 (2) | 138 | Symmetry codes: (i) x+1, y, z; (ii) -x, -y+2, -z+1. | |
| Figure 5 The one-dimensional hydrogen-bonded polymeric structure of (I) extending along a. For symmetry codes, see Table 1 . |
| Figure 6 The one-dimensional hydrogen-bonded polymeric structure of (II) extending along a. For symmetry codes, see Table 2 . |
| Figure 7 The one-dimensional hydrogen-bonded polymeric structure of (III) extending along a. For symmetry codes, see Table 3![[link]](../../../../../../logos/arrows/e_arr.gif) |
In the crystal of (IV)
, the second N1B—H⋯O14Ai hydrogen bond generates a centrosymmetric heterotetrameric ring structure [graph set R42(8)] (Fig. 8
). For symmetry code (i), see Table 4
. This cyclic system typifies the second structure type also found in a number of examples of morpholinium salts with ring-substituted benzoic acids, e.g. in the 2-chloro-5-nitro-, 4-chloro-2-nitro-, 4-chloro-3-nitro- and 5-chloro-2-nitrobenzoate series (Ishida et al., 2001a
,b
,c
] and in the 4-aminosalicylate (André et al., 2009
).
| Figure 8 The cyclic hydrogen-bonded heterotetramer structure of (IV) . For symmetry codes, see Table 4 . |
Only weak inter-unit C—H⋯O interactions to carboxyl or phenoxy O-atom acceptors are present in (IV)
(Table 4
), while no π–π interactions are found in any of the structures.
Crystal data, data collection and structure refinement details are given in Table 5
. H atoms were placed in calculated positions (aromatic C—H = 0.95 Å or methylene C—H = 0.99 Å) and were allowed to ride in the refinements, with Uiso(H) = 1.2Ueq(C). The aminium H atoms were located in difference Fourier analyses and were allowed to refine with distance restraints [N—H = 0.90 (2) Å] and Uiso(H) = 1.2Ueq(N).
| (I) | (II) | (III) | (IV) | Crystal data | Chemical formula | C4H10NO+·C8H7O3− | C4H10NO+·C8H6FO3− | C4H10NO+·C8H5Cl2O3− | C4H10NO+·C8H5Cl2O3− | Mr | 239.27 | 257.26 | 308.15 | 308.15 | Crystal system, space group | Triclinic, P![[\overline{1}]](teximages/su5227fi14.gif) | Triclinic, P![[\overline{1}]](teximages/su5227fi14.gif) | Triclinic, P![[\overline{1}]](teximages/su5227fi14.gif) | Monoclinic, P21/c | Temperature (K) | 200 | 200 | 200 | 200 | a, b, c (Å) | 5.7079 (5), 9.7735 (9), 11.3586 (10) | 5.7997 (5), 10.2605 (10), 10.4836 (11) | 5.1733 (4), 11.3751 (10), 11.7808 (10) | 9.3657 (5), 7.1702 (3), 21.1340 (11) | α, β, γ (°) | 78.277 (7), 86.171 (7), 77.512 (7) | 88.388 (8), 82.792 (8), 80.325 (8) | 86.904 (7), 85.106 (7), 77.936 (7) | 90, 97.981 (5), 90 | V (Å3) | 605.58 (10) | 610.11 (10) | 675.01 (10) | 1405.48 (12) | Z | 2 | 2 | 2 | 4 | Radiation type | Mo Kα | Mo Kα | Mo Kα | Mo Kα | μ (mm−1) | 0.10 | 0.11 | 0.49 | 0.47 | Crystal size (mm) | 0.50 × 0.15 × 0.04 | 0.50 × 0.25 × 0.05 | 0.50 × 0.13 × 0.10 | 0.35 × 0.35 × 0.12 | | Data collection | Diffractometer | Oxford Diffraction Gemini-S CCD detector | Oxford Diffraction Gemini-S CCD detector | Oxford Diffraction Gemini-S CCD detector | Oxford Diffraction Gemini-S CCD detector | Absorption correction | Multi-scan (CrysAlis PRO; Agilent, 2014 ) | Multi-scan (CrysAlis PRO; Agilent, 2014 ) | Multi-scan (CrysAlis PRO; Agilent, 2014 ) | Multi-scan (CrysAlis PRO; Agilent, 2014 ) | Tmin, Tmax | 0.860, 0.980 | 0.488, 0.980 | 0.903, 0.989 | 0.933, 0.980 | No. of measured, independent and observed reflections | 4172, 2370, 1765 [I > 2σ(I)] | 4984, 2394, 1743 [I > 2σ(I)] | 5616, 2646, 2096 [I > 2σ(I)] | 6400, 2754, 2273 [I.2σ(I)] | Rint | 0.033 | 0.033 | 0.027 | 0.026 | (sin θ/λ)max (Å−1) | 0.617 | 0.617 | 0.617 | 0.617 | | Refinement | R[F2 > 2σ(F2)], wR(F2), S | 0.048, 0.113, 1.02 | 0.046, 0.116, 1.04 | 0.039, 0.091, 1.03 | 0.038, 0.091, 1.04 | No. of reflections | 2370 | 2394 | 2646 | 2754 | No. of parameters | 154 | 169 | 178 | 178 | No. of restraints | 0 | 2 | 2 | 2 | H-atom treatment | H atoms treated by a mixture of independent and constrained refinement | H atoms treated by a mixture of independent and constrained refinement | H atoms treated by a mixture of independent and constrained refinement | H atoms treated by a mixture of independent and constrained refinement | Δρmax, Δρmin (e Å−3) | 0.16, −0.17 | 0.19, −0.20 | 0.24, −0.26 | 0.28, −0.26 | Computer programs: CrysAlis PRO (Agilent, 2014 ), SIR92 (Altomare et al., 1993 ), SHELXS97 and SHELXL97 (Sheldrick, 2008 ) within WinGX (Farrugia, 2012 ) and PLATON (Spek, 2009 ). | |
Supporting information
For all compounds, data collection: CrysAlis PRO (Agilent, 2014); cell refinement: CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis PRO (Agilent, 2014). Program(s) used to solve structure: SHELXS97 (Sheldrick, 2008) for (I), (II); SIR92 (Altomare et al., 1993) for (III), (IV). For all compounds, program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) within WinGX (Farrugia, 2012); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).
