research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures and hydrogen bonding in the morpholinium salts of four phen­­oxy­acetic acid analogues

aScience and Engineering Faculty, Queensland University of Technology, GPO Box 2434, Brisbane, Queensland 4001, Australia, and bExilica Ltd., The Technocentre, Puma Way, Coventry CV1 2TT, England
*Correspondence e-mail: g.smith@qut.edu.au

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 13 October 2015; accepted 21 October 2015; online 28 October 2015)

The anhydrous salts morpholinium (tetra­hydro-2-H-1,4-oxazin-4-ium) phen­oxy­acetate, C4H10NO+·C8H7O3, (I), morpholinium (4-fluoro­phen­oxy)acetate, C4H10NO+·C8H6 FO3, (II), and isomeric morpholinium (3,5-di­chloro­phen­oxy)acetate (3,5-D), (III), and morpholinium (2,4-di­chloro­phen­oxy)acetic acid (2,4-D), C4H10NO+·C8H5Cl2O3, (IV), have been determined and their hydrogen-bonded structures are described. In the crystals of (I), (III) and (IV), one of the the aminium H atoms is involved in a three-centre asymmetric cation–anion N—H⋯O,O′ R12(4) hydrogen-bonding inter­action with the two carboxyl O-atom acceptors of the anion. With the structure of (II), the primary N—H⋯O inter­action is linear. In the structures of (I), (II) and (III), the second N—H⋯Ocarbox­yl hydrogen bond generates one-dimensional chain structures extending in all cases along [100]. With (IV), the ion pairs are linked though inversion-related N—H⋯O hydrogen bonds [graph set R42(8)], giving a cyclic hetero­tetra­meric structure.

1. Chemical context

Morpholine (tetra­hydro-2-H-1,4-oxazine) is an moderately strong base (pKa = 8.33) and forms salts with a number of organic acids, some having medical applications, e.g. the salicylate (retarcyl, depasol), used as an analgesic, an anti­pyretic and an anti-inflammatory agent (O'Neil, 2001[O'Neil, M. J. (2001). Editor. The Merck Index, 13th ed., pp. 1495-1496. Whitehouse Station, NJ, USA: Merck & Co. Inc.]). The crystal structures of a number of these morpholinate compounds have been reported, some examples of salts with substituted benzoic acids being the 4-amino­salicylate (André et al., 2009[André, V., Braga, D., Grepioni, F. & Duarte, M. T. (2009). Cryst. Growth Des. 9, 5108-5116.]), and a series of isomeric chloro­nitro­benzoates (2,4-, 2,5-, 4,2-, 4,3- and 5,2-) (Ishida et al., 2001a[Ishida, H., Rahman, B. & Kashino, S. (2001a). Acta Cryst. C57, 1450-1453.],b[Ishida, H., Rahman, B. & Kashino, S. (2001b). Acta Cryst. E57, o627-o629.],c[Ishida, H., Rahman, B. & Kashino, S. (2001c). Acta Cryst. E57, o630-o632.]). In these, cation–anion hydrogen-bonding inter­actions generate either one-dimensional chains or discrete cyclic hetero­tetra­meric structures. Of inter­est is the mode of hydrogen bonding in crystals of the morpholinium salts of some phen­oxy­acetic acid analogues, no structures of which have been reported previously. The reaction of morpholine with phen­oxy­acetic acid (PAA), (4-fluoro­phen­oxy)acetic acid (PFPA) and with the two isomeric homologues, (3,5-di­chloro­phen­oxy)acetic acid (3,5-D) and the herbicidally active (2,4-di­chloro­phen­oxy)acetic acid (2,4-D) (Zumdahl, 2010[Zumdahl, R. L. (2010). In A History of Weed Science in the United States. New York: Elsevier.]), gave the anhydrous salts (I)–(IV), respectively. Their structures and hydrogen-bonding modes are reported on herein.

[Scheme 1]

2. Structural commentary

The asymmetric units of (I)–(IV) comprise a morpholinium cation (B) and a phen­oxy­acetate anion (A) in (I)[link] (Fig. 1[link]), a (4-fluoro­phen­oxy)acetate anion (A) in (II)[link] (Fig. 2[link]), a 3,5-di­chloro­phen­oxy­acetate anion (A) in (III)[link] (Fig. 3[link]) and a (2,4-di­chloro­phen­oxy)acetate anion (A) in (IV)[link] (Fig. 4[link]). The conformation of the oxo­acetate side chains in the anions of (I)[link] and (II)[link] are essentially planar, with the defining torsion angle C1A—O11A—C12A—C13A = 176.75 (14) and 176.53 (14)°, respectively. This anti­periplanar (180±30°) conformation is similar to those of the parent acids PAA (−175.1°; Kennard et al., 1982[Kennard, C. H. L., Smith, G. & White, A. H. (1982). Acta Cryst. B38, 868-875.]), PFPA [176.0 (6)°; Smith et al., 1992[Smith, G., Lynch, D. E., Sagatys, D. S., Kennard, C. H. L. & Katekar, G. F. (1992). Aust. J. Chem. 45, 1101-1108.]] and their proton-transfer salts, e.g. the ammonium salts of PAA [−177.48 (18)°] and PFPA [−178.98 (17)°] (Smith, 2014[Smith, G. (2014). Acta Cryst. E70, 528-532.]). However, with the 3,5-D and 2,4-D salts, the side-chain conformations are both synclinal (90±30°) [−76.5 (2)° in (III)[link] and 72.91 (19)° in (IV)], similar to that in the parent acid 2,4-D (75.2°; Smith et al., 1976[Smith, G., Kennard, C. H. L. & White, A. H. (1976). J. Chem. Soc. Perkin Trans. 2, pp. 791-792.]), in the tryptaminium salt of 2,4-D [81.2 (6)°; Smith & Lynch, 2015a[Smith, G. & Lynch, D. E. (2015a). Acta Cryst. E71, 671-674.]] and in the 2:1 salt-adduct of 3,5-D with 4,4′-bi­pyridine [−71.6 (3)°; Lynch et al., 2003[Lynch, D. E., Barfield, J., Frost, J., Antrobus, R. & Simmons, J. (2003). Cryst. Eng. 6, 109-122.]]. However, in the tryptaminium salt of 3,5-D (Smith & Lynch, 2015b[Smith, G. & Lynch, D. E. (2015b). Unpublished results.]), the ammonium salts of both 2,4-D (Liu et al., 2009[Liu, H.-L., Guo, S.-H., Li, Y.-Y. & Jian, F.-F. (2009). Acta Cryst. E65, o1905.]) and 3,5-D (Smith, 2014[Smith, G. (2014). Acta Cryst. E70, 528-532.]), the anti­periplanar conformation is found [equivalent torsion angles = −166.5 (3), 172.61 (8) and −171.35 (15)°, respectively].

[Figure 1]
Figure 1
The atom-numbering scheme and the mol­ecular conformation of the morpholinium cation (B) and the phen­oxy­acetate anion (A) in (I)[link], with displacement ellipsoids drawn at the 40% probability level. The cation–anion hydrogen bonds are shown as dashed lines.
[Figure 2]
Figure 2
The atom-numbering scheme and the mol­ecular conformation of the morpholinium cation (B) and the 4-fluoro­phen­oxy)acetate anion (A) in (II)[link], with displacement ellipsoids drawn at the 40% probability level. The cation–anion hydrogen bond is shown as a dashed line.
[Figure 3]
Figure 3
The atom-numbering scheme and the mol­ecular conformation of the morpholinium cation (B) and the 3,5-D anion (A) in (III)[link], with displacement ellipsoids drawn at the 40% probability level. The cation–anion hydrogen bonds are shown as dashed lines.
[Figure 4]
Figure 4
The atom-numbering scheme and the mol­ecular conformation of the morpholinium cation (B) and the 2,4-D anion (A) in (IV)[link], with displacement ellipsoids drawn at the 40% probability level. The cation–anion hydrogen bonds are shown as dashed lines.

3. Supra­molecular features

In the crystals of both (I)[link], (III)[link] and (IV)[link], a primary three-centre R12(4) N1B—H⋯(O,O′)carbox­yl hydrogen-bonding inter­action is present, with the asymmetry in (I)[link] [N⋯O = 2.7366 (18) and 3.1655 (17) Å] and (IV)[link] [2.683 (2) and 3.115 (2) Å] being significantly greater than that in (III)[link] [2.892 (3) and 2.988 (3) Å] (Tables 1[link], 3[link] and 4[link]). With (II)[link], the second N—H⋯O distance is 3.241 (2) Å.