(I) Tetrahydro-2
H-1,4-oxazin-4-ium phenoxyacetate
top Crystal data top C4H10NO+·C8H7O3− | Z = 2 |
Mr = 239.27 | F(000) = 256 |
Triclinic, P1 | Dx = 1.312 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 5.7079 (5) Å | Cell parameters from 1029 reflections |
b = 9.7735 (9) Å | θ = 3.9–28.5° |
c = 11.3586 (10) Å | µ = 0.10 mm−1 |
α = 78.277 (7)° | T = 200 K |
β = 86.171 (7)° | Plate, colourless |
γ = 77.512 (7)° | 0.50 × 0.15 × 0.04 mm |
V = 605.58 (10) Å3 | |
Data collection top Oxford Diffraction Gemini-S CCD-detector diffractometer | 2370 independent reflections |
Radiation source: Enhance (Mo) X-ray source | 1765 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.033 |
Detector resolution: 16.077 pixels mm-1 | θmax = 26.0°, θmin = 3.1° |
ω scans | h = −7→6 |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2014) | k = −12→12 |
Tmin = 0.860, Tmax = 0.980 | l = −13→13 |
4172 measured reflections | |
Refinement top Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.048 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.113 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.02 | w = 1/[σ2(Fo2) + (0.0456P)2] where P = (Fo2 + 2Fc2)/3 |
2370 reflections | (Δ/σ)max < 0.001 |
154 parameters | Δρmax = 0.16 e Å−3 |
0 restraints | Δρmin = −0.17 e Å−3 |
Special details top Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | |
O11A | 0.3926 (2) | 0.81847 (13) | 0.38178 (10) | 0.0374 (4) | |
O13A | 0.11992 (19) | 0.65034 (13) | 0.51716 (10) | 0.0358 (4) | |
O14A | 0.41444 (19) | 0.54699 (13) | 0.64451 (10) | 0.0323 (4) | |
C1A | 0.5198 (3) | 0.91643 (18) | 0.32122 (15) | 0.0303 (5) | |
C2A | 0.7157 (3) | 0.94974 (19) | 0.36542 (16) | 0.0346 (6) | |
C3A | 0.8267 (3) | 1.0526 (2) | 0.29642 (17) | 0.0415 (7) | |
C4A | 0.7481 (4) | 1.1208 (2) | 0.18324 (18) | 0.0449 (7) | |
C5A | 0.5549 (4) | 1.0854 (2) | 0.13875 (17) | 0.0432 (7) | |
C6A | 0.4402 (3) | 0.98450 (19) | 0.20676 (16) | 0.0365 (6) | |
C12A | 0.4895 (3) | 0.73323 (18) | 0.49189 (14) | 0.0288 (5) | |
C13A | 0.3264 (3) | 0.63578 (18) | 0.55411 (14) | 0.0268 (5) | |
O4B | −0.1545 (2) | 0.39037 (15) | 0.94974 (10) | 0.0445 (5) | |
N1B | −0.1183 (2) | 0.50356 (15) | 0.70035 (12) | 0.0270 (4) | |
C2B | −0.1277 (3) | 0.59359 (19) | 0.79155 (14) | 0.0322 (6) | |
C3B | −0.2632 (3) | 0.5347 (2) | 0.90159 (15) | 0.0386 (6) | |
C5B | −0.1515 (4) | 0.3030 (2) | 0.86300 (16) | 0.0410 (7) | |
C6B | −0.0136 (3) | 0.35172 (19) | 0.75076 (15) | 0.0349 (6) | |
H2A | 0.77390 | 0.90240 | 0.44270 | 0.0420* | |
H3A | 0.95950 | 1.07660 | 0.32770 | 0.0500* | |
H4A | 0.82570 | 1.19120 | 0.13660 | 0.0540* | |
H5A | 0.50030 | 1.13090 | 0.06040 | 0.0520* | |
H6A | 0.30650 | 0.96140 | 0.17550 | 0.0440* | |
H11A | 0.51320 | 0.79650 | 0.54600 | 0.0350* | |
H12A | 0.64820 | 0.67470 | 0.47530 | 0.0350* | |
H11B | −0.032 (3) | 0.5424 (18) | 0.6353 (13) | 0.0320* | |
H12B | −0.280 (2) | 0.5164 (19) | 0.6782 (13) | 0.0320* | |
H21B | −0.20870 | 0.69300 | 0.75840 | 0.0390* | |
H22B | 0.03720 | 0.59430 | 0.81310 | 0.0390* | |
H31B | −0.26710 | 0.59360 | 0.96330 | 0.0460* | |
H32B | −0.43070 | 0.53980 | 0.88040 | 0.0460* | |
H51B | −0.31840 | 0.30590 | 0.84220 | 0.0490* | |
H52B | −0.07770 | 0.20290 | 0.89820 | 0.0490* | |
H61B | 0.15700 | 0.34140 | 0.76960 | 0.0420* | |
H62B | −0.02120 | 0.29200 | 0.69100 | 0.0420* | |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
O11A | 0.0348 (7) | 0.0363 (8) | 0.0397 (7) | −0.0186 (6) | −0.0046 (5) | 0.0088 (6) |
O13A | 0.0252 (7) | 0.0472 (9) | 0.0342 (7) | −0.0162 (6) | −0.0014 (5) | 0.0031 (6) |
O14A | 0.0270 (6) | 0.0366 (8) | 0.0316 (7) | −0.0121 (6) | −0.0004 (5) | 0.0030 (6) |
C1A | 0.0299 (9) | 0.0232 (9) | 0.0364 (10) | −0.0081 (8) | 0.0070 (8) | −0.0021 (8) |
C2A | 0.0351 (10) | 0.0320 (11) | 0.0373 (10) | −0.0128 (8) | 0.0028 (8) | −0.0028 (8) |
C3A | 0.0387 (11) | 0.0391 (12) | 0.0509 (12) | −0.0201 (9) | 0.0074 (9) | −0.0086 (10) |
C4A | 0.0515 (12) | 0.0360 (12) | 0.0487 (12) | −0.0222 (10) | 0.0140 (10) | −0.0025 (10) |
C5A | 0.0545 (12) | 0.0326 (11) | 0.0387 (11) | −0.0117 (10) | 0.0037 (9) | 0.0030 (9) |
C6A | 0.0378 (10) | 0.0307 (11) | 0.0405 (10) | −0.0105 (9) | −0.0012 (8) | −0.0018 (8) |
C12A | 0.0255 (9) | 0.0281 (10) | 0.0328 (9) | −0.0101 (8) | 0.0001 (7) | −0.0012 (8) |
C13A | 0.0257 (9) | 0.0290 (10) | 0.0273 (9) | −0.0093 (8) | 0.0044 (7) | −0.0071 (8) |
O4B | 0.0641 (9) | 0.0436 (9) | 0.0267 (7) | −0.0196 (7) | −0.0014 (6) | 0.0001 (6) |
N1B | 0.0239 (7) | 0.0331 (9) | 0.0247 (7) | −0.0120 (7) | 0.0021 (6) | −0.0015 (6) |
C2B | 0.0333 (10) | 0.0317 (10) | 0.0342 (10) | −0.0119 (8) | 0.0013 (8) | −0.0073 (8) |
C3B | 0.0458 (11) | 0.0422 (12) | 0.0295 (10) | −0.0137 (9) | 0.0061 (8) | −0.0083 (9) |
C5B | 0.0577 (13) | 0.0309 (11) | 0.0363 (10) | −0.0180 (9) | −0.0055 (9) | −0.0003 (8) |
C6B | 0.0366 (10) | 0.0313 (11) | 0.0356 (10) | −0.0045 (8) | −0.0037 (8) | −0.0057 (8) |
Geometric parameters (Å, º) top O11A—C1A | 1.372 (2) | C2A—H2A | 0.9500 |
O11A—C12A | 1.426 (2) | C3A—H3A | 0.9500 |
O13A—C13A | 1.247 (2) | C4A—H4A | 0.9500 |
O14A—C13A | 1.256 (2) | C5A—H5A | 0.9500 |
O4B—C5B | 1.426 (2) | C6A—H6A | 0.9500 |