Table 1
Hydrogen-bond geometry (Å, °) for (I)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N1B—H11B⋯O13A 0.92 (2) 1.83 (2) 2.7366 (18) 169 (2)
N1B—H11B⋯O14A 0.92 (2) 2.57 (2) 3.1655 (17) 123 (1)
N1B—H12B⋯O14Ai 0.95 (1) 1.76 (1) 2.7061 (17) 176 (1)
C4A—H4A⋯O4Bii 0.95 2.59 3.447 (2) 151
C6B—H62B⋯O13Aiii 0.99 2.39 3.148 (2) 133
Symmetry codes: (i) x-1, y, z; (ii) x+1, y+1, z-1; (iii) -x, -y+1, -z+1.

Table 3
Hydrogen-bond geometry (Å, °) for (III)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N1B—H11B⋯O13A 0.88 (2) 2.07 (2) 2.892 (3) 156 (2)
N1B—H11B⋯O14A 0.88 (2) 2.26 (2) 2.988 (3) 141 (2)
N1B—H12B⋯O14Ai 0.88 (2) 1.87 (2) 2.737 (3) 170 (2)
C12A—H12A⋯O13Aii 0.99 2.41 3.398 (3) 173
Symmetry codes: (i) x-1, y, z; (ii) x+1, y, z.

Table 4
Hydrogen-bond geometry (Å, °) for (IV)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N1B—H11B⋯O13Ai 0.91 (2) 2.56 (2) 3.115 (2) 120 (1)
N1B—H11B⋯O14Ai 0.91 (2) 1.79 (2) 2.683 (2) 169 (2)
N1B—H12B⋯O13A 0.87 (2) 1.92 (2) 2.747 (2) 158 (2)
C12A—H12A⋯O14Aii 0.99 2.50 3.484 (2) 173
C2B—H21B⋯O11Aiii 0.99 2.57 3.477 (2) 151
C5B—H52B⋯O4Biv 0.99 2.58 3.489 (3) 153
Symmetry codes: (i) -x+1, -y, -z+1; (ii) -x, -y, -z+1; (iii) -x+1, -y+1, -z+1; (iv) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

The hydrogen-bonding extensions involving the second aminium H atom of the cation result in different structures in (I)–(III) compared to that in (IV)[link]. With (I)–(III), the primary heterodimers are all extended along a through an N1B—H⋯O14Ai hydrogen bond (Tables 1[link]–3[link][link], respectively), into one-dimensional ribbon structures (Figs. 5[link]–7[link][link]). These ribbon structures provide further examples of the common hydrogen-bonded structure type found among the anhydrous aromatic morpholinium benzoate salts, e.g. with salicylic acid (Smith & Lynch, 2015b[Smith, G. & Lynch, D. E. (2015b). Unpublished results.]) and with 2-chloro-4-nitro­benzoic acid (Ishida et al., 2001a[Ishida, H., Rahman, B. & Kashino, S. (2001a). Acta Cryst. C57, 1450-1453.]). In both of these examples, helical chains extend along 21screw axes in the crystals. Present also in structures of (I)–(IV) are minor weak inter-unit C—H⋯O inter­actions: in (I)[link], C4A—H⋯O4Bii (Table 1[link]); in (II)[link], C4A—H⋯O4Bii; C6B—H⋯O13Aiii (Table 2[link]): in (III)[link], Cl2A—H⋯O13Aii (Table 3[link]).

Table 2
Hydrogen-bond geometry (Å, °) for (II)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N1B—H11B⋯O14Ai 0.97 (2) 1.76 (2) 2.725 (2) 175 (2)
N1B—H12B⋯O13A 0.94 (2) 1.80 (2) 2.718 (2) 165 (2)
C6B—H61B⋯O14Aii 0.99 2.38 3.188 (2) 138
Symmetry codes: (i) x+1, y, z; (ii) -x, -y+2, -z+1.
[Figure 5]
Figure 5
The one-dimensional hydrogen-bonded polymeric structure of (I)[link] extending along a. For symmetry codes, see Table 1[link].
[Figure 6]
Figure 6
The one-dimensional hydrogen-bonded polymeric structure of (II)[link] extending along a. For symmetry codes, see Table 2[link].
[Figure 7]
Figure 7
The one-dimensional hydrogen-bonded polymeric structure of (III)[link] extending along a. For symmetry codes, see Table 3[link]

In the crystal of (IV)[link], the second N1B—H⋯O14Ai hydrogen bond generates a centrosymmetric hetero­tetra­meric ring structure [graph set R42(8)] (Fig. 8[link]). For symmetry code (i), see Table 4[link]. This cyclic system typifies the second structure type also found in a number of examples of morpholinium salts with ring-substituted benzoic acids, e.g. in the 2-chloro-5-nitro-, 4-chloro-2-nitro-, 4-chloro-3-nitro- and 5-chloro-2-nitro­benzoate series (Ishida et al., 2001a[Ishida, H., Rahman, B. & Kashino, S. (2001a). Acta Cryst. C57, 1450-1453.],b[Ishida, H., Rahman, B. & Kashino, S. (2001b). Acta Cryst. E57, o627-o629.],c[Ishida, H., Rahman, B. & Kashino, S. (2001c). Acta Cryst. E57, o630-o632.]] and in the 4-amino­salicylate (André et al., 2009[André, V., Braga, D., Grepioni, F. & Duarte, M. T. (2009). Cryst. Growth Des. 9, 5108-5116.]).

[Figure 8]
Figure 8
The cyclic hydrogen-bonded hetero­tetra­mer structure of (IV)[link]. For symmetry codes, see Table 4[link].

Only weak inter-unit C—H⋯O inter­actions to carboxyl or phen­oxy O-atom acceptors are present in (IV)[link] (Table 4[link]), while no ππ inter­actions are found in any of the structures.

4. Synthesis and crystallization

The title compounds (I)–(IV) were prepared by the dropwise addition of morpholine at room temperature to solutions of phen­oxy­acetic acid (150 mg), (4-fluoro­phen­oxy)acetic (170 mg), (2,4-di­chloro­phen­oxy)acetic acid or (2,4-di­chloro­phen­oxy)acetic acid (220 mg), respectively, in 15 ml of ethanol. Room-temperature evaporation of the solutions gave either colourless plates of (III)[link] or needles of (IV)[link] from which specimens were cleaved for the X-ray analyses. For (I)[link] and (II)[link], the same preparative procedure was employed using phen­oxy­acetic acid or (4-fluoro­phen­oxy)acetic acid but the final oils which resulted after solvent evaporation were redissolved in ethanol, finally giving thin colourless fragile plates of compounds (I)[link] and (II)[link] from which specimens were cleaved for the X-ray analyses.

5. Refinement details

Crystal data, data collection and structure refinement details are given in Table 5[link]. H atoms were placed in calculated positions (aromatic C—H = 0.95 Å or methyl­ene C—H = 0.99 Å) and were allowed to ride in the refinements, with Uiso(H) = 1.2Ueq(C). The aminium H atoms were located in difference Fourier analyses and were allowed to refine with distance restraints [N—H = 0.90 (2) Å] and Uiso(H) = 1.2Ueq(N).

Table 5
Experimental details

  (I) (II) (III) (IV)
Crystal data
Chemical formula C4H10NO+·C8H7O3 C4H10NO+·C8H6FO3 C4H10NO+·C8H5Cl2O3 C4H10NO+·C8H5Cl2O3
Mr 239.27 257.26 308.15 308.15
Crystal system, space group Triclinic, P[\overline{1}] Triclinic, P[\overline{1}] Triclinic, P[\overline{1}] Monoclinic, P21/c
Temperature (K) 200 200 200 200
a, b, c (Å) 5.7079 (5), 9.7735 (9), 11.3586 (10) 5.7997 (5), 10.2605 (10), 10.4836 (11) 5.1733 (4), 11.3751 (10), 11.7808 (10) 9.3657 (5), 7.1702 (3), 21.1340 (11)
α, β, γ (°) 78.277 (7), 86.171 (7), 77.512 (7) 88.388 (8), 82.792 (8), 80.325 (8) 86.904 (7), 85.106 (7), 77.936 (7) 90, 97.981 (5), 90
V3) 605.58 (10) 610.11 (10) 675.01 (10) 1405.48 (12)
Z 2 2 2 4
Radiation type Mo Kα Mo Kα Mo Kα Mo Kα
μ (mm−1) 0.10 0.11 0.49 0.47
Crystal size (mm) 0.50 × 0.15 × 0.04 0.50 × 0.25 × 0.05 0.50 × 0.13 × 0.10 0.35 × 0.35 × 0.12
 
Data collection
Diffractometer Oxford Diffraction Gemini-S CCD detector Oxford Diffraction Gemini-S CCD detector Oxford Diffraction Gemini-S CCD detector Oxford Diffraction Gemini-S CCD detector
Absorption correction Multi-scan (CrysAlis PRO; Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, Oxfordshire, England.]) Multi-scan (CrysAlis PRO; Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, Oxfordshire, England.]) Multi-scan (CrysAlis PRO; Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, Oxfordshire, England.]) Multi-scan (CrysAlis PRO; Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, Oxfordshire, England.])
Tmin, Tmax 0.860, 0.980 0.488, 0.980 0.903, 0.989 0.933, 0.980
No. of measured, independent and observed reflections 4172, 2370, 1765 [I > 2σ(I)] 4984, 2394, 1743 [I > 2σ(I)] 5616, 2646, 2096 [I > 2σ(I)] 6400, 2754, 2273 [I.2σ(I)]
Rint 0.033 0.033 0.027 0.026
(sin θ/λ)max−1) 0.617 0.617 0.617 0.617
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.113, 1.02 0.046, 0.116, 1.04 0.039, 0.091, 1.03 0.038, 0.091, 1.04
No. of reflections 2370 2394 2646 2754
No. of parameters 154 169 178 178
No. of restraints 0 2 2 2
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.16, −0.17 0.19, −0.20 0.24, −0.26 0.28, −0.26
Computer programs: CrysAlis PRO (Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, Oxfordshire, England.]), SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) within WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

For all compounds, data collection: CrysAlis PRO (Agilent, 2014); cell refinement: CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis PRO (Agilent, 2014). Program(s) used to solve structure: SHELXS97 (Sheldrick, 2008) for (I), (II); SIR92 (Altomare et al., 1993) for (III), (IV). For all compounds, program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) within WinGX (Farrugia, 2012); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