O4B—C3B | 1.424 (2) | C12A—H11A | 0.9900 |
N1B—C6B | 1.485 (2) | C12A—H12A | 0.9900 |
N1B—C2B | 1.481 (2) | C2B—C3B | 1.504 (2) |
N1B—H12B | 0.948 (12) | C5B—C6B | 1.501 (3) |
N1B—H11B | 0.923 (16) | C2B—H21B | 0.9900 |
C1A—C6A | 1.391 (2) | C2B—H22B | 0.9900 |
C1A—C2A | 1.381 (2) | C3B—H31B | 0.9900 |
C2A—C3A | 1.384 (3) | C3B—H32B | 0.9900 |
C3A—C4A | 1.378 (3) | C5B—H51B | 0.9900 |
C4A—C5A | 1.379 (3) | C5B—H52B | 0.9900 |
C5A—C6A | 1.378 (3) | C6B—H61B | 0.9900 |
C12A—C13A | 1.515 (2) | C6B—H62B | 0.9900 |
| | | |
C1A—O11A—C12A | 116.65 (13) | C13A—C12A—H11A | 109.00 |
C3B—O4B—C5B | 110.28 (13) | O11A—C12A—H11A | 109.00 |
C2B—N1B—C6B | 110.91 (13) | C13A—C12A—H12A | 109.00 |
C6B—N1B—H11B | 113.4 (11) | O11A—C12A—H12A | 109.00 |
C2B—N1B—H12B | 104.8 (10) | H11A—C12A—H12A | 108.00 |
H11B—N1B—H12B | 109.0 (14) | N1B—C2B—C3B | 109.23 (14) |
C2B—N1B—H11B | 106.3 (10) | O4B—C3B—C2B | 111.23 (14) |
C6B—N1B—H12B | 111.9 (11) | O4B—C5B—C6B | 111.72 (16) |
O11A—C1A—C6A | 115.56 (15) | N1B—C6B—C5B | 109.35 (14) |
C2A—C1A—C6A | 119.48 (16) | N1B—C2B—H21B | 110.00 |
O11A—C1A—C2A | 124.96 (15) | N1B—C2B—H22B | 110.00 |
C1A—C2A—C3A | 119.58 (16) | C3B—C2B—H21B | 110.00 |
C2A—C3A—C4A | 121.20 (18) | C3B—C2B—H22B | 110.00 |
C3A—C4A—C5A | 118.97 (19) | H21B—C2B—H22B | 108.00 |
C4A—C5A—C6A | 120.65 (18) | O4B—C3B—H31B | 109.00 |
C1A—C6A—C5A | 120.10 (17) | O4B—C3B—H32B | 109.00 |
O11A—C12A—C13A | 111.82 (14) | C2B—C3B—H31B | 109.00 |
O13A—C13A—O14A | 125.13 (16) | C2B—C3B—H32B | 109.00 |
O13A—C13A—C12A | 120.24 (14) | H31B—C3B—H32B | 108.00 |
O14A—C13A—C12A | 114.59 (15) | O4B—C5B—H51B | 109.00 |
C3A—C2A—H2A | 120.00 | O4B—C5B—H52B | 109.00 |
C1A—C2A—H2A | 120.00 | C6B—C5B—H51B | 109.00 |
C4A—C3A—H3A | 119.00 | C6B—C5B—H52B | 109.00 |
C2A—C3A—H3A | 119.00 | H51B—C5B—H52B | 108.00 |
C5A—C4A—H4A | 121.00 | N1B—C6B—H61B | 110.00 |
C3A—C4A—H4A | 121.00 | N1B—C6B—H62B | 110.00 |
C4A—C5A—H5A | 120.00 | C5B—C6B—H61B | 110.00 |
C6A—C5A—H5A | 120.00 | C5B—C6B—H62B | 110.00 |
C5A—C6A—H6A | 120.00 | H61B—C6B—H62B | 108.00 |
C1A—C6A—H6A | 120.00 | | |
| | | |
C12A—O11A—C1A—C2A | −8.1 (2) | O11A—C1A—C2A—C3A | −178.84 (17) |
C12A—O11A—C1A—C6A | 171.64 (15) | C1A—C2A—C3A—C4A | −1.2 (3) |
C1A—O11A—C12A—C13A | 176.53 (14) | C2A—C3A—C4A—C5A | 0.1 (3) |
C5B—O4B—C3B—C2B | −60.23 (18) | C3A—C4A—C5A—C6A | 0.7 (3) |
C3B—O4B—C5B—C6B | 59.8 (2) | C4A—C5A—C6A—C1A | −0.4 (3) |
C6B—N1B—C2B—C3B | −55.34 (17) | O11A—C12A—C13A—O14A | 172.45 (14) |
C2B—N1B—C6B—C5B | 54.74 (18) | O11A—C12A—C13A—O13A | −9.8 (2) |
C6A—C1A—C2A—C3A | 1.5 (3) | N1B—C2B—C3B—O4B | 58.00 (18) |
O11A—C1A—C6A—C5A | 179.61 (16) | O4B—C5B—C6B—N1B | −56.8 (2) |
C2A—C1A—C6A—C5A | −0.7 (3) | | |
Hydrogen-bond geometry (Å, º) top D—H···A | D—H | H···A | D···A | D—H···A |
N1B—H11B···O13A | 0.92 (2) | 1.83 (2) | 2.7366 (18) | 169 (2) |
N1B—H11B···O14A | 0.92 (2) | 2.57 (2) | 3.1655 (17) | 123 (1) |
N1B—H12B···O14Ai | 0.95 (1) | 1.76 (1) | 2.7061 (17) | 176 (1) |
C4A—H4A···O4Bii | 0.95 | 2.59 | 3.447 (2) | 151 |
C6B—H62B···O13Aiii | 0.99 | 2.39 | 3.148 (2) | 133 |
Symmetry codes: (i) x−1, y, z; (ii) x+1, y+1, z−1; (iii) −x, −y+1, −z+1. |
(II) Tetrahydro-2
H-1,4-oxazin-4-ium (4-fluorophenoxy)acetate
top Crystal data top C4H10NO+·C8H6FO3− | Z = 2 |
Mr = 257.26 | F(000) = 272 |
Triclinic, P1 | Dx = 1.400 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 5.7997 (5) Å | Cell parameters from 1163 reflections |
b = 10.2605 (10) Å | θ = 4.0–28.4° |
c = 10.4836 (11) Å | µ = 0.11 mm−1 |
α = 88.388 (8)° | T = 200 K |
β = 82.792 (8)° | Plate, colourless |
γ = 80.325 (8)° | 0.50 × 0.25 × 0.05 mm |
V = 610.11 (10) Å3 | |
Data collection top Oxford Diffraction Gemini-S CCD-detector diffractometer | 2394 independent reflections |
Radiation source: fine-focus sealed tube | 1743 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.033 |
Detector resolution: 16.077 pixels mm-1 | θmax = 26.0°, θmin = 3.6° |
ω scans | h = −7→6 |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2014) | k = −10→12 |
Tmin = 0.488, Tmax = 0.980 | l = −12→12 |
4984 measured reflections | |
Refinement top Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.046 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.116 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.04 | w = 1/[σ2(Fo2) + (0.046P)2 + 0.0267P] where P = (Fo2 + 2Fc2)/3 |
2394 reflections | (Δ/σ)max < 0.001 |
169 parameters | Δρmax = 0.19 e Å−3 |
2 restraints | Δρmin = −0.20 e Å−3 |
Special details top Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | |
F4A | 1.10905 (19) | 0.50899 (12) | 0.11938 (12) | 0.0518 (4) | |
O11A | 0.3317 (2) | 0.71651 (12) | 0.44716 (12) | 0.0328 (4) | |
O13A | −0.0039 (2) | 0.82589 (13) | 0.62958 (12) | 0.0331 (4) | |
O14A | −0.2493 (2) | 0.88910 (13) | 0.48447 (12) | 0.0350 (4) | |
C1A | 0.5169 (3) | 0.66778 (16) | 0.35718 (18) | 0.0255 (6) | |
C2A | 0.5357 (3) | 0.69979 (18) | 0.22788 (18) | 0.0300 (6) | |
C3A | 0.7372 (3) | 0.64655 (19) | 0.14698 (19) | 0.0357 (6) | |
C4A | 0.9096 (3) | 0.56021 (18) | 0.1981 (2) | 0.0331 (6) | |
C5A | 0.8925 (3) | 0.52405 (18) | 0.3247 (2) | 0.0333 (6) | |
C6A | 0.6948 (3) | 0.57908 (18) | 0.40512 (19) | 0.0308 (6) | |
C12A | 0.1408 (3) | 0.80714 (17) | 0.40429 (17) | 0.0263 (6) | |
C13A | −0.0514 (3) | 0.84287 (16) | 0.51649 (18) | 0.0249 (6) | |
O4B | 0.3300 (2) | 0.84416 (14) | 0.96211 (13) | 0.0458 (5) | |
N1B | 0.4282 (3) | 0.85297 (15) | 0.68920 (15) | 0.0288 (5) | |
C2B | 0.4898 (3) | 0.72899 (19) | 0.76326 (19) | 0.0357 (7) | |
C3B | 0.3244 (4) | 0.7319 (2) | 0.8863 (2) | 0.0415 (7) | |
C5B | 0.2614 (4) | 0.9620 (2) | 0.8921 (2) | 0.0425 (7) | |
C6B | 0.4214 (3) | 0.96981 (18) | 0.76981 (19) | 0.0329 (6) | |
H2A | 0.41190 | 0.75780 | 0.19420 | 0.0360* | |
H3A | 0.75460 | 0.66960 | 0.05830 | 0.0430* | |
H5A | 1.01350 | 0.46260 | 0.35680 | 0.0400* | |
H6A | 0.68030 | 0.55610 | 0.49380 | 0.0370* | |
H11A | 0.07620 | 0.76630 | 0.33510 | 0.0320* | |
H12A | 0.19810 | 0.88810 | 0.36920 | 0.0320* | |
H11B | 0.541 (3) | 0.861 (2) | 0.6143 (17) | 0.0500* | |
H12B | 0.283 (3) | 0.855 (2) | 0.6580 (19) | 0.0500* | |
H21B | 0.47750 | 0.65180 | 0.71140 | 0.0430* | |
H22B | 0.65420 | 0.72040 | 0.78310 | 0.0430* | |
H31B | 0.36880 | 0.65030 | 0.93650 | 0.0500* | |
H32B | 0.16190 | 0.73360 | 0.86570 | 0.0500* | |
H51B | 0.26350 | 1.03940 | 0.94600 | 0.0510* | |
H52B | 0.09820 | 0.96510 | 0.87220 | 0.0510* | |
H61B | 0.36500 | 1.05120 | 0.72200 | 0.0390* | |
H62B | 0.58220 | 0.97440 | 0.78970 | 0.0390* | |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
F4A | 0.0376 (7) | 0.0649 (8) | 0.0429 (8) | 0.0137 (6) | 0.0067 (6) | −0.0140 (6) |
O11A | 0.0251 (6) | 0.0409 (8) | 0.0265 (8) | 0.0079 (5) | 0.0010 (5) | 0.0031 (6) |
O13A | 0.0230 (6) | 0.0513 (8) | 0.0237 (8) | −0.0042 (6) | −0.0012 (6) | 0.0015 (6) |
O14A | 0.0216 (7) | 0.0497 (8) | 0.0300 (8) | 0.0041 (6) | −0.0036 (6) | 0.0026 (6) |
C1A | 0.0231 (9) | 0.0256 (9) | 0.0259 (11) | −0.0003 (7) | −0.0003 (8) | −0.0031 (8) |
C2A | 0.0297 (10) | 0.0304 (10) | 0.0270 (11) | 0.0040 (8) | −0.0045 (8) | −0.0024 (8) |
C3A | 0.0379 (11) | 0.0405 (11) | 0.0244 (11) | 0.0025 (9) | 0.0015 (9) | −0.0043 (9) |
C4A | 0.0265 (10) | 0.0342 (10) | 0.0346 (13) | 0.0025 (8) | 0.0039 (8) | −0.0122 (9) |
C5A | 0.0253 (9) | 0.0337 (10) | 0.0383 (13) | 0.0040 (8) | −0.0053 (9) | −0.0006 (9) |
C6A | 0.0287 (10) | 0.0344 (10) | 0.0275 (11) | −0.0018 (8) | −0.0018 (8) | 0.0043 (9) |
C12A | 0.0237 (9) | 0.0273 (9) | 0.0259 (11) | 0.0011 (7) | −0.0022 (8) | 0.0005 (8) |
C13A | 0.0224 (9) | 0.0261 (9) | 0.0266 (11) | −0.0053 (7) | −0.0023 (8) | −0.0003 (8) |
O4B | 0.0628 (10) | 0.0521 (9) | 0.0227 (8) | −0.0119 (7) | −0.0039 (7) | 0.0049 (7) |
N1B | 0.0222 (8) | 0.0415 (9) | 0.0217 (9) | −0.0032 (7) | −0.0014 (7) | 0.0008 (7) |
C2B | 0.0345 (10) | 0.0336 (11) | 0.0384 (13) | −0.0030 (8) | −0.0062 (9) | 0.0006 (9) |
C3B | 0.0494 (13) | 0.0433 (12) | 0.0339 (13) | −0.0160 (10) | −0.0043 (10) | 0.0084 (10) |
C5B | 0.0488 (12) | 0.0450 (13) | 0.0300 (13) | −0.0015 (10) | 0.0015 (10) | −0.0025 (10) |
C6B | 0.0337 (10) | 0.0346 (11) | 0.0298 (12) | −0.0034 (8) | −0.0057 (9) | 0.0034 (9) |
Geometric parameters (Å, º) top F4A—C4A | 1.370 (2) | C12A—C13A | 1.523 (3) |
O11A—C1A | 1.373 (2) | C2A—H2A | 0.9500 |
O11A—C12A | 1.431 (2) | C3A—H3A | 0.9500 |
O13A—C13A | 1.251 (2) | C5A—H5A | 0.9500 |
O14A—C13A | 1.249 (2) | C6A—H6A | 0.9500 |
O4B—C5B | 1.422 (2) | C12A—H11A | 0.9900 |
O4B—C3B | 1.425 (2) | C12A—H12A | 0.9900 |
N1B—C6B | 1.478 (2) | C2B—C3B | 1.506 (3) |
N1B—C2B | 1.487 (2) | C5B—C6B | 1.494 (3) |
N1B—H12B | 0.938 (18) | C2B—H21B | 0.9900 |
N1B—H11B | 0.968 (18) | C2B—H22B | 0.9900 |
C1A—C6A | 1.391 (3) | C3B—H31B | 0.9900 |
C1A—C2A | 1.381 (3) | C3B—H32B | 0.9900 |
C2A—C3A | 1.395 (3) | C5B—H51B | 0.9900 |
C3A—C4A | 1.372 (3) | C5B—H52B | 0.9900 |
C4A—C5A | 1.364 (3) | C6B—H61B | 0.9900 |
C5A—C6A | 1.382 (3) | C6B—H62B | 0.9900 |
| | | |
C1A—O11A—C12A | 117.83 (14) | C13A—C12A—H11A | 110.00 |
C3B—O4B—C5B | 109.82 (15) | O11A—C12A—H11A | 110.00 |
C2B—N1B—C6B | 110.58 (15) | C13A—C12A—H12A | 110.00 |
C6B—N1B—H11B | 106.7 (12) | O11A—C12A—H12A | 110.00 |
C2B—N1B—H12B | 110.3 (12) | H11A—C12A—H12A | 108.00 |
H11B—N1B—H12B | 105.8 (16) | N1B—C2B—C3B | 109.48 (16) |
C2B—N1B—H11B | 112.8 (12) | O4B—C3B—C2B | 111.75 (17) |
C6B—N1B—H12B | 110.5 (12) | O4B—C5B—C6B | 111.70 (17) |
O11A—C1A—C6A | 114.80 (16) | N1B—C6B—C5B | 110.52 (15) |
C2A—C1A—C6A | 119.88 (17) | N1B—C2B—H21B | 110.00 |
O11A—C1A—C2A | 125.33 (16) | N1B—C2B—H22B | 110.00 |
C1A—C2A—C3A | 119.71 (17) | C3B—C2B—H21B | 110.00 |
C2A—C3A—C4A | 118.64 (18) | C3B—C2B—H22B | 110.00 |
C3A—C4A—C5A | 122.83 (18) | H21B—C2B—H22B | 108.00 |
F4A—C4A—C5A | 118.33 (16) | O4B—C3B—H31B | 109.00 |
F4A—C4A—C3A | 118.84 (18) | O4B—C3B—H32B | 109.00 |
C4A—C5A—C6A | 118.38 (17) | C2B—C3B—H31B | 109.00 |
C1A—C6A—C5A | 120.53 (18) | C2B—C3B—H32B | 109.00 |
O11A—C12A—C13A | 109.56 (14) | H31B—C3B—H32B | 108.00 |
O13A—C13A—O14A | 125.43 (17) | O4B—C5B—H51B | 109.00 |
O14A—C13A—C12A | 114.50 (16) | O4B—C5B—H52B | 109.00 |
O13A—C13A—C12A | 120.06 (15) | C6B—C5B—H51B | 109.00 |
C3A—C2A—H2A | 120.00 | C6B—C5B—H52B | 109.00 |
C1A—C2A—H2A | 120.00 | H51B—C5B—H52B | 108.00 |
C4A—C3A—H3A | 121.00 | N1B—C6B—H61B | 110.00 |
C2A—C3A—H3A | 121.00 | N1B—C6B—H62B | 110.00 |
C4A—C5A—H5A | 121.00 | C5B—C6B—H61B | 110.00 |