(I) Tetrahydro-2H-1,4-oxazin-4-ium phenoxyacetate top
Crystal data top
C4H10NO+·C8H7O3Z = 2
Mr = 239.27F(000) = 256
Triclinic, P1Dx = 1.312 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.7079 (5) ÅCell parameters from 1029 reflections
b = 9.7735 (9) Åθ = 3.9–28.5°
c = 11.3586 (10) ŵ = 0.10 mm1
α = 78.277 (7)°T = 200 K
β = 86.171 (7)°Plate, colourless
γ = 77.512 (7)°0.50 × 0.15 × 0.04 mm
V = 605.58 (10) Å3
Data collection top
Oxford Diffraction Gemini-S CCD-detector
diffractometer
2370 independent reflections
Radiation source: Enhance (Mo) X-ray source1765 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
Detector resolution: 16.077 pixels mm-1θmax = 26.0°, θmin = 3.1°
ω scansh = 76
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2014)
k = 1212
Tmin = 0.860, Tmax = 0.980l = 1313
4172 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.113H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0456P)2]
where P = (Fo2 + 2Fc2)/3
2370 reflections(Δ/σ)max < 0.001
154 parametersΔρmax = 0.16 e Å3
0 restraintsΔρmin = 0.17 e Å3
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O11A0.3926 (2)0.81847 (13)0.38178 (10)0.0374 (4)
O13A0.11992 (19)0.65034 (13)0.51716 (10)0.0358 (4)
O14A0.41444 (19)0.54699 (13)0.64451 (10)0.0323 (4)
C1A0.5198 (3)0.91643 (18)0.32122 (15)0.0303 (5)
C2A0.7157 (3)0.94974 (19)0.36542 (16)0.0346 (6)
C3A0.8267 (3)1.0526 (2)0.29642 (17)0.0415 (7)
C4A0.7481 (4)1.1208 (2)0.18324 (18)0.0449 (7)
C5A0.5549 (4)1.0854 (2)0.13875 (17)0.0432 (7)
C6A0.4402 (3)0.98450 (19)0.20676 (16)0.0365 (6)
C12A0.4895 (3)0.73323 (18)0.49189 (14)0.0288 (5)
C13A0.3264 (3)0.63578 (18)0.55411 (14)0.0268 (5)
O4B0.1545 (2)0.39037 (15)0.94974 (10)0.0445 (5)
N1B0.1183 (2)0.50356 (15)0.70035 (12)0.0270 (4)
C2B0.1277 (3)0.59359 (19)0.79155 (14)0.0322 (6)
C3B0.2632 (3)0.5347 (2)0.90159 (15)0.0386 (6)
C5B0.1515 (4)0.3030 (2)0.86300 (16)0.0410 (7)
C6B0.0136 (3)0.35172 (19)0.75076 (15)0.0349 (6)
H2A0.773900.902400.442700.0420*
H3A0.959501.076600.327700.0500*
H4A0.825701.191200.136600.0540*
H5A0.500301.130900.060400.0520*
H6A0.306500.961400.175500.0440*
H11A0.513200.796500.546000.0350*
H12A0.648200.674700.475300.0350*
H11B0.032 (3)0.5424 (18)0.6353 (13)0.0320*
H12B0.280 (2)0.5164 (19)0.6782 (13)0.0320*
H21B0.208700.693000.758400.0390*
H22B0.037200.594300.813100.0390*
H31B0.267100.593600.963300.0460*
H32B0.430700.539800.880400.0460*
H51B0.318400.305900.842200.0490*
H52B0.077700.202900.898200.0490*
H61B0.157000.341400.769600.0420*
H62B0.021200.292000.691000.0420*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O11A0.0348 (7)0.0363 (8)0.0397 (7)0.0186 (6)0.0046 (5)0.0088 (6)
O13A0.0252 (7)0.0472 (9)0.0342 (7)0.0162 (6)0.0014 (5)0.0031 (6)
O14A0.0270 (6)0.0366 (8)0.0316 (7)0.0121 (6)0.0004 (5)0.0030 (6)
C1A0.0299 (9)0.0232 (9)0.0364 (10)0.0081 (8)0.0070 (8)0.0021 (8)
C2A0.0351 (10)0.0320 (11)0.0373 (10)0.0128 (8)0.0028 (8)0.0028 (8)
C3A0.0387 (11)0.0391 (12)0.0509 (12)0.0201 (9)0.0074 (9)0.0086 (10)
C4A0.0515 (12)0.0360 (12)0.0487 (12)0.0222 (10)0.0140 (10)0.0025 (10)
C5A0.0545 (12)0.0326 (11)0.0387 (11)0.0117 (10)0.0037 (9)0.0030 (9)
C6A0.0378 (10)0.0307 (11)0.0405 (10)0.0105 (9)0.0012 (8)0.0018 (8)
C12A0.0255 (9)0.0281 (10)0.0328 (9)0.0101 (8)0.0001 (7)0.0012 (8)
C13A0.0257 (9)0.0290 (10)0.0273 (9)0.0093 (8)0.0044 (7)0.0071 (8)
O4B0.0641 (9)0.0436 (9)0.0267 (7)0.0196 (7)0.0014 (6)0.0001 (6)
N1B0.0239 (7)0.0331 (9)0.0247 (7)0.0120 (7)0.0021 (6)0.0015 (6)
C2B0.0333 (10)0.0317 (10)0.0342 (10)0.0119 (8)0.0013 (8)0.0073 (8)
C3B0.0458 (11)0.0422 (12)0.0295 (10)0.0137 (9)0.0061 (8)0.0083 (9)
C5B0.0577 (13)0.0309 (11)0.0363 (10)0.0180 (9)0.0055 (9)0.0003 (8)
C6B0.0366 (10)0.0313 (11)0.0356 (10)0.0045 (8)0.0037 (8)0.0057 (8)
Geometric parameters (Å, º) top
O11A—C1A1.372 (2)C2A—H2A0.9500
O11A—C12A1.426 (2)C3A—H3A0.9500
O13A—C13A1.247 (2)C4A—H4A0.9500
O14A—C13A1.256 (2)C5A—H5A0.9500
O4B—C5B1.426 (2)C6A—H6A0.9500
O4B—C3B1.424 (2)C12A—H11A0.9900
N1B—C6B1.485 (2)C12A—H12A0.9900
N1B—C2B1.481 (2)C2B—C3B1.504 (2)
N1B—H12B0.948 (12)C5B—C6B1.501 (3)
N1B—H11B0.923 (16)C2B—H21B0.9900
C1A—C6A1.391 (2)C2B—H22B0.9900
C1A—C2A1.381 (2)C3B—H31B0.9900
C2A—C3A1.384 (3)C3B—H32B0.9900
C3A—C4A1.378 (3)C5B—H51B0.9900
C4A—C5A1.379 (3)C5B—H52B0.9900
C5A—C6A1.378 (3)C6B—H61B0.9900
C12A—C13A1.515 (2)C6B—H62B0.9900
C1A—O11A—C12A116.65 (13)C13A—C12A—H11A109.00
C3B—O4B—C5B110.28 (13)O11A—C12A—H11A109.00
C2B—N1B—C6B110.91 (13)C13A—C12A—H12A109.00
C6B—N1B—H11B113.4 (11)O11A—C12A—H12A109.00
C2B—N1B—H12B104.8 (10)H11A—C12A—H12A108.00
H11B—N1B—H12B109.0 (14)N1B—C2B—C3B109.23 (14)
C2B—N1B—H11B106.3 (10)O4B—C3B—C2B111.23 (14)
C6B—N1B—H12B111.9 (11)O4B—C5B—C6B111.72 (16)
O11A—C1A—C6A115.56 (15)N1B—C6B—C5B109.35 (14)
C2A—C1A—C6A119.48 (16)N1B—C2B—H21B110.00
O11A—C1A—C2A124.96 (15)N1B—C2B—H22B110.00
C1A—C2A—C3A119.58 (16)C3B—C2B—H21B110.00
C2A—C3A—C4A121.20 (18)C3B—C2B—H22B110.00
C3A—C4A—C5A118.97 (19)H21B—C2B—H22B108.00
C4A—C5A—C6A120.65 (18)O4B—C3B—H31B109.00
C1A—C6A—C5A120.10 (17)O4B—C3B—H32B109.00
O11A—C12A—C13A111.82 (14)C2B—C3B—H31B109.00
O13A—C13A—O14A125.13 (16)C2B—C3B—H32B109.00
O13A—C13A—C12A120.24 (14)H31B—C3B—H32B108.00
O14A—C13A—C12A114.59 (15)O4B—C5B—H51B109.00
C3A—C2A—H2A120.00O4B—C5B—H52B109.00
C1A—C2A—H2A120.00C6B—C5B—H51B109.00
C4A—C3A—H3A119.00C6B—C5B—H52B109.00
C2A—C3A—H3A119.00H51B—C5B—H52B108.00
C5A—C4A—H4A121.00N1B—C6B—H61B110.00
C3A—C4A—H4A121.00N1B—C6B—H62B110.00
C4A—C5A—H5A120.00C5B—C6B—H61B110.00
C6A—C5A—H5A120.00C5B—C6B—H62B110.00
C5A—C6A—H6A120.00H61B—C6B—H62B108.00
C1A—C6A—H6A120.00
C12A—O11A—C1A—C2A8.1 (2)O11A—C1A—C2A—C3A178.84 (17)
C12A—O11A—C1A—C6A171.64 (15)C1A—C2A—C3A—C4A1.2 (3)
C1A—O11A—C12A—C13A176.53 (14)C2A—C3A—C4A—C5A0.1 (3)
C5B—O4B—C3B—C2B60.23 (18)C3A—C4A—C5A—C6A0.7 (3)
C3B—O4B—C5B—C6B59.8 (2)C4A—C5A—C6A—C1A0.4 (3)
C6B—N1B—C2B—C3B55.34 (17)O11A—C12A—C13A—O14A172.45 (14)
C2B—N1B—C6B—C5B54.74 (18)O11A—C12A—C13A—O13A9.8 (2)
C6A—C1A—C2A—C3A1.5 (3)N1B—C2B—C3B—O4B58.00 (18)
O11A—C1A—C6A—C5A179.61 (16)O4B—C5B—C6B—N1B56.8 (2)
C2A—C1A—C6A—C5A0.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1B—H11B···O13A0.92 (2)1.83 (2)2.7366 (18)169 (2)
N1B—H11B···O14A0.92 (2)2.57 (2)3.1655 (17)123 (1)
N1B—H12B···O14Ai0.95 (1)1.76 (1)2.7061 (17)176 (1)
C4A—H4A···O4Bii0.952.593.447 (2)151
C6B—H62B···O13Aiii0.992.393.148 (2)133
Symmetry codes: (i) x1, y, z; (ii) x+1, y+1, z1; (iii) x, y+1, z+1.
(II) Tetrahydro-2H-1,4-oxazin-4-ium (4-fluorophenoxy)acetate top
Crystal data top
C4H10NO+·C8H6FO3Z = 2
Mr = 257.26F(000) = 272