C6A—C5A—H5A | 121.00 | C5B—C6B—H62B | 110.00 |
C5A—C6A—H6A | 120.00 | H61B—C6B—H62B | 108.00 |
C1A—C6A—H6A | 120.00 | | |
| | | |
C12A—O11A—C1A—C2A | 0.5 (2) | C1A—C2A—C3A—C4A | 1.8 (3) |
C12A—O11A—C1A—C6A | −179.26 (15) | C2A—C3A—C4A—F4A | −179.19 (16) |
C1A—O11A—C12A—C13A | 176.75 (14) | C2A—C3A—C4A—C5A | 0.0 (3) |
C3B—O4B—C5B—C6B | −59.8 (2) | C3A—C4A—C5A—C6A | −1.4 (3) |
C5B—O4B—C3B—C2B | 60.3 (2) | F4A—C4A—C5A—C6A | 177.88 (16) |
C6B—N1B—C2B—C3B | 53.5 (2) | C4A—C5A—C6A—C1A | 0.8 (3) |
C2B—N1B—C6B—C5B | −53.7 (2) | O11A—C12A—C13A—O14A | −160.39 (14) |
C6A—C1A—C2A—C3A | −2.3 (3) | O11A—C12A—C13A—O13A | 20.1 (2) |
O11A—C1A—C2A—C3A | 177.92 (16) | N1B—C2B—C3B—O4B | −57.4 (2) |
C2A—C1A—C6A—C5A | 1.0 (3) | O4B—C5B—C6B—N1B | 57.1 (2) |
O11A—C1A—C6A—C5A | −179.22 (16) | | |
Hydrogen-bond geometry (Å, º) top D—H···A | D—H | H···A | D···A | D—H···A |
N1B—H11B···O14Ai | 0.97 (2) | 1.76 (2) | 2.725 (2) | 175 (2) |
N1B—H12B···O13A | 0.94 (2) | 1.80 (2) | 2.718 (2) | 165 (2) |
C6B—H61B···O14Aii | 0.99 | 2.38 | 3.188 (2) | 138 |
Symmetry codes: (i) x+1, y, z; (ii) −x, −y+2, −z+1. |
(III) Tetrahydro-2
H-1,4-oxazin-4-ium (3,5-dichlorophenoxy)acetate
top Crystal data top C4H10NO+·C8H5Cl2O3− | Z = 2 |
Mr = 308.15 | F(000) = 320 |
Triclinic, P1 | Dx = 1.516 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 5.1733 (4) Å | Cell parameters from 1520 reflections |
b = 11.3751 (10) Å | θ = 3.7–27.8° |
c = 11.7808 (10) Å | µ = 0.49 mm−1 |
α = 86.904 (7)° | T = 200 K |
β = 85.106 (7)° | Needle, colourless |
γ = 77.936 (7)° | 0.50 × 0.13 × 0.10 mm |
V = 675.01 (10) Å3 | |
Data collection top Oxford Diffraction Gemini-S CCD-detector diffractometer | 2646 independent reflections |
Radiation source: fine-focus sealed tube | 2096 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.027 |
Detector resolution: 16.077 pixels mm-1 | θmax = 26.0°, θmin = 3.5° |
ω scans | h = −6→6 |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2014) | k = −14→12 |
Tmin = 0.903, Tmax = 0.989 | l = −14→14 |
5616 measured reflections | |
Refinement top Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.039 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.091 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.03 | w = 1/[σ2(Fo2) + (0.0328P)2 + 0.273P] where P = (Fo2 + 2Fc2)/3 |
2646 reflections | (Δ/σ)max = 0.001 |
178 parameters | Δρmax = 0.24 e Å−3 |
2 restraints | Δρmin = −0.26 e Å−3 |
Special details top Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | |
Cl3A | 0.43721 (11) | 0.33427 (5) | 1.07395 (5) | 0.0409 (2) | |
Cl5A | 0.87160 (12) | −0.05932 (5) | 0.83964 (5) | 0.0423 (2) | |
O11A | 1.2226 (3) | 0.31888 (13) | 0.77458 (13) | 0.0356 (5) | |
O13A | 0.8276 (3) | 0.47790 (19) | 0.67505 (15) | 0.0575 (7) | |
O14A | 1.0229 (3) | 0.63014 (15) | 0.69348 (14) | 0.0476 (6) | |
C1A | 1.0356 (4) | 0.26801 (19) | 0.83573 (17) | 0.0271 (6) | |
C2A | 0.8470 (4) | 0.32703 (19) | 0.91505 (17) | 0.0281 (6) | |
C3A | 0.6719 (4) | 0.26282 (19) | 0.97100 (17) | 0.0279 (6) | |
C4A | 0.6730 (4) | 0.14542 (19) | 0.94986 (17) | 0.0307 (7) | |
C5A | 0.8641 (4) | 0.08971 (19) | 0.87030 (18) | 0.0303 (7) | |
C6A | 1.0479 (4) | 0.14815 (19) | 0.81392 (18) | 0.0300 (7) | |
C12A | 1.2129 (4) | 0.44437 (19) | 0.77898 (19) | 0.0306 (7) | |
C13A | 1.0030 (4) | 0.5221 (2) | 0.70886 (18) | 0.0335 (7) | |
O4B | 0.3249 (3) | 0.88990 (15) | 0.45028 (14) | 0.0502 (6) | |
N1B | 0.4795 (4) | 0.70096 (19) | 0.61100 (17) | 0.0416 (7) | |
C2B | 0.5070 (5) | 0.6814 (2) | 0.48655 (19) | 0.0395 (8) | |
C3B | 0.3059 (4) | 0.7719 (2) | 0.4277 (2) | 0.0418 (8) | |
C5B | 0.4761 (4) | 0.8273 (2) | 0.6354 (2) | 0.0415 (8) | |
C6B | 0.2754 (5) | 0.9090 (2) | 0.5686 (2) | 0.0466 (8) | |
H2A | 0.83820 | 0.40890 | 0.93060 | 0.0340* | |
H4A | 0.54740 | 0.10420 | 0.98840 | 0.0370* | |
H6A | 1.18090 | 0.10720 | 0.76100 | 0.0360* | |
H12A | 1.38860 | 0.46070 | 0.75130 | 0.0370* | |
H13A | 1.17790 | 0.46790 | 0.85940 | 0.0370* | |
H11B | 0.607 (4) | 0.648 (2) | 0.641 (2) | 0.0560* | |
H12B | 0.332 (4) | 0.684 (2) | 0.644 (2) | 0.0560* | |
H21B | 0.48270 | 0.59940 | 0.47290 | 0.0470* | |
H22B | 0.68720 | 0.68820 | 0.45520 | 0.0470* | |
H31B | 0.33260 | 0.76060 | 0.34450 | 0.0500* | |
H32B | 0.12620 | 0.75950 | 0.45370 | 0.0500* | |
H51B | 0.65360 | 0.84550 | 0.61490 | 0.0500* | |
H52B | 0.43210 | 0.84010 | 0.71790 | 0.0500* | |
H61B | 0.09660 | 0.89510 | 0.59410 | 0.0560* | |
H62B | 0.27880 | 0.99360 | 0.58300 | 0.0560* | |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
Cl3A | 0.0453 (3) | 0.0386 (3) | 0.0341 (3) | −0.0032 (3) | 0.0093 (2) | −0.0012 (2) |
Cl5A | 0.0563 (4) | 0.0308 (3) | 0.0431 (3) | −0.0179 (3) | 0.0037 (3) | −0.0068 (2) |
O11A | 0.0296 (8) | 0.0266 (8) | 0.0495 (10) | −0.0083 (6) | 0.0073 (7) | 0.0017 (7) |
O13A | 0.0363 (10) | 0.0903 (15) | 0.0527 (11) | −0.0302 (10) | −0.0208 (8) | 0.0323 (10) |
O14A | 0.0523 (10) | 0.0345 (10) | 0.0491 (10) | 0.0042 (8) | −0.0036 (8) | 0.0083 (8) |
C1A | 0.0251 (10) | 0.0283 (11) | 0.0291 (11) | −0.0076 (9) | −0.0058 (9) | 0.0029 (9) |
C2A | 0.0310 (11) | 0.0228 (11) | 0.0310 (11) | −0.0054 (9) | −0.0070 (9) | 0.0017 (9) |
C3A | 0.0291 (11) | 0.0308 (12) | 0.0226 (10) | −0.0040 (9) | −0.0026 (8) | 0.0026 (9) |
C4A | 0.0329 (12) | 0.0330 (12) | 0.0274 (11) | −0.0113 (9) | −0.0018 (9) | 0.0046 (9) |
C5A | 0.0375 (12) | 0.0256 (11) | 0.0296 (11) | −0.0085 (9) | −0.0083 (9) | 0.0008 (9) |
C6A | 0.0296 (11) | 0.0303 (12) | 0.0292 (11) | −0.0048 (9) | −0.0011 (9) | −0.0009 (9) |
C12A | 0.0284 (11) | 0.0287 (12) | 0.0360 (12) | −0.0096 (9) | −0.0049 (9) | 0.0064 (9) |
C13A | 0.0237 (11) | 0.0456 (15) | 0.0264 (11) | −0.0012 (10) | 0.0042 (9) | 0.0080 (10) |
O4B | 0.0674 (12) | 0.0357 (10) | 0.0378 (10) | 0.0045 (8) | 0.0049 (8) | 0.0120 (8) |
N1B | 0.0414 (12) | 0.0407 (12) | 0.0338 (11) | 0.0095 (9) | −0.0037 (9) | 0.0096 (9) |
C2B | 0.0514 (14) | 0.0278 (13) | 0.0381 (13) | −0.0071 (11) | 0.0001 (11) | −0.0015 (10) |
C3B | 0.0354 (13) | 0.0572 (17) | 0.0337 (13) | −0.0095 (11) | −0.0082 (10) | −0.0012 (11) |
C5B | 0.0343 (13) | 0.0581 (17) | 0.0367 (13) | −0.0181 (11) | 0.0004 (10) | −0.0138 (12) |
C6B | 0.0626 (16) | 0.0292 (13) | 0.0433 (14) | −0.0040 (12) | 0.0095 (12) | −0.0008 (11) |
Geometric parameters (Å, º) top Cl3A—C3A | 1.746 (2) | C5A—C6A | 1.377 (3) |
Cl5A—C5A | 1.744 (2) | C12A—C13A | 1.522 (3) |
O11A—C1A | 1.364 (3) | C2A—H2A | 0.9500 |
O11A—C12A | 1.421 (3) | C4A—H4A | 0.9500 |
O13A—C13A | 1.228 (3) | C6A—H6A | 0.9500 |
O14A—C13A | 1.257 (3) | C12A—H12A | 0.9900 |
O4B—C6B | 1.416 (3) | C12A—H13A | 0.9900 |
O4B—C3B | 1.407 (3) | C2B—C3B | 1.490 (3) |
N1B—C2B | 1.485 (3) | C5B—C6B | 1.489 (3) |
N1B—C5B | 1.477 (3) | C2B—H21B | 0.9900 |
N1B—H12B | 0.88 (2) | C2B—H22B | 0.9900 |
N1B—H11B | 0.88 (2) | C3B—H31B | 0.9900 |
C1A—C2A | 1.384 (3) | C3B—H32B | 0.9900 |
C1A—C6A | 1.388 (3) | C5B—H51B | 0.9900 |
C2A—C3A | 1.383 (3) | C5B—H52B | 0.9900 |
C3A—C4A | 1.370 (3) | C6B—H61B | 0.9900 |
C4A—C5A | 1.379 (3) | C6B—H62B | 0.9900 |
| | | |
C1A—O11A—C12A | 120.24 (17) | C13A—C12A—H12A | 109.00 |
C3B—O4B—C6B | 109.96 (17) | O11A—C12A—H12A | 109.00 |
C2B—N1B—C5B | 111.72 (18) | C13A—C12A—H13A | 109.00 |
C5B—N1B—H11B | 114.7 (15) | O11A—C12A—H13A | 109.00 |
C2B—N1B—H12B | 112.3 (15) | H12A—C12A—H13A | 108.00 |
H11B—N1B—H12B | 105 (2) | N1B—C2B—C3B | 110.27 (19) |
C2B—N1B—H11B | 106.6 (15) | O4B—C3B—C2B | 111.23 (18) |
C5B—N1B—H12B | 106.7 (15) | N1B—C5B—C6B | 109.70 (19) |
O11A—C1A—C6A | 114.67 (18) | O4B—C6B—C5B | 111.47 (19) |
C2A—C1A—C6A | 120.75 (19) | N1B—C2B—H21B | 110.00 |
O11A—C1A—C2A | 124.57 (19) | N1B—C2B—H22B | 110.00 |
C1A—C2A—C3A | 117.77 (19) | C3B—C2B—H21B | 110.00 |
Cl3A—C3A—C4A | 118.09 (16) | C3B—C2B—H22B | 110.00 |
C2A—C3A—C4A | 123.29 (19) | H21B—C2B—H22B | 108.00 |
Cl3A—C3A—C2A | 118.62 (16) | O4B—C3B—H31B | 109.00 |
C3A—C4A—C5A | 117.18 (19) | O4B—C3B—H32B | 109.00 |
Cl5A—C5A—C6A | 119.03 (16) | C2B—C3B—H31B | 109.00 |
Cl5A—C5A—C4A | 118.85 (16) | C2B—C3B—H32B | 109.00 |
C4A—C5A—C6A | 122.1 (2) | H31B—C3B—H32B | 108.00 |
C1A—C6A—C5A | 118.84 (19) | N1B—C5B—H51B | 110.00 |
O11A—C12A—C13A | 113.95 (18) | N1B—C5B—H52B | 110.00 |
O14A—C13A—C12A | 115.08 (19) | C6B—C5B—H51B | 110.00 |
O13A—C13A—O14A | 125.4 (2) | C6B—C5B—H52B | 110.00 |
O13A—C13A—C12A | 119.5 (2) | H51B—C5B—H52B | 108.00 |
C3A—C2A—H2A | 121.00 | O4B—C6B—H61B | 109.00 |
C1A—C2A—H2A | 121.00 | O4B—C6B—H62B | 109.00 |
C3A—C4A—H4A | 121.00 | C5B—C6B—H61B | 109.00 |
C5A—C4A—H4A | 121.00 | C5B—C6B—H62B | 109.00 |
C5A—C6A—H6A | 121.00 | H61B—C6B—H62B | 108.00 |
C1A—C6A—H6A | 121.00 | | |
| | | |
C12A—O11A—C1A—C2A | −8.1 (3) | C1A—C2A—C3A—Cl3A | 178.48 (16) |
C12A—O11A—C1A—C6A | 172.70 (18) | Cl3A—C3A—C4A—C5A | −178.43 (16) |
C1A—O11A—C12A—C13A | −76.5 (2) | C2A—C3A—C4A—C5A | 1.5 (3) |
C3B—O4B—C6B—C5B | 62.3 (2) | C3A—C4A—C5A—Cl5A | −179.46 (16) |
C6B—O4B—C3B—C2B | −61.6 (2) | C3A—C4A—C5A—C6A | 0.2 (3) |
C2B—N1B—C5B—C6B | 51.4 (3) | C4A—C5A—C6A—C1A | −1.8 (3) |
C5B—N1B—C2B—C3B | −51.2 (3) | Cl5A—C5A—C6A—C1A | 177.83 (16) |
C2A—C1A—C6A—C5A | 1.8 (3) | O11A—C12A—C13A—O13A | 15.0 (3) |
O11A—C1A—C2A—C3A | −179.44 (19) | O11A—C12A—C13A—O14A | −167.02 (18) |
C6A—C1A—C2A—C3A | −0.3 (3) | N1B—C2B—C3B—O4B | 56.1 (2) |
O11A—C1A—C6A—C5A | −178.92 (19) | N1B—C5B—C6B—O4B | −56.9 (2) |
C1A—C2A—C3A—C4A | −1.5 (3) | | |
Hydrogen-bond geometry (Å, º) top D—H···A | D—H | H···A | D···A | D—H···A |
N1B—H11B···O13A | 0.88 (2) | 2.07 (2) | 2.892 (3) | 156 (2) |
N1B—H11B···O14A | 0.88 (2) | 2.26 (2) | 2.988 (3) | 141 (2) |
N1B—H12B···O14Ai | 0.88 (2) | 1.87 (2) | 2.737 (3) | 170 (2) |
C12A—H12A···O13Aii | 0.99 | 2.41 | 3.398 (3) | 173 |
Symmetry codes: (i) x−1, y, z; (ii) x+1, y, z. |
(IV) Tetrahydro-2
H-1,4-oxazin-4-ium (2,4-dichlorophenoxy)acetate
top Crystal data top C4H10NO+·C8H5Cl2O3− | F(000) = 640 |
Mr = 308.15 | Dx = 1.456 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 2359 reflections |
a = 9.3657 (5) Å | θ = 3.6–28.4° |
b = 7.1702 (3) Å | µ = 0.47 mm−1 |
c = 21.1340 (11) Å | T = 200 K |
β = 97.981 (5)° | Plate, colourless |
V = 1405.48 (12) Å3 | 0.35 × 0.35 × 0.12 mm |
Z = 4 | |
Data collection top Oxford Diffraction Gemini-S CCD-detector diffractometer | 2754 independent reflections |
Radiation source: Enhance (Mo) X-ray source | 2273 reflections with I.2σ(I) |