Triclinic, P1Dx = 1.400 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.7997 (5) ÅCell parameters from 1163 reflections
b = 10.2605 (10) Åθ = 4.0–28.4°
c = 10.4836 (11) ŵ = 0.11 mm1
α = 88.388 (8)°T = 200 K
β = 82.792 (8)°Plate, colourless
γ = 80.325 (8)°0.50 × 0.25 × 0.05 mm
V = 610.11 (10) Å3
Data collection top
Oxford Diffraction Gemini-S CCD-detector
diffractometer
2394 independent reflections
Radiation source: fine-focus sealed tube1743 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
Detector resolution: 16.077 pixels mm-1θmax = 26.0°, θmin = 3.6°
ω scansh = 76
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2014)
k = 1012
Tmin = 0.488, Tmax = 0.980l = 1212
4984 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.116H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.046P)2 + 0.0267P]
where P = (Fo2 + 2Fc2)/3
2394 reflections(Δ/σ)max < 0.001
169 parametersΔρmax = 0.19 e Å3
2 restraintsΔρmin = 0.20 e Å3
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F4A1.10905 (19)0.50899 (12)0.11938 (12)0.0518 (4)
O11A0.3317 (2)0.71651 (12)0.44716 (12)0.0328 (4)
O13A0.0039 (2)0.82589 (13)0.62958 (12)0.0331 (4)
O14A0.2493 (2)0.88910 (13)0.48447 (12)0.0350 (4)
C1A0.5169 (3)0.66778 (16)0.35718 (18)0.0255 (6)
C2A0.5357 (3)0.69979 (18)0.22788 (18)0.0300 (6)
C3A0.7372 (3)0.64655 (19)0.14698 (19)0.0357 (6)
C4A0.9096 (3)0.56021 (18)0.1981 (2)0.0331 (6)
C5A0.8925 (3)0.52405 (18)0.3247 (2)0.0333 (6)
C6A0.6948 (3)0.57908 (18)0.40512 (19)0.0308 (6)
C12A0.1408 (3)0.80714 (17)0.40429 (17)0.0263 (6)
C13A0.0514 (3)0.84287 (16)0.51649 (18)0.0249 (6)
O4B0.3300 (2)0.84416 (14)0.96211 (13)0.0458 (5)
N1B0.4282 (3)0.85297 (15)0.68920 (15)0.0288 (5)
C2B0.4898 (3)0.72899 (19)0.76326 (19)0.0357 (7)
C3B0.3244 (4)0.7319 (2)0.8863 (2)0.0415 (7)
C5B0.2614 (4)0.9620 (2)0.8921 (2)0.0425 (7)
C6B0.4214 (3)0.96981 (18)0.76981 (19)0.0329 (6)
H2A0.411900.757800.194200.0360*
H3A0.754600.669600.058300.0430*
H5A1.013500.462600.356800.0400*
H6A0.680300.556100.493800.0370*
H11A0.076200.766300.335100.0320*
H12A0.198100.888100.369200.0320*
H11B0.541 (3)0.861 (2)0.6143 (17)0.0500*
H12B0.283 (3)0.855 (2)0.6580 (19)0.0500*
H21B0.477500.651800.711400.0430*
H22B0.654200.720400.783100.0430*
H31B0.368800.650300.936500.0500*
H32B0.161900.733600.865700.0500*
H51B0.263501.039400.946000.0510*
H52B0.098200.965100.872200.0510*
H61B0.365001.051200.722000.0390*
H62B0.582200.974400.789700.0390*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F4A0.0376 (7)0.0649 (8)0.0429 (8)0.0137 (6)0.0067 (6)0.0140 (6)
O11A0.0251 (6)0.0409 (8)0.0265 (8)0.0079 (5)0.0010 (5)0.0031 (6)
O13A0.0230 (6)0.0513 (8)0.0237 (8)0.0042 (6)0.0012 (6)0.0015 (6)
O14A0.0216 (7)0.0497 (8)0.0300 (8)0.0041 (6)0.0036 (6)0.0026 (6)
C1A0.0231 (9)0.0256 (9)0.0259 (11)0.0003 (7)0.0003 (8)0.0031 (8)
C2A0.0297 (10)0.0304 (10)0.0270 (11)0.0040 (8)0.0045 (8)0.0024 (8)
C3A0.0379 (11)0.0405 (11)0.0244 (11)0.0025 (9)0.0015 (9)0.0043 (9)
C4A0.0265 (10)0.0342 (10)0.0346 (13)0.0025 (8)0.0039 (8)0.0122 (9)
C5A0.0253 (9)0.0337 (10)0.0383 (13)0.0040 (8)0.0053 (9)0.0006 (9)
C6A0.0287 (10)0.0344 (10)0.0275 (11)0.0018 (8)0.0018 (8)0.0043 (9)
C12A0.0237 (9)0.0273 (9)0.0259 (11)0.0011 (7)0.0022 (8)0.0005 (8)
C13A0.0224 (9)0.0261 (9)0.0266 (11)0.0053 (7)0.0023 (8)0.0003 (8)
O4B0.0628 (10)0.0521 (9)0.0227 (8)0.0119 (7)0.0039 (7)0.0049 (7)
N1B0.0222 (8)0.0415 (9)0.0217 (9)0.0032 (7)0.0014 (7)0.0008 (7)
C2B0.0345 (10)0.0336 (11)0.0384 (13)0.0030 (8)0.0062 (9)0.0006 (9)
C3B0.0494 (13)0.0433 (12)0.0339 (13)0.0160 (10)0.0043 (10)0.0084 (10)
C5B0.0488 (12)0.0450 (13)0.0300 (13)0.0015 (10)0.0015 (10)0.0025 (10)
C6B0.0337 (10)0.0346 (11)0.0298 (12)0.0034 (8)0.0057 (9)0.0034 (9)
Geometric parameters (Å, º) top
F4A—C4A1.370 (2)C12A—C13A1.523 (3)
O11A—C1A1.373 (2)C2A—H2A0.9500
O11A—C12A1.431 (2)C3A—H3A0.9500
O13A—C13A1.251 (2)C5A—H5A0.9500
O14A—C13A1.249 (2)C6A—H6A0.9500
O4B—C5B1.422 (2)C12A—H11A0.9900
O4B—C3B1.425 (2)C12A—H12A0.9900
N1B—C6B1.478 (2)C2B—C3B1.506 (3)
N1B—C2B1.487 (2)C5B—C6B1.494 (3)
N1B—H12B0.938 (18)C2B—H21B0.9900
N1B—H11B0.968 (18)C2B—H22B0.9900
C1A—C6A1.391 (3)C3B—H31B0.9900
C1A—C2A1.381 (3)C3B—H32B0.9900
C2A—C3A1.395 (3)C5B—H51B0.9900
C3A—C4A1.372 (3)C5B—H52B0.9900
C4A—C5A1.364 (3)C6B—H61B0.9900
C5A—C6A1.382 (3)C6B—H62B0.9900
C1A—O11A—C12A117.83 (14)C13A—C12A—H11A110.00
C3B—O4B—C5B109.82 (15)O11A—C12A—H11A110.00
C2B—N1B—C6B110.58 (15)C13A—C12A—H12A110.00
C6B—N1B—H11B106.7 (12)O11A—C12A—H12A110.00
C2B—N1B—H12B110.3 (12)H11A—C12A—H12A108.00
H11B—N1B—H12B105.8 (16)N1B—C2B—C3B109.48 (16)
C2B—N1B—H11B112.8 (12)O4B—C3B—C2B111.75 (17)
C6B—N1B—H12B110.5 (12)O4B—C5B—C6B111.70 (17)
O11A—C1A—C6A114.80 (16)N1B—C6B—C5B110.52 (15)
C2A—C1A—C6A119.88 (17)N1B—C2B—H21B110.00
O11A—C1A—C2A125.33 (16)N1B—C2B—H22B110.00
C1A—C2A—C3A119.71 (17)C3B—C2B—H21B110.00
C2A—C3A—C4A118.64 (18)C3B—C2B—H22B110.00
C3A—C4A—C5A122.83 (18)H21B—C2B—H22B108.00
F4A—C4A—C5A118.33 (16)O4B—C3B—H31B109.00
F4A—C4A—C3A118.84 (18)O4B—C3B—H32B109.00
C4A—C5A—C6A118.38 (17)C2B—C3B—H31B109.00
C1A—C6A—C5A120.53 (18)C2B—C3B—H32B109.00
O11A—C12A—C13A109.56 (14)H31B—C3B—H32B108.00
O13A—C13A—O14A125.43 (17)O4B—C5B—H51B109.00
O14A—C13A—C12A114.50 (16)O4B—C5B—H52B109.00
O13A—C13A—C12A120.06 (15)C6B—C5B—H51B109.00
C3A—C2A—H2A120.00C6B—C5B—H52B109.00
C1A—C2A—H2A120.00H51B—C5B—H52B108.00
C4A—C3A—H3A121.00N1B—C6B—H61B110.00
C2A—C3A—H3A121.00N1B—C6B—H62B110.00
C4A—C5A—H5A121.00C5B—C6B—H61B110.00
C6A—C5A—H5A121.00C5B—C6B—H62B110.00
C5A—C6A—H6A120.00H61B—C6B—H62B108.00
C1A—C6A—H6A120.00
C12A—O11A—C1A—C2A0.5 (2)C1A—C2A—C3A—C4A1.8 (3)
C12A—O11A—C1A—C6A179.26 (15)C2A—C3A—C4A—F4A179.19 (16)
C1A—O11A—C12A—C13A176.75 (14)C2A—C3A—C4A—C5A0.0 (3)
C3B—O4B—C5B—C6B59.8 (2)C3A—C4A—C5A—C6A1.4 (3)
C5B—O4B—C3B—C2B60.3 (2)F4A—C4A—C5A—C6A177.88 (16)
C6B—N1B—C2B—C3B53.5 (2)C4A—C5A—C6A—C1A0.8 (3)
C2B—N1B—C6B—C5B53.7 (2)O11A—C12A—C13A—O14A160.39 (14)
C6A—C1A—C2A—C3A2.3 (3)O11A—C12A—C13A—O13A20.1 (2)
O11A—C1A—C2A—C3A177.92 (16)N1B—C2B—C3B—O4B57.4 (2)
C2A—C1A—C6A—C5A1.0 (3)O4B—C5B—C6B—N1B57.1 (2)
O11A—C1A—C6A—C5A179.22 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1B—H11B···O14Ai0.97 (2)1.76 (2)2.725 (2)175 (2)
N1B—H12B···O13A0.94 (2)1.80 (2)2.718 (2)165 (2)
C6B—H61B···O14Aii0.992.383.188 (2)138
Symmetry codes: (i) x+1, y, z; (ii) x, y+2, z+1.
(III) Tetrahydro-2H-1,4-oxazin-4-ium (3,5-dichlorophenoxy)acetate top
Crystal data top
C4H10NO+·C8H5Cl2O3Z = 2
Mr = 308.15F(000) = 320
Triclinic, P1Dx = 1.516 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.1733 (4) ÅCell parameters from 1520 reflections
b = 11.3751 (10) Åθ = 3.7–27.8°