Graphite monochromator | Rint = 0.026 |
Detector resolution: 16.077 pixels mm-1 | θmax = 26.0°, θmin = 3.4° |
ω scans | h = −9→11 |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2014) | k = −8→8 |
Tmin = 0.933, Tmax = 0.980 | l = −26→20 |
6400 measured reflections | |
Refinement top Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.038 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.091 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.04 | w = 1/[σ2(Fo2) + (0.0405P)2 + 0.3419P] where P = (Fo2 + 2Fc2)/3 |
2754 reflections | (Δ/σ)max < 0.001 |
178 parameters | Δρmax = 0.28 e Å−3 |
2 restraints | Δρmin = −0.26 e Å−3 |
Special details top Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | |
Cl2A | 0.23659 (5) | 0.74483 (6) | 0.41042 (2) | 0.0354 (2) | |
Cl4A | 0.15479 (6) | 0.32605 (9) | 0.19759 (2) | 0.0500 (2) | |
O11A | 0.13251 (13) | 0.42531 (17) | 0.47171 (6) | 0.0276 (4) | |
O13A | 0.34279 (13) | 0.1659 (2) | 0.50395 (7) | 0.0390 (5) | |
O14A | 0.19747 (12) | −0.01154 (18) | 0.55307 (6) | 0.0313 (4) | |
C1A | 0.13210 (17) | 0.3923 (3) | 0.40846 (8) | 0.0236 (5) | |
C2A | 0.18091 (18) | 0.5368 (3) | 0.37274 (9) | 0.0255 (5) | |
C3A | 0.18796 (19) | 0.5185 (3) | 0.30830 (9) | 0.0305 (6) | |
C4A | 0.14433 (19) | 0.3520 (3) | 0.27899 (9) | 0.0319 (6) | |
C5A | 0.0933 (2) | 0.2087 (3) | 0.31247 (10) | 0.0348 (6) | |
C6A | 0.08662 (19) | 0.2287 (3) | 0.37705 (9) | 0.0306 (6) | |
C12A | 0.10285 (19) | 0.2707 (3) | 0.51091 (9) | 0.0270 (6) | |
C13A | 0.22590 (18) | 0.1309 (2) | 0.52275 (8) | 0.0226 (5) | |
O4B | 0.56703 (19) | 0.3986 (3) | 0.31170 (7) | 0.0591 (6) | |
N1B | 0.55499 (17) | 0.2047 (2) | 0.42729 (8) | 0.0293 (5) | |
C2B | 0.5720 (2) | 0.4092 (3) | 0.42590 (10) | 0.0353 (7) | |
C3B | 0.6444 (3) | 0.4633 (3) | 0.37002 (11) | 0.0509 (8) | |
C5B | 0.5609 (3) | 0.2016 (4) | 0.31253 (11) | 0.0541 (9) | |
C6B | 0.4830 (2) | 0.1326 (3) | 0.36568 (11) | 0.0412 (7) | |
H3A | 0.22200 | 0.61780 | 0.28470 | 0.0370* | |
H5A | 0.06260 | 0.09580 | 0.29130 | 0.0420* | |
H6A | 0.05060 | 0.12950 | 0.40010 | 0.0370* | |
H12A | 0.01550 | 0.20560 | 0.49020 | 0.0320* | |
H13A | 0.08180 | 0.31880 | 0.55260 | 0.0320* | |
H11B | 0.6420 (17) | 0.149 (3) | 0.4381 (9) | 0.0350* | |
H12B | 0.507 (2) | 0.180 (3) | 0.4587 (8) | 0.0350* | |
H21B | 0.63050 | 0.45170 | 0.46590 | 0.0420* | |
H22B | 0.47630 | 0.46970 | 0.42270 | 0.0420* | |
H31B | 0.65250 | 0.60090 | 0.36850 | 0.0610* | |
H32B | 0.74300 | 0.41080 | 0.37530 | 0.0610* | |
H51B | 0.66010 | 0.15050 | 0.31820 | 0.0650* | |
H52B | 0.51060 | 0.15630 | 0.27110 | 0.0650* | |
H61B | 0.38150 | 0.17540 | 0.35850 | 0.0490* | |
H62B | 0.48330 | −0.00540 | 0.36630 | 0.0490* | |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
Cl2A | 0.0474 (3) | 0.0221 (3) | 0.0376 (3) | −0.0043 (2) | 0.0088 (2) | 0.0006 (2) |
Cl4A | 0.0576 (4) | 0.0620 (4) | 0.0312 (3) | 0.0069 (3) | 0.0087 (2) | −0.0094 (3) |
O11A | 0.0339 (7) | 0.0222 (7) | 0.0274 (7) | 0.0037 (6) | 0.0072 (5) | 0.0055 (6) |
O13A | 0.0247 (7) | 0.0429 (9) | 0.0524 (9) | 0.0066 (6) | 0.0162 (6) | 0.0154 (7) |
O14A | 0.0291 (7) | 0.0282 (7) | 0.0368 (8) | 0.0031 (6) | 0.0056 (6) | 0.0117 (6) |
C1A | 0.0202 (8) | 0.0236 (9) | 0.0265 (10) | 0.0059 (7) | 0.0019 (7) | 0.0052 (8) |
C2A | 0.0228 (9) | 0.0222 (9) | 0.0315 (10) | 0.0032 (8) | 0.0036 (7) | 0.0015 (8) |
C3A | 0.0290 (10) | 0.0325 (11) | 0.0307 (11) | 0.0034 (9) | 0.0063 (8) | 0.0071 (9) |
C4A | 0.0295 (10) | 0.0386 (12) | 0.0268 (10) | 0.0064 (9) | 0.0010 (8) | −0.0019 (9) |
C5A | 0.0328 (10) | 0.0302 (11) | 0.0389 (12) | −0.0021 (9) | −0.0040 (9) | −0.0053 (9) |
C6A | 0.0283 (10) | 0.0260 (10) | 0.0363 (11) | −0.0026 (8) | 0.0003 (8) | 0.0041 (9) |
C12A | 0.0259 (9) | 0.0278 (10) | 0.0288 (10) | 0.0031 (8) | 0.0090 (7) | 0.0080 (8) |
C13A | 0.0236 (9) | 0.0225 (9) | 0.0214 (9) | 0.0011 (8) | 0.0025 (7) | −0.0005 (8) |
O4B | 0.0774 (12) | 0.0641 (12) | 0.0344 (9) | −0.0058 (10) | 0.0026 (8) | 0.0203 (9) |
N1B | 0.0245 (8) | 0.0311 (9) | 0.0338 (9) | 0.0047 (7) | 0.0089 (7) | 0.0114 (8) |
C2B | 0.0385 (11) | 0.0292 (11) | 0.0367 (12) | 0.0044 (9) | 0.0001 (9) | 0.0014 (9) |
C3B | 0.0611 (15) | 0.0443 (14) | 0.0466 (14) | −0.0155 (12) | 0.0046 (11) | 0.0164 (12) |
C5B | 0.0596 (15) | 0.0678 (18) | 0.0337 (13) | 0.0014 (14) | 0.0025 (11) | −0.0126 (13) |
C6B | 0.0362 (11) | 0.0337 (12) | 0.0524 (14) | −0.0035 (10) | 0.0012 (10) | −0.0015 (10) |
Geometric parameters (Å, º) top Cl2A—C2A | 1.737 (2) | C5A—C6A | 1.382 (3) |
Cl4A—C4A | 1.7466 (19) | C12A—C13A | 1.522 (3) |
O11A—C1A | 1.357 (2) | C3A—H3A | 0.9500 |
O11A—C12A | 1.434 (2) | C5A—H5A | 0.9500 |
O13A—C13A | 1.241 (2) | C6A—H6A | 0.9500 |
O14A—C13A | 1.254 (2) | C12A—H12A | 0.9900 |
O4B—C5B | 1.414 (4) | C12A—H13A | 0.9900 |
O4B—C3B | 1.418 (3) | C2B—C3B | 1.492 (3) |
N1B—C2B | 1.476 (3) | C5B—C6B | 1.506 (3) |
N1B—C6B | 1.474 (3) | C2B—H21B | 0.9900 |
N1B—H12B | 0.870 (18) | C2B—H22B | 0.9900 |
N1B—H11B | 0.908 (18) | C3B—H31B | 0.9900 |
C1A—C2A | 1.396 (3) | C3B—H32B | 0.9900 |
C1A—C6A | 1.386 (3) | C5B—H51B | 0.9900 |
C2A—C3A | 1.379 (3) | C5B—H52B | 0.9900 |
C3A—C4A | 1.380 (3) | C6B—H61B | 0.9900 |
C4A—C5A | 1.371 (3) | C6B—H62B | 0.9900 |
| | | |
C1A—O11A—C12A | 117.39 (15) | C13A—C12A—H12A | 109.00 |
C3B—O4B—C5B | 109.44 (17) | O11A—C12A—H12A | 109.00 |
C2B—N1B—C6B | 111.61 (16) | C13A—C12A—H13A | 109.00 |
C6B—N1B—H11B | 110.6 (12) | O11A—C12A—H13A | 109.00 |
C2B—N1B—H12B | 106.6 (14) | H12A—C12A—H13A | 108.00 |
H11B—N1B—H12B | 105.0 (17) | N1B—C2B—C3B | 109.65 (17) |
C2B—N1B—H11B | 110.3 (13) | O4B—C3B—C2B | 111.7 (2) |
C6B—N1B—H12B | 112.4 (12) | O4B—C5B—C6B | 111.2 (2) |
O11A—C1A—C6A | 125.33 (17) | N1B—C6B—C5B | 109.52 (17) |
C2A—C1A—C6A | 118.12 (16) | N1B—C2B—H21B | 110.00 |
O11A—C1A—C2A | 116.55 (17) | N1B—C2B—H22B | 110.00 |
C1A—C2A—C3A | 121.85 (19) | C3B—C2B—H21B | 110.00 |
Cl2A—C2A—C3A | 118.83 (16) | C3B—C2B—H22B | 110.00 |
Cl2A—C2A—C1A | 119.32 (14) | H21B—C2B—H22B | 108.00 |
C2A—C3A—C4A | 118.28 (19) | O4B—C3B—H31B | 109.00 |
C3A—C4A—C5A | 121.29 (18) | O4B—C3B—H32B | 109.00 |
Cl4A—C4A—C3A | 118.72 (15) | C2B—C3B—H31B | 109.00 |
Cl4A—C4A—C5A | 119.99 (16) | C2B—C3B—H32B | 109.00 |
C4A—C5A—C6A | 119.92 (19) | H31B—C3B—H32B | 108.00 |
C1A—C6A—C5A | 120.52 (18) | O4B—C5B—H51B | 109.00 |
O11A—C12A—C13A | 113.66 (14) | O4B—C5B—H52B | 109.00 |
O14A—C13A—C12A | 114.26 (15) | C6B—C5B—H51B | 109.00 |
O13A—C13A—O14A | 126.00 (15) | C6B—C5B—H52B | 109.00 |
O13A—C13A—C12A | 119.72 (15) | H51B—C5B—H52B | 108.00 |
C4A—C3A—H3A | 121.00 | N1B—C6B—H61B | 110.00 |
C2A—C3A—H3A | 121.00 | N1B—C6B—H62B | 110.00 |
C4A—C5A—H5A | 120.00 | C5B—C6B—H61B | 110.00 |
C6A—C5A—H5A | 120.00 | C5B—C6B—H62B | 110.00 |
C5A—C6A—H6A | 120.00 | H61B—C6B—H62B | 108.00 |
C1A—C6A—H6A | 120.00 | | |
| | | |
C12A—O11A—C1A—C2A | −171.22 (15) | C6A—C1A—C2A—C3A | −1.6 (3) |
C12A—O11A—C1A—C6A | 9.2 (2) | Cl2A—C2A—C3A—C4A | 179.56 (14) |
C1A—O11A—C12A—C13A | 72.91 (19) | C1A—C2A—C3A—C4A | 0.4 (3) |
C5B—O4B—C3B—C2B | −61.7 (2) | C2A—C3A—C4A—Cl4A | −179.24 (14) |
C3B—O4B—C5B—C6B | 61.5 (3) | C2A—C3A—C4A—C5A | 0.9 (3) |
C6B—N1B—C2B—C3B | −52.8 (2) | Cl4A—C4A—C5A—C6A | 179.27 (15) |
C2B—N1B—C6B—C5B | 52.8 (2) | C3A—C4A—C5A—C6A | −0.9 (3) |
O11A—C1A—C6A—C5A | −178.82 (17) | C4A—C5A—C6A—C1A | −0.5 (3) |
C2A—C1A—C6A—C5A | 1.6 (3) | O11A—C12A—C13A—O13A | 6.5 (2) |
O11A—C1A—C2A—C3A | 178.80 (16) | O11A—C12A—C13A—O14A | −175.12 (14) |
C6A—C1A—C2A—Cl2A | 179.20 (14) | N1B—C2B—C3B—O4B | 57.1 (2) |
O11A—C1A—C2A—Cl2A | −0.4 (2) | O4B—C5B—C6B—N1B | −57.3 (2) |
Hydrogen-bond geometry (Å, º) top D—H···A | D—H | H···A | D···A | D—H···A |
N1B—H11B···O13Ai | 0.91 (2) | 2.56 (2) | 3.115 (2) | 120 (1) |
N1B—H11B···O14Ai | 0.91 (2) | 1.79 (2) | 2.683 (2) | 169 (2) |
N1B—H12B···O13A | 0.87 (2) | 1.92 (2) | 2.747 (2) | 158 (2) |
C12A—H12A···O14Aii | 0.99 | 2.50 | 3.484 (2) | 173 |
C2B—H21B···O11Aiii | 0.99 | 2.57 | 3.477 (2) | 151 |
C5B—H52B···O4Biv | 0.99 | 2.58 | 3.489 (3) | 153 |
Symmetry codes: (i) −x+1, −y, −z+1; (ii) −x, −y, −z+1; (iii) −x+1, −y+1, −z+1; (iv) −x+1, y−1/2, −z+1/2. |
Acknowledgements
GS acknowledges financial support from the Science and Engineering Faculty, Queensland University of Technology.
References
Agilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, Oxfordshire, England. Google Scholar
Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350. CrossRef Web of Science IUCr Journals Google Scholar
André, V., Braga, D., Grepioni, F. & Duarte, M. T. (2009). Cryst. Growth Des. 9, 5108–5116. Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Ishida, H., Rahman, B. & Kashino, S. (2001a). Acta Cryst. C57, 1450–1453. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Ishida, H., Rahman, B. & Kashino, S. (2001b). Acta Cryst. E57, o627–o629. Web of Science CSD CrossRef IUCr Journals Google Scholar
Ishida, H., Rahman, B. & Kashino, S. (2001c). Acta Cryst. E57, o630–o632. Web of Science CSD CrossRef IUCr Journals Google Scholar
Kennard, C. H. L., Smith, G. & White, A. H. (1982). Acta Cryst. B38, 868–875. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Liu, H.-L., Guo, S.-H., Li, Y.-Y. & Jian, F.-F. (2009). Acta Cryst. E65, o1905. Web of Science CSD CrossRef IUCr Journals Google Scholar
Lynch, D. E., Barfield, J., Frost, J., Antrobus, R. & Simmons, J. (2003). Cryst. Eng. 6, 109–122. Web of Science CSD CrossRef CAS Google Scholar
O'Neil, M. J. (2001). Editor. The Merck Index, 13th ed., pp. 1495–1496. Whitehouse Station, NJ, USA: Merck & Co. Inc. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Smith, G. (2014). Acta Cryst. E70, 528–532. CSD CrossRef IUCr Journals Google Scholar
Smith, G., Kennard, C. H. L. & White, A. H. (1976). J. Chem. Soc. Perkin Trans. 2, pp. 791–792. CSD CrossRef Web of Science Google Scholar
Smith, G. & Lynch, D. E. (2015a). Acta Cryst. E71, 671–674. CSD CrossRef IUCr Journals Google Scholar
Smith, G. & Lynch, D. E. (2015b). Unpublished results. Google Scholar
Smith, G., Lynch, D. E., Sagatys, D. S., Kennard, C. H. L. & Katekar, G. F. (1992). Aust. J. Chem. 45, 1101–1108. CSD CrossRef CAS Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zumdahl, R. L. (2010). In A History of Weed Science in the United States. New York: Elsevier. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
 | CRYSTALLOGRAPHIC COMMUNICATIONS |
ISSN: 2056-9890
Open

access