c = 11.7808 (10) ŵ = 0.49 mm1
α = 86.904 (7)°T = 200 K
β = 85.106 (7)°Needle, colourless
γ = 77.936 (7)°0.50 × 0.13 × 0.10 mm
V = 675.01 (10) Å3
Data collection top
Oxford Diffraction Gemini-S CCD-detector
diffractometer
2646 independent reflections
Radiation source: fine-focus sealed tube2096 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
Detector resolution: 16.077 pixels mm-1θmax = 26.0°, θmin = 3.5°
ω scansh = 66
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2014)
k = 1412
Tmin = 0.903, Tmax = 0.989l = 1414
5616 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.091H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0328P)2 + 0.273P]
where P = (Fo2 + 2Fc2)/3
2646 reflections(Δ/σ)max = 0.001
178 parametersΔρmax = 0.24 e Å3
2 restraintsΔρmin = 0.26 e Å3
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl3A0.43721 (11)0.33427 (5)1.07395 (5)0.0409 (2)
Cl5A0.87160 (12)0.05932 (5)0.83964 (5)0.0423 (2)
O11A1.2226 (3)0.31888 (13)0.77458 (13)0.0356 (5)
O13A0.8276 (3)0.47790 (19)0.67505 (15)0.0575 (7)
O14A1.0229 (3)0.63014 (15)0.69348 (14)0.0476 (6)
C1A1.0356 (4)0.26801 (19)0.83573 (17)0.0271 (6)
C2A0.8470 (4)0.32703 (19)0.91505 (17)0.0281 (6)
C3A0.6719 (4)0.26282 (19)0.97100 (17)0.0279 (6)
C4A0.6730 (4)0.14542 (19)0.94986 (17)0.0307 (7)
C5A0.8641 (4)0.08971 (19)0.87030 (18)0.0303 (7)
C6A1.0479 (4)0.14815 (19)0.81392 (18)0.0300 (7)
C12A1.2129 (4)0.44437 (19)0.77898 (19)0.0306 (7)
C13A1.0030 (4)0.5221 (2)0.70886 (18)0.0335 (7)
O4B0.3249 (3)0.88990 (15)0.45028 (14)0.0502 (6)
N1B0.4795 (4)0.70096 (19)0.61100 (17)0.0416 (7)
C2B0.5070 (5)0.6814 (2)0.48655 (19)0.0395 (8)
C3B0.3059 (4)0.7719 (2)0.4277 (2)0.0418 (8)
C5B0.4761 (4)0.8273 (2)0.6354 (2)0.0415 (8)
C6B0.2754 (5)0.9090 (2)0.5686 (2)0.0466 (8)
H2A0.838200.408900.930600.0340*
H4A0.547400.104200.988400.0370*
H6A1.180900.107200.761000.0360*
H12A1.388600.460700.751300.0370*
H13A1.177900.467900.859400.0370*
H11B0.607 (4)0.648 (2)0.641 (2)0.0560*
H12B0.332 (4)0.684 (2)0.644 (2)0.0560*
H21B0.482700.599400.472900.0470*
H22B0.687200.688200.455200.0470*
H31B0.332600.760600.344500.0500*
H32B0.126200.759500.453700.0500*
H51B0.653600.845500.614900.0500*
H52B0.432100.840100.717900.0500*
H61B0.096600.895100.594100.0560*
H62B0.278800.993600.583000.0560*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl3A0.0453 (3)0.0386 (3)0.0341 (3)0.0032 (3)0.0093 (2)0.0012 (2)
Cl5A0.0563 (4)0.0308 (3)0.0431 (3)0.0179 (3)0.0037 (3)0.0068 (2)
O11A0.0296 (8)0.0266 (8)0.0495 (10)0.0083 (6)0.0073 (7)0.0017 (7)
O13A0.0363 (10)0.0903 (15)0.0527 (11)0.0302 (10)0.0208 (8)0.0323 (10)
O14A0.0523 (10)0.0345 (10)0.0491 (10)0.0042 (8)0.0036 (8)0.0083 (8)
C1A0.0251 (10)0.0283 (11)0.0291 (11)0.0076 (9)0.0058 (9)0.0029 (9)
C2A0.0310 (11)0.0228 (11)0.0310 (11)0.0054 (9)0.0070 (9)0.0017 (9)
C3A0.0291 (11)0.0308 (12)0.0226 (10)0.0040 (9)0.0026 (8)0.0026 (9)
C4A0.0329 (12)0.0330 (12)0.0274 (11)0.0113 (9)0.0018 (9)0.0046 (9)
C5A0.0375 (12)0.0256 (11)0.0296 (11)0.0085 (9)0.0083 (9)0.0008 (9)
C6A0.0296 (11)0.0303 (12)0.0292 (11)0.0048 (9)0.0011 (9)0.0009 (9)
C12A0.0284 (11)0.0287 (12)0.0360 (12)0.0096 (9)0.0049 (9)0.0064 (9)
C13A0.0237 (11)0.0456 (15)0.0264 (11)0.0012 (10)0.0042 (9)0.0080 (10)
O4B0.0674 (12)0.0357 (10)0.0378 (10)0.0045 (8)0.0049 (8)0.0120 (8)
N1B0.0414 (12)0.0407 (12)0.0338 (11)0.0095 (9)0.0037 (9)0.0096 (9)
C2B0.0514 (14)0.0278 (13)0.0381 (13)0.0071 (11)0.0001 (11)0.0015 (10)
C3B0.0354 (13)0.0572 (17)0.0337 (13)0.0095 (11)0.0082 (10)0.0012 (11)
C5B0.0343 (13)0.0581 (17)0.0367 (13)0.0181 (11)0.0004 (10)0.0138 (12)
C6B0.0626 (16)0.0292 (13)0.0433 (14)0.0040 (12)0.0095 (12)0.0008 (11)
Geometric parameters (Å, º) top
Cl3A—C3A1.746 (2)C5A—C6A1.377 (3)
Cl5A—C5A1.744 (2)C12A—C13A1.522 (3)
O11A—C1A1.364 (3)C2A—H2A0.9500
O11A—C12A1.421 (3)C4A—H4A0.9500
O13A—C13A1.228 (3)C6A—H6A0.9500
O14A—C13A1.257 (3)C12A—H12A0.9900
O4B—C6B1.416 (3)C12A—H13A0.9900
O4B—C3B1.407 (3)C2B—C3B1.490 (3)
N1B—C2B1.485 (3)C5B—C6B1.489 (3)
N1B—C5B1.477 (3)C2B—H21B0.9900
N1B—H12B0.88 (2)C2B—H22B0.9900
N1B—H11B0.88 (2)C3B—H31B0.9900
C1A—C2A1.384 (3)C3B—H32B0.9900
C1A—C6A1.388 (3)C5B—H51B0.9900
C2A—C3A1.383 (3)C5B—H52B0.9900
C3A—C4A1.370 (3)C6B—H61B0.9900
C4A—C5A1.379 (3)C6B—H62B0.9900
C1A—O11A—C12A120.24 (17)C13A—C12A—H12A109.00
C3B—O4B—C6B109.96 (17)O11A—C12A—H12A109.00
C2B—N1B—C5B111.72 (18)C13A—C12A—H13A109.00
C5B—N1B—H11B114.7 (15)O11A—C12A—H13A109.00
C2B—N1B—H12B112.3 (15)H12A—C12A—H13A108.00
H11B—N1B—H12B105 (2)N1B—C2B—C3B110.27 (19)
C2B—N1B—H11B106.6 (15)O4B—C3B—C2B111.23 (18)
C5B—N1B—H12B106.7 (15)N1B—C5B—C6B109.70 (19)
O11A—C1A—C6A114.67 (18)O4B—C6B—C5B111.47 (19)
C2A—C1A—C6A120.75 (19)N1B—C2B—H21B110.00
O11A—C1A—C2A124.57 (19)N1B—C2B—H22B110.00
C1A—C2A—C3A117.77 (19)C3B—C2B—H21B110.00
Cl3A—C3A—C4A118.09 (16)C3B—C2B—H22B110.00
C2A—C3A—C4A123.29 (19)H21B—C2B—H22B108.00
Cl3A—C3A—C2A118.62 (16)O4B—C3B—H31B109.00
C3A—C4A—C5A117.18 (19)O4B—C3B—H32B109.00
Cl5A—C5A—C6A119.03 (16)C2B—C3B—H31B109.00
Cl5A—C5A—C4A118.85 (16)C2B—C3B—H32B109.00
C4A—C5A—C6A122.1 (2)H31B—C3B—H32B108.00
C1A—C6A—C5A118.84 (19)N1B—C5B—H51B110.00
O11A—C12A—C13A113.95 (18)N1B—C5B—H52B110.00
O14A—C13A—C12A115.08 (19)C6B—C5B—H51B110.00
O13A—C13A—O14A125.4 (2)C6B—C5B—H52B110.00
O13A—C13A—C12A119.5 (2)H51B—C5B—H52B108.00
C3A—C2A—H2A121.00O4B—C6B—H61B109.00
C1A—C2A—H2A121.00O4B—C6B—H62B109.00
C3A—C4A—H4A121.00C5B—C6B—H61B109.00
C5A—C4A—H4A121.00C5B—C6B—H62B109.00
C5A—C6A—H6A121.00H61B—C6B—H62B108.00
C1A—C6A—H6A121.00
C12A—O11A—C1A—C2A8.1 (3)C1A—C2A—C3A—Cl3A178.48 (16)
C12A—O11A—C1A—C6A172.70 (18)Cl3A—C3A—C4A—C5A178.43 (16)
C1A—O11A—C12A—C13A76.5 (2)C2A—C3A—C4A—C5A1.5 (3)
C3B—O4B—C6B—C5B62.3 (2)C3A—C4A—C5A—Cl5A179.46 (16)
C6B—O4B—C3B—C2B61.6 (2)C3A—C4A—C5A—C6A0.2 (3)
C2B—N1B—C5B—C6B51.4 (3)C4A—C5A—C6A—C1A1.8 (3)
C5B—N1B—C2B—C3B51.2 (3)Cl5A—C5A—C6A—C1A177.83 (16)
C2A—C1A—C6A—C5A1.8 (3)O11A—C12A—C13A—O13A15.0 (3)
O11A—C1A—C2A—C3A179.44 (19)O11A—C12A—C13A—O14A167.02 (18)
C6A—C1A—C2A—C3A0.3 (3)N1B—C2B—C3B—O4B56.1 (2)
O11A—C1A—C6A—C5A178.92 (19)N1B—C5B—C6B—O4B56.9 (2)
C1A—C2A—C3A—C4A1.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1B—H11B···O13A0.88 (2)2.07 (2)2.892 (3)156 (2)
N1B—H11B···O14A0.88 (2)2.26 (2)2.988 (3)141 (2)
N1B—H12B···O14Ai0.88 (2)1.87 (2)2.737 (3)170 (2)
C12A—H12A···O13Aii0.992.413.398 (3)173
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z.
(IV) Tetrahydro-2H-1,4-oxazin-4-ium (2,4-dichlorophenoxy)acetate top
Crystal data top
C4H10NO+·C8H5Cl2O3F(000) = 640
Mr = 308.15Dx = 1.456 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2359 reflections
a = 9.3657 (5) Åθ = 3.6–28.4°
b = 7.1702 (3) ŵ = 0.47 mm1
c = 21.1340 (11) ÅT = 200 K
β = 97.981 (5)°Plate, colourless
V = 1405.48 (12) Å30.35 × 0.35 × 0.12 mm
Z = 4
Data collection top
Oxford Diffraction Gemini-S CCD-detector
diffractometer
2754 independent reflections
Radiation source: Enhance (Mo) X-ray source2273 reflections with I.2σ(I)
Graphite monochromatorRint = 0.026
Detector resolution: 16.077 pixels mm-1θmax = 26.0°, θmin = 3.4°
ω scansh = 911
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2014)
k = 88
Tmin = 0.933, Tmax = 0.980l = 2620
6400 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.091H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0405P)2 + 0.3419P]
where P = (Fo2 + 2Fc2)/3
2754 reflections(Δ/σ)max < 0.001
178 parametersΔρmax = 0.28 e Å3
2 restraintsΔρmin = 0.26 e Å3
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl2A0.23659 (5)0.74483 (6)0.41042 (2)0.0354 (2)
Cl4A0.15479 (6)0.32605 (9)0.19759 (2)0.0500 (2)
O11A0.13251 (13)0.42531 (17)0.47171 (6)0.0276 (4)
O13A0.34279 (13)0.1659 (2)0.50395 (7)0.0390 (5)
O14A0.19747 (12)0.01154 (18)0.55307 (6)0.0313 (4)
C1A0.13210 (17)0.3923 (3)0.40846 (8)0.0236 (5)
C2A0.18091 (18)0.5368 (3)0.37274 (9)0.0255 (5)
C3A0.18796 (19)0.5185 (3)0.30830 (9)0.0305 (6)
C4A0.14433 (19)0.3520 (3)0.27899 (9)0.0319 (6)
C5A0.0933 (2)0.2087 (3)0.31247 (10)0.0348 (6)
C6A0.08662 (19)0.2287 (3)0.37705 (9)0.0306 (6)
C12A0.10285 (19)0.2707 (3)0.51091 (9)0.0270 (6)
C13A0.22590 (18)0.1309 (2)0.52275 (8)0.0226 (5)
O4B0.56703 (19)0.3986 (3)0.31170 (7)0.0591 (6)
N1B0.55499 (17)0.2047 (2)0.42729 (8)0.0293 (5)
C2B0.5720 (2)0.4092 (3)0.42590 (10)0.0353 (7)
C3B0.6444 (3)0.4633 (3)0.37002 (11)0.0509 (8)
C5B0.5609 (3)0.2016 (4)0.31253 (11)0.0541 (9)
C6B0.4830 (2)0.1326 (3)0.36568 (11)0.0412 (7)
H3A0.222000.617800.284700.0370*
H5A0.062600.095800.291300.0420*
H6A0.050600.129500.400100.0370*
H12A0.015500.205600.490200.0320*
H13A0.081800.318800.552600.0320*
H11B0.6420 (17)0.149 (3)0.4381 (9)0.0350*
H12B0.507 (2)0.180 (3)0.4587 (8)0.0350*
H21B0.630500.451700.465900.0420*
H22B0.476300.469700.422700.0420*
H31B0.652500.600900.368500.0610*
H32B0.743000.410800.375300.0610*
H51B0.660100.150500.318200.0650*
H52B0.510600.156300.271100.0650*
H61B0.381500.175400.358500.0490*
H62B0.483300.005400.366300.0490*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl2A0.0474 (3)0.0221 (3)0.0376 (3)0.0043 (2)0.0088 (2)0.0006 (2)
Cl4A0.0576 (4)0.0620 (4)0.0312 (3)0.0069 (3)0.0087 (2)0.0094 (3)
O11A0.0339 (7)0.0222 (7)0.0274 (7)0.0037 (6)0.0072 (5)0.0055 (6)
O13A0.0247 (7)0.0429 (9)0.0524 (9)0.0066 (6)0.0162 (6)0.0154 (7)
O14A0.0291 (7)0.0282 (7)0.0368 (8)0.0031 (6)0.0056 (6)0.0117 (6)
C1A0.0202 (8)0.0236 (9)0.0265 (10)0.0059 (7)0.0019 (7)0.0052 (8)
C2A0.0228 (9)0.0222 (9)0.0315 (10)0.0032 (8)0.0036 (7)0.0015 (8)
C3A0.0290 (10)0.0325 (11)0.0307 (11)0.0034 (9)0.0063 (8)0.0071 (9)
C4A0.0295 (10)0.0386 (12)0.0268 (10)0.0064 (9)0.0010 (8)0.0019 (9)
C5A0.0328 (10)0.0302 (11)0.0389 (12)0.0021 (9)0.0040 (9)0.0053 (9)
C6A0.0283 (10)0.0260 (10)0.0363 (11)0.0026 (8)0.0003 (8)0.0041 (9)
C12A0.0259 (9)0.0278 (10)0.0288 (10)0.0031 (8)0.0090 (7)0.0080 (8)
C13A0.0236 (9)0.0225 (9)0.0214 (9)0.0011 (8)0.0025 (7)0.0005 (8)
O4B0.0774 (12)0.0641 (12)0.0344 (9)0.0058 (10)0.0026 (8)0.0203 (9)
N1B0.0245 (8)0.0311 (9)0.0338 (9)0.0047 (7)0.0089 (7)0.0114 (8)
C2B0.0385 (11)0.0292 (11)0.0367 (12)0.0044 (9)0.0001 (9)0.0014 (9)
C3B0.0611 (15)0.0443 (14)0.0466 (14)0.0155 (12)0.0046 (11)0.0164 (12)
C5B0.0596 (15)0.0678 (18)0.0337 (13)0.0014 (14)0.0025 (11)0.0126 (13)
C6B0.0362 (11)0.0337 (12)0.0524 (14)0.0035 (10)0.0012 (10)0.0015 (10)
Geometric parameters (Å, º) top
Cl2A—C2A1.737 (2)C5A—C6A1.382 (3)
Cl4A—C4A1.7466 (19)C12A—C13A1.522 (3)
O11A—C1A1.357 (2)C3A—H3A0.9500
O11A—C12A1.434 (2)C5A—H5A0.9500
O13A—C13A1.241 (2)C6A—H6A0.9500
O14A—C13A1.254 (2)C12A—H12A0.9900
O4B—C5B1.414 (4)C12A—H13A0.9900
O4B—C3B1.418 (3)C2B—C3B1.492 (3)
N1B—C2B1.476 (3)C5B—C6B1.506 (3)
N1B—C6B1.474 (3)C2B—H21B0.9900
N1B—H12B0.870 (18)C2B—H22B0.9900
N1B—H11B0.908 (18)C3B—H31B0.9900
C1A—C2A1.396 (3)C3B—H32B0.9900
C1A—C6A1.386 (3)C5B—H51B0.9900
C2A—C3A1.379 (3)C5B—H52B0.9900
C3A—C4A1.380 (3)C6B—H61B0.9900
C4A—C5A1.371 (3)C6B—H62B0.9900
C1A—O11A—C12A117.39 (15)C13A—C12A—H12A109.00
C3B—O4B—C5B109.44 (17)O11A—C12A—H12A109.00
C2B—N1B—C6B111.61 (16)C13A—C12A—H13A109.00
C6B—N1B—H11B110.6 (12)O11A—C12A—H13A109.00
C2B—N1B—H12B106.6 (14)H12A—C12A—H13A108.00
H11B—N1B—H12B105.0 (17)N1B—C2B—C3B109.65 (17)
C2B—N1B—H11B110.3 (13)O4B—C3B—C2B111.7 (2)
C6B—N1B—H12B112.4 (12)O4B—C5B—C6B111.2 (2)
O11A—C1A—C6A125.33 (17)N1B—C6B—C5B109.52 (17)
C2A—C1A—C6A118.12 (16)N1B—C2B—H21B110.00
O11A—C1A—C2A116.55 (17)N1B—C2B—H22B110.00
C1A—C2A—C3A121.85 (19)C3B—C2B—H21B110.00
Cl2A—C2A—C3A118.83 (16)C3B—C2B—H22B110.00
Cl2A—C2A—C1A119.32 (14)H21B—C2B—H22B108.00
C2A—C3A—C4A118.28 (19)O4B—C3B—H31B109.00
C3A—C4A—C5A121.29 (18)O4B—C3B—H32B109.00
Cl4A—C4A—C3A118.72 (15)C2B—C3B—H31B109.00
Cl4A—C4A—C5A119.99 (16)C2B—C3B—H32B109.00
C4A—C5A—C6A119.92 (19)H31B—C3B—H32B108.00
C1A—C6A—C5A120.52 (18)O4B—C5B—H51B109.00
O11A—C12A—C13A113.66 (14)O4B—C5B—H52B109.00
O14A—C13A—C12A114.26 (15)C6B—C5B—H51B109.00
O13A—C13A—O14A126.00 (15)C6B—C5B—H52B109.00
O13A—C13A—C12A119.72 (15)H51B—C5B—H52B108.00
C4A—C3A—H3A121.00N1B—C6B—H61B110.00
C2A—C3A—H3A121.00N1B—C6B—H62B110.00
C4A—C5A—H5A120.00C5B—C6B—H61B110.00
C6A—C5A—H5A120.00C5B—C6B—H62B110.00
C5A—C6A—H6A120.00H61B—C6B—H62B108.00
C1A—C6A—H6A120.00
C12A—O11A—C1A—C2A171.22 (15)C6A—C1A—C2A—C3A1.6 (3)
C12A—O11A—C1A—C6A9.2 (2)Cl2A—C2A—C3A—C4A179.56 (14)
C1A—O11A—C12A—C13A72.91 (19)C1A—C2A—C3A—C4A0.4 (3)
C5B—O4B—C3B—C2B61.7 (2)C2A—C3A—C4A—Cl4A179.24 (14)
C3B—O4B—C5B—C6B61.5 (3)C2A—C3A—C4A—C5A0.9 (3)
C6B—N1B—C2B—C3B52.8 (2)Cl4A—C4A—C5A—C6A179.27 (15)
C2B—N1B—C6B—C5B52.8 (2)C3A—C4A—C5A—C6A0.9 (3)
O11A—C1A—C6A—C5A178.82 (17)C4A—C5A—C6A—C1A0.5 (3)
C2A—C1A—C6A—C5A1.6 (3)O11A—C12A—C13A—O13A6.5 (2)
O11A—C1A—C2A—C3A178.80 (16)O11A—C12A—C13A—O14A175.12 (14)
C6A—C1A—C2A—Cl2A179.20 (14)N1B—C2B—C3B—O4B57.1 (2)
O11A—C1A—C2A—Cl2A0.4 (2)O4B—C5B—C6B—N1B57.3 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1B—H11B···O13Ai0.91 (2)2.56 (2)3.115 (2)120 (1)
N1B—H11B···O14Ai0.91 (2)1.79 (2)2.683 (2)169 (2)
N1B—H12B···O13A0.87 (2)1.92 (2)2.747 (2)158 (2)
C12A—H12A···O14Aii0.992.503.484 (2)173
C2B—H21B···O11Aiii0.992.573.477 (2)151
C5B—H52B···O4Biv0.992.583.489 (3)153
Symmetry codes: (i) x+1, y, z+1; (ii) x, y, z+1; (iii) x+1, y+1, z+1; (iv) x+1, y1/2, z+1/2.
 

Acknowledgements

GS acknowledges financial support from the Science and Engineering Faculty, Queensland University of Technology.

References

First citationAgilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationAndré, V., Braga, D., Grepioni, F. & Duarte, M. T. (2009). Cryst. Growth Des. 9, 5108–5116.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationIshida, H., Rahman, B. & Kashino, S. (2001a). Acta Cryst. C57, 1450–1453.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationIshida, H., Rahman, B. & Kashino, S. (2001b). Acta Cryst. E57, o627–o629.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationIshida, H., Rahman, B. & Kashino, S. (2001c). Acta Cryst. E57, o630–o632.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKennard, C. H. L., Smith, G. & White, A. H. (1982). Acta Cryst. B38, 868–875.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationLiu, H.-L., Guo, S.-H., Li, Y.-Y. & Jian, F.-F. (2009). Acta Cryst. E65, o1905.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLynch, D. E., Barfield, J., Frost, J., Antrobus, R. & Simmons, J. (2003). Cryst. Eng. 6, 109–122.  Web of Science CSD CrossRef CAS Google Scholar
First citationO'Neil, M. J. (2001). Editor. The Merck Index, 13th ed., pp. 1495–1496. Whitehouse Station, NJ, USA: Merck & Co. Inc.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmith, G. (2014). Acta Cryst. E70, 528–532.  CSD CrossRef IUCr Journals Google Scholar
First citationSmith, G., Kennard, C. H. L. & White, A. H. (1976). J. Chem. Soc. Perkin Trans. 2, pp. 791–792.  CSD CrossRef Web of Science Google Scholar
First citationSmith, G. & Lynch, D. E. (2015a). Acta Cryst. E71, 671–674.  CSD CrossRef IUCr Journals Google Scholar
First citationSmith, G. & Lynch, D. E. (2015b). Unpublished results.  Google Scholar
First citationSmith, G., Lynch, D. E., Sagatys, D. S., Kennard, C. H. L. & Katekar, G. F. (1992). Aust. J. Chem. 45, 1101–1108.  CSD CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZumdahl, R. L. (2010). In A History of Weed Science in the United States. New York: Elsevier.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds