research communications
Crystal structures and hydrogen bonding in the morpholinium salts of four phenoxyacetic acid analogues
aScience and Engineering Faculty, Queensland University of Technology, GPO Box 2434, Brisbane, Queensland 4001, Australia, and bExilica Ltd., The Technocentre, Puma Way, Coventry CV1 2TT, England
*Correspondence e-mail: g.smith@qut.edu.au
The anhydrous salts morpholinium (tetrahydro-2-H-1,4-oxazin-4-ium) phenoxyacetate, C4H10NO+·C8H7O3−, (I), morpholinium (4-fluorophenoxy)acetate, C4H10NO+·C8H6 FO3−, (II), and isomeric morpholinium (3,5-dichlorophenoxy)acetate (3,5-D), (III), and morpholinium (2,4-dichlorophenoxy)acetic acid (2,4-D), C4H10NO+·C8H5Cl2O3−, (IV), have been determined and their hydrogen-bonded structures are described. In the crystals of (I), (III) and (IV), one of the the aminium H atoms is involved in a three-centre asymmetric cation–anion N—H⋯O,O′ R12(4) hydrogen-bonding interaction with the two carboxyl O-atom acceptors of the anion. With the structure of (II), the primary N—H⋯O interaction is linear. In the structures of (I), (II) and (III), the second N—H⋯Ocarboxyl hydrogen bond generates one-dimensional chain structures extending in all cases along [100]. With (IV), the ion pairs are linked though inversion-related N—H⋯O hydrogen bonds [graph set R42(8)], giving a cyclic heterotetrameric structure.
Keywords: crystal structure; morpholine salts; phenoxyacetic acids; herbicides; 2,4-D; 3,5-D; hydrogen bonding.
1. Chemical context
Morpholine (tetrahydro-2-H-1,4-oxazine) is an moderately strong base (pKa = 8.33) and forms salts with a number of organic acids, some having medical applications, e.g. the salicylate (retarcyl, depasol), used as an analgesic, an antipyretic and an anti-inflammatory agent (O'Neil, 2001). The crystal structures of a number of these morpholinate compounds have been reported, some examples of salts with substituted benzoic acids being the 4-aminosalicylate (André et al., 2009), and a series of isomeric chloronitrobenzoates (2,4-, 2,5-, 4,2-, 4,3- and 5,2-) (Ishida et al., 2001a,b,c). In these, cation–anion hydrogen-bonding interactions generate either one-dimensional chains or discrete cyclic heterotetrameric structures. Of interest is the mode of hydrogen bonding in crystals of the morpholinium salts of some phenoxyacetic acid analogues, no structures of which have been reported previously. The reaction of morpholine with phenoxyacetic acid (PAA), (4-fluorophenoxy)acetic acid (PFPA) and with the two isomeric homologues, (3,5-dichlorophenoxy)acetic acid (3,5-D) and the herbicidally active (2,4-dichlorophenoxy)acetic acid (2,4-D) (Zumdahl, 2010), gave the anhydrous salts (I)–(IV), respectively. Their structures and hydrogen-bonding modes are reported on herein.
2. Structural commentary
The asymmetric units of (I)–(IV) comprise a morpholinium cation (B) and a phenoxyacetate anion (A) in (I) (Fig. 1), a (4-fluorophenoxy)acetate anion (A) in (II) (Fig. 2), a 3,5-dichlorophenoxyacetate anion (A) in (III) (Fig. 3) and a (2,4-dichlorophenoxy)acetate anion (A) in (IV) (Fig. 4). The conformation of the oxoacetate side chains in the anions of (I) and (II) are essentially planar, with the defining torsion angle C1A—O11A—C12A—C13A = 176.75 (14) and 176.53 (14)°, respectively. This antiperiplanar (180±30°) conformation is similar to those of the parent acids PAA (−175.1°; Kennard et al., 1982), PFPA [176.0 (6)°; Smith et al., 1992] and their proton-transfer salts, e.g. the ammonium salts of PAA [−177.48 (18)°] and PFPA [−178.98 (17)°] (Smith, 2014). However, with the 3,5-D and 2,4-D salts, the side-chain conformations are both synclinal (90±30°) [−76.5 (2)° in (III) and 72.91 (19)° in (IV)], similar to that in the parent acid 2,4-D (75.2°; Smith et al., 1976), in the tryptaminium salt of 2,4-D [81.2 (6)°; Smith & Lynch, 2015a] and in the 2:1 salt-adduct of 3,5-D with 4,4′-bipyridine [−71.6 (3)°; Lynch et al., 2003]. However, in the tryptaminium salt of 3,5-D (Smith & Lynch, 2015b), the ammonium salts of both 2,4-D (Liu et al., 2009) and 3,5-D (Smith, 2014), the antiperiplanar conformation is found [equivalent torsion angles = −166.5 (3), 172.61 (8) and −171.35 (15)°, respectively].
3. Supramolecular features
In the crystals of both (I), (III) and (IV), a primary three-centre R12(4) N1B—H⋯(O,O′)carboxyl hydrogen-bonding interaction is present, with the asymmetry in (I) [N⋯O = 2.7366 (18) and 3.1655 (17) Å] and (IV) [2.683 (2) and 3.115 (2) Å] being significantly greater than that in (III) [2.892 (3) and 2.988 (3) Å] (Tables 1, 3 and 4). With (II), the second N—H⋯O distance is 3.241 (2) Å.
|
|
The hydrogen-bonding extensions involving the second aminium H atom of the cation result in different structures in (I)–(III) compared to that in (IV). With (I)–(III), the primary heterodimers are all extended along a through an N1B—H⋯O14Ai hydrogen bond (Tables 1–3, respectively), into one-dimensional ribbon structures (Figs. 5–7). These ribbon structures provide further examples of the common hydrogen-bonded structure type found among the anhydrous aromatic morpholinium benzoate salts, e.g. with salicylic acid (Smith & Lynch, 2015b) and with 2-chloro-4-nitrobenzoic acid (Ishida et al., 2001a). In both of these examples, helical chains extend along 21screw axes in the crystals. Present also in structures of (I)–(IV) are minor weak inter-unit C—H⋯O interactions: in (I), C4A—H⋯O4Bii (Table 1); in (II), C4A—H⋯O4Bii; C6B—H⋯O13Aiii (Table 2): in (III), Cl2A—H⋯O13Aii (Table 3).
|
In the crystal of (IV), the second N1B—H⋯O14Ai hydrogen bond generates a centrosymmetric heterotetrameric ring structure [graph set R42(8)] (Fig. 8). For symmetry code (i), see Table 4. This cyclic system typifies the second structure type also found in a number of examples of morpholinium salts with ring-substituted benzoic acids, e.g. in the 2-chloro-5-nitro-, 4-chloro-2-nitro-, 4-chloro-3-nitro- and 5-chloro-2-nitrobenzoate series (Ishida et al., 2001a,b,c] and in the 4-aminosalicylate (André et al., 2009).
Only weak inter-unit C—H⋯O interactions to carboxyl or phenoxy O-atom acceptors are present in (IV) (Table 4), while no π–π interactions are found in any of the structures.
4. Synthesis and crystallization
The title compounds (I)–(IV) were prepared by the dropwise addition of morpholine at room temperature to solutions of phenoxyacetic acid (150 mg), (4-fluorophenoxy)acetic (170 mg), (2,4-dichlorophenoxy)acetic acid or (2,4-dichlorophenoxy)acetic acid (220 mg), respectively, in 15 ml of ethanol. Room-temperature evaporation of the solutions gave either colourless plates of (III) or needles of (IV) from which specimens were cleaved for the X-ray analyses. For (I) and (II), the same preparative procedure was employed using phenoxyacetic acid or (4-fluorophenoxy)acetic acid but the final oils which resulted after solvent evaporation were redissolved in ethanol, finally giving thin colourless fragile plates of compounds (I) and (II) from which specimens were cleaved for the X-ray analyses.
5. details
Crystal data, data collection and structure . H atoms were placed in calculated positions (aromatic C—H = 0.95 Å or methylene C—H = 0.99 Å) and were allowed to ride in the refinements, with Uiso(H) = 1.2Ueq(C). The aminium H atoms were located in difference Fourier analyses and were allowed to refine with distance restraints [N—H = 0.90 (2) Å] and Uiso(H) = 1.2Ueq(N).
details are given in Table 5
|
Supporting information
https://doi.org/10.1107/S2056989015019842/su5227sup1.cif
contains datablocks global, I, II, III, IV. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989015019842/su5227Isup2.hkl
Structure factors: contains datablock II. DOI: https://doi.org/10.1107/S2056989015019842/su5227IIsup3.hkl
Structure factors: contains datablock III. DOI: https://doi.org/10.1107/S2056989015019842/su5227IIIsup4.hkl
Structure factors: contains datablock IV. DOI: https://doi.org/10.1107/S2056989015019842/su5227IVsup5.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989015019842/su5227Isup6.cml
Supporting information file. DOI: https://doi.org/10.1107/S2056989015019842/su5227IIsup7.cml
Supporting information file. DOI: https://doi.org/10.1107/S2056989015019842/su5227IIIsup8.cml
Supporting information file. DOI: https://doi.org/10.1107/S2056989015019842/su5227IVsup9.cml
For all compounds, data collection: CrysAlis PRO (Agilent, 2014); cell
CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis PRO (Agilent, 2014). Program(s) used to solve structure: SHELXS97 (Sheldrick, 2008) for (I), (II); SIR92 (Altomare et al., 1993) for (III), (IV). For all compounds, program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) within WinGX (Farrugia, 2012); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).C4H10NO+·C8H7O3− | Z = 2 |
Mr = 239.27 | F(000) = 256 |
Triclinic, P1 | Dx = 1.312 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 5.7079 (5) Å | Cell parameters from 1029 reflections |
b = 9.7735 (9) Å | θ = 3.9–28.5° |
c = 11.3586 (10) Å | µ = 0.10 mm−1 |
α = 78.277 (7)° | T = 200 K |
β = 86.171 (7)° | Plate, colourless |
γ = 77.512 (7)° | 0.50 × 0.15 × 0.04 mm |
V = 605.58 (10) Å3 |
Oxford Diffraction Gemini-S CCD-detector diffractometer | 2370 independent reflections |
Radiation source: Enhance (Mo) X-ray source | 1765 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.033 |
Detector resolution: 16.077 pixels mm-1 | θmax = 26.0°, θmin = 3.1° |
ω scans | h = −7→6 |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2014) | k = −12→12 |
Tmin = 0.860, Tmax = 0.980 | l = −13→13 |
4172 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.048 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.113 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.02 | w = 1/[σ2(Fo2) + (0.0456P)2] where P = (Fo2 + 2Fc2)/3 |
2370 reflections | (Δ/σ)max < 0.001 |
154 parameters | Δρmax = 0.16 e Å−3 |
0 restraints | Δρmin = −0.17 e Å−3 |
Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O11A | 0.3926 (2) | 0.81847 (13) | 0.38178 (10) | 0.0374 (4) | |
O13A | 0.11992 (19) | 0.65034 (13) | 0.51716 (10) | 0.0358 (4) | |
O14A | 0.41444 (19) | 0.54699 (13) | 0.64451 (10) | 0.0323 (4) | |
C1A | 0.5198 (3) | 0.91643 (18) | 0.32122 (15) | 0.0303 (5) | |
C2A | 0.7157 (3) | 0.94974 (19) | 0.36542 (16) | 0.0346 (6) | |
C3A | 0.8267 (3) | 1.0526 (2) | 0.29642 (17) | 0.0415 (7) | |
C4A | 0.7481 (4) | 1.1208 (2) | 0.18324 (18) | 0.0449 (7) | |
C5A | 0.5549 (4) | 1.0854 (2) | 0.13875 (17) | 0.0432 (7) | |
C6A | 0.4402 (3) | 0.98450 (19) | 0.20676 (16) | 0.0365 (6) | |
C12A | 0.4895 (3) | 0.73323 (18) | 0.49189 (14) | 0.0288 (5) | |
C13A | 0.3264 (3) | 0.63578 (18) | 0.55411 (14) | 0.0268 (5) | |
O4B | −0.1545 (2) | 0.39037 (15) | 0.94974 (10) | 0.0445 (5) | |
N1B | −0.1183 (2) | 0.50356 (15) | 0.70035 (12) | 0.0270 (4) | |
C2B | −0.1277 (3) | 0.59359 (19) | 0.79155 (14) | 0.0322 (6) | |
C3B | −0.2632 (3) | 0.5347 (2) | 0.90159 (15) | 0.0386 (6) | |
C5B | −0.1515 (4) | 0.3030 (2) | 0.86300 (16) | 0.0410 (7) | |
C6B | −0.0136 (3) | 0.35172 (19) | 0.75076 (15) | 0.0349 (6) | |
H2A | 0.77390 | 0.90240 | 0.44270 | 0.0420* | |
H3A | 0.95950 | 1.07660 | 0.32770 | 0.0500* | |
H4A | 0.82570 | 1.19120 | 0.13660 | 0.0540* | |
H5A | 0.50030 | 1.13090 | 0.06040 | 0.0520* | |
H6A | 0.30650 | 0.96140 | 0.17550 | 0.0440* | |
H11A | 0.51320 | 0.79650 | 0.54600 | 0.0350* | |
H12A | 0.64820 | 0.67470 | 0.47530 | 0.0350* | |
H11B | −0.032 (3) | 0.5424 (18) | 0.6353 (13) | 0.0320* | |
H12B | −0.280 (2) | 0.5164 (19) | 0.6782 (13) | 0.0320* | |
H21B | −0.20870 | 0.69300 | 0.75840 | 0.0390* | |
H22B | 0.03720 | 0.59430 | 0.81310 | 0.0390* | |
H31B | −0.26710 | 0.59360 | 0.96330 | 0.0460* | |
H32B | −0.43070 | 0.53980 | 0.88040 | 0.0460* | |
H51B | −0.31840 | 0.30590 | 0.84220 | 0.0490* | |
H52B | −0.07770 | 0.20290 | 0.89820 | 0.0490* | |
H61B | 0.15700 | 0.34140 | 0.76960 | 0.0420* | |
H62B | −0.02120 | 0.29200 | 0.69100 | 0.0420* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O11A | 0.0348 (7) | 0.0363 (8) | 0.0397 (7) | −0.0186 (6) | −0.0046 (5) | 0.0088 (6) |
O13A | 0.0252 (7) | 0.0472 (9) | 0.0342 (7) | −0.0162 (6) | −0.0014 (5) | 0.0031 (6) |
O14A | 0.0270 (6) | 0.0366 (8) | 0.0316 (7) | −0.0121 (6) | −0.0004 (5) | 0.0030 (6) |
C1A | 0.0299 (9) | 0.0232 (9) | 0.0364 (10) | −0.0081 (8) | 0.0070 (8) | −0.0021 (8) |
C2A | 0.0351 (10) | 0.0320 (11) | 0.0373 (10) | −0.0128 (8) | 0.0028 (8) | −0.0028 (8) |
C3A | 0.0387 (11) | 0.0391 (12) | 0.0509 (12) | −0.0201 (9) | 0.0074 (9) | −0.0086 (10) |
C4A | 0.0515 (12) | 0.0360 (12) | 0.0487 (12) | −0.0222 (10) | 0.0140 (10) | −0.0025 (10) |
C5A | 0.0545 (12) | 0.0326 (11) | 0.0387 (11) | −0.0117 (10) | 0.0037 (9) | 0.0030 (9) |
C6A | 0.0378 (10) | 0.0307 (11) | 0.0405 (10) | −0.0105 (9) | −0.0012 (8) | −0.0018 (8) |
C12A | 0.0255 (9) | 0.0281 (10) | 0.0328 (9) | −0.0101 (8) | 0.0001 (7) | −0.0012 (8) |
C13A | 0.0257 (9) | 0.0290 (10) | 0.0273 (9) | −0.0093 (8) | 0.0044 (7) | −0.0071 (8) |
O4B | 0.0641 (9) | 0.0436 (9) | 0.0267 (7) | −0.0196 (7) | −0.0014 (6) | 0.0001 (6) |
N1B | 0.0239 (7) | 0.0331 (9) | 0.0247 (7) | −0.0120 (7) | 0.0021 (6) | −0.0015 (6) |
C2B | 0.0333 (10) | 0.0317 (10) | 0.0342 (10) | −0.0119 (8) | 0.0013 (8) | −0.0073 (8) |
C3B | 0.0458 (11) | 0.0422 (12) | 0.0295 (10) | −0.0137 (9) | 0.0061 (8) | −0.0083 (9) |
C5B | 0.0577 (13) | 0.0309 (11) | 0.0363 (10) | −0.0180 (9) | −0.0055 (9) | −0.0003 (8) |
C6B | 0.0366 (10) | 0.0313 (11) | 0.0356 (10) | −0.0045 (8) | −0.0037 (8) | −0.0057 (8) |
O11A—C1A | 1.372 (2) | C2A—H2A | 0.9500 |
O11A—C12A | 1.426 (2) | C3A—H3A | 0.9500 |
O13A—C13A | 1.247 (2) | C4A—H4A | 0.9500 |
O14A—C13A | 1.256 (2) | C5A—H5A | 0.9500 |
O4B—C5B | 1.426 (2) | C6A—H6A | 0.9500 |
O4B—C3B | 1.424 (2) | C12A—H11A | 0.9900 |
N1B—C6B | 1.485 (2) | C12A—H12A | 0.9900 |
N1B—C2B | 1.481 (2) | C2B—C3B | 1.504 (2) |
N1B—H12B | 0.948 (12) | C5B—C6B | 1.501 (3) |
N1B—H11B | 0.923 (16) | C2B—H21B | 0.9900 |
C1A—C6A | 1.391 (2) | C2B—H22B | 0.9900 |
C1A—C2A | 1.381 (2) | C3B—H31B | 0.9900 |
C2A—C3A | 1.384 (3) | C3B—H32B | 0.9900 |
C3A—C4A | 1.378 (3) | C5B—H51B | 0.9900 |
C4A—C5A | 1.379 (3) | C5B—H52B | 0.9900 |
C5A—C6A | 1.378 (3) | C6B—H61B | 0.9900 |
C12A—C13A | 1.515 (2) | C6B—H62B | 0.9900 |
C1A—O11A—C12A | 116.65 (13) | C13A—C12A—H11A | 109.00 |
C3B—O4B—C5B | 110.28 (13) | O11A—C12A—H11A | 109.00 |
C2B—N1B—C6B | 110.91 (13) | C13A—C12A—H12A | 109.00 |
C6B—N1B—H11B | 113.4 (11) | O11A—C12A—H12A | 109.00 |
C2B—N1B—H12B | 104.8 (10) | H11A—C12A—H12A | 108.00 |
H11B—N1B—H12B | 109.0 (14) | N1B—C2B—C3B | 109.23 (14) |
C2B—N1B—H11B | 106.3 (10) | O4B—C3B—C2B | 111.23 (14) |
C6B—N1B—H12B | 111.9 (11) | O4B—C5B—C6B | 111.72 (16) |
O11A—C1A—C6A | 115.56 (15) | N1B—C6B—C5B | 109.35 (14) |
C2A—C1A—C6A | 119.48 (16) | N1B—C2B—H21B | 110.00 |
O11A—C1A—C2A | 124.96 (15) | N1B—C2B—H22B | 110.00 |
C1A—C2A—C3A | 119.58 (16) | C3B—C2B—H21B | 110.00 |
C2A—C3A—C4A | 121.20 (18) | C3B—C2B—H22B | 110.00 |
C3A—C4A—C5A | 118.97 (19) | H21B—C2B—H22B | 108.00 |
C4A—C5A—C6A | 120.65 (18) | O4B—C3B—H31B | 109.00 |
C1A—C6A—C5A | 120.10 (17) | O4B—C3B—H32B | 109.00 |
O11A—C12A—C13A | 111.82 (14) | C2B—C3B—H31B | 109.00 |
O13A—C13A—O14A | 125.13 (16) | C2B—C3B—H32B | 109.00 |
O13A—C13A—C12A | 120.24 (14) | H31B—C3B—H32B | 108.00 |
O14A—C13A—C12A | 114.59 (15) | O4B—C5B—H51B | 109.00 |
C3A—C2A—H2A | 120.00 | O4B—C5B—H52B | 109.00 |
C1A—C2A—H2A | 120.00 | C6B—C5B—H51B | 109.00 |
C4A—C3A—H3A | 119.00 | C6B—C5B—H52B | 109.00 |
C2A—C3A—H3A | 119.00 | H51B—C5B—H52B | 108.00 |
C5A—C4A—H4A | 121.00 | N1B—C6B—H61B | 110.00 |
C3A—C4A—H4A | 121.00 | N1B—C6B—H62B | 110.00 |
C4A—C5A—H5A | 120.00 | C5B—C6B—H61B | 110.00 |
C6A—C5A—H5A | 120.00 | C5B—C6B—H62B | 110.00 |
C5A—C6A—H6A | 120.00 | H61B—C6B—H62B | 108.00 |
C1A—C6A—H6A | 120.00 | ||
C12A—O11A—C1A—C2A | −8.1 (2) | O11A—C1A—C2A—C3A | −178.84 (17) |
C12A—O11A—C1A—C6A | 171.64 (15) | C1A—C2A—C3A—C4A | −1.2 (3) |
C1A—O11A—C12A—C13A | 176.53 (14) | C2A—C3A—C4A—C5A | 0.1 (3) |
C5B—O4B—C3B—C2B | −60.23 (18) | C3A—C4A—C5A—C6A | 0.7 (3) |
C3B—O4B—C5B—C6B | 59.8 (2) | C4A—C5A—C6A—C1A | −0.4 (3) |
C6B—N1B—C2B—C3B | −55.34 (17) | O11A—C12A—C13A—O14A | 172.45 (14) |
C2B—N1B—C6B—C5B | 54.74 (18) | O11A—C12A—C13A—O13A | −9.8 (2) |
C6A—C1A—C2A—C3A | 1.5 (3) | N1B—C2B—C3B—O4B | 58.00 (18) |
O11A—C1A—C6A—C5A | 179.61 (16) | O4B—C5B—C6B—N1B | −56.8 (2) |
C2A—C1A—C6A—C5A | −0.7 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1B—H11B···O13A | 0.92 (2) | 1.83 (2) | 2.7366 (18) | 169 (2) |
N1B—H11B···O14A | 0.92 (2) | 2.57 (2) | 3.1655 (17) | 123 (1) |
N1B—H12B···O14Ai | 0.95 (1) | 1.76 (1) | 2.7061 (17) | 176 (1) |
C4A—H4A···O4Bii | 0.95 | 2.59 | 3.447 (2) | 151 |
C6B—H62B···O13Aiii | 0.99 | 2.39 | 3.148 (2) | 133 |
Symmetry codes: (i) x−1, y, z; (ii) x+1, y+1, z−1; (iii) −x, −y+1, −z+1. |
C4H10NO+·C8H6FO3− | Z = 2 |
Mr = 257.26 | F(000) = 272 |
Triclinic, P1 | Dx = 1.400 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 5.7997 (5) Å | Cell parameters from 1163 reflections |
b = 10.2605 (10) Å | θ = 4.0–28.4° |
c = 10.4836 (11) Å | µ = 0.11 mm−1 |
α = 88.388 (8)° | T = 200 K |
β = 82.792 (8)° | Plate, colourless |
γ = 80.325 (8)° | 0.50 × 0.25 × 0.05 mm |
V = 610.11 (10) Å3 |
Oxford Diffraction Gemini-S CCD-detector diffractometer | 2394 independent reflections |
Radiation source: fine-focus sealed tube | 1743 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.033 |
Detector resolution: 16.077 pixels mm-1 | θmax = 26.0°, θmin = 3.6° |
ω scans | h = −7→6 |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2014) | k = −10→12 |
Tmin = 0.488, Tmax = 0.980 | l = −12→12 |
4984 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.046 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.116 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.04 | w = 1/[σ2(Fo2) + (0.046P)2 + 0.0267P] where P = (Fo2 + 2Fc2)/3 |
2394 reflections | (Δ/σ)max < 0.001 |
169 parameters | Δρmax = 0.19 e Å−3 |
2 restraints | Δρmin = −0.20 e Å−3 |
Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
F4A | 1.10905 (19) | 0.50899 (12) | 0.11938 (12) | 0.0518 (4) | |
O11A | 0.3317 (2) | 0.71651 (12) | 0.44716 (12) | 0.0328 (4) | |
O13A | −0.0039 (2) | 0.82589 (13) | 0.62958 (12) | 0.0331 (4) | |
O14A | −0.2493 (2) | 0.88910 (13) | 0.48447 (12) | 0.0350 (4) | |
C1A | 0.5169 (3) | 0.66778 (16) | 0.35718 (18) | 0.0255 (6) | |
C2A | 0.5357 (3) | 0.69979 (18) | 0.22788 (18) | 0.0300 (6) | |
C3A | 0.7372 (3) | 0.64655 (19) | 0.14698 (19) | 0.0357 (6) | |
C4A | 0.9096 (3) | 0.56021 (18) | 0.1981 (2) | 0.0331 (6) | |
C5A | 0.8925 (3) | 0.52405 (18) | 0.3247 (2) | 0.0333 (6) | |
C6A | 0.6948 (3) | 0.57908 (18) | 0.40512 (19) | 0.0308 (6) | |
C12A | 0.1408 (3) | 0.80714 (17) | 0.40429 (17) | 0.0263 (6) | |
C13A | −0.0514 (3) | 0.84287 (16) | 0.51649 (18) | 0.0249 (6) | |
O4B | 0.3300 (2) | 0.84416 (14) | 0.96211 (13) | 0.0458 (5) | |
N1B | 0.4282 (3) | 0.85297 (15) | 0.68920 (15) | 0.0288 (5) | |
C2B | 0.4898 (3) | 0.72899 (19) | 0.76326 (19) | 0.0357 (7) | |
C3B | 0.3244 (4) | 0.7319 (2) | 0.8863 (2) | 0.0415 (7) | |
C5B | 0.2614 (4) | 0.9620 (2) | 0.8921 (2) | 0.0425 (7) | |
C6B | 0.4214 (3) | 0.96981 (18) | 0.76981 (19) | 0.0329 (6) | |
H2A | 0.41190 | 0.75780 | 0.19420 | 0.0360* | |
H3A | 0.75460 | 0.66960 | 0.05830 | 0.0430* | |
H5A | 1.01350 | 0.46260 | 0.35680 | 0.0400* | |
H6A | 0.68030 | 0.55610 | 0.49380 | 0.0370* | |
H11A | 0.07620 | 0.76630 | 0.33510 | 0.0320* | |
H12A | 0.19810 | 0.88810 | 0.36920 | 0.0320* | |
H11B | 0.541 (3) | 0.861 (2) | 0.6143 (17) | 0.0500* | |
H12B | 0.283 (3) | 0.855 (2) | 0.6580 (19) | 0.0500* | |
H21B | 0.47750 | 0.65180 | 0.71140 | 0.0430* | |
H22B | 0.65420 | 0.72040 | 0.78310 | 0.0430* | |
H31B | 0.36880 | 0.65030 | 0.93650 | 0.0500* | |
H32B | 0.16190 | 0.73360 | 0.86570 | 0.0500* | |
H51B | 0.26350 | 1.03940 | 0.94600 | 0.0510* | |
H52B | 0.09820 | 0.96510 | 0.87220 | 0.0510* | |
H61B | 0.36500 | 1.05120 | 0.72200 | 0.0390* | |
H62B | 0.58220 | 0.97440 | 0.78970 | 0.0390* |
U11 | U22 | U33 | U12 | U13 | U23 | |
F4A | 0.0376 (7) | 0.0649 (8) | 0.0429 (8) | 0.0137 (6) | 0.0067 (6) | −0.0140 (6) |
O11A | 0.0251 (6) | 0.0409 (8) | 0.0265 (8) | 0.0079 (5) | 0.0010 (5) | 0.0031 (6) |
O13A | 0.0230 (6) | 0.0513 (8) | 0.0237 (8) | −0.0042 (6) | −0.0012 (6) | 0.0015 (6) |
O14A | 0.0216 (7) | 0.0497 (8) | 0.0300 (8) | 0.0041 (6) | −0.0036 (6) | 0.0026 (6) |
C1A | 0.0231 (9) | 0.0256 (9) | 0.0259 (11) | −0.0003 (7) | −0.0003 (8) | −0.0031 (8) |
C2A | 0.0297 (10) | 0.0304 (10) | 0.0270 (11) | 0.0040 (8) | −0.0045 (8) | −0.0024 (8) |
C3A | 0.0379 (11) | 0.0405 (11) | 0.0244 (11) | 0.0025 (9) | 0.0015 (9) | −0.0043 (9) |
C4A | 0.0265 (10) | 0.0342 (10) | 0.0346 (13) | 0.0025 (8) | 0.0039 (8) | −0.0122 (9) |
C5A | 0.0253 (9) | 0.0337 (10) | 0.0383 (13) | 0.0040 (8) | −0.0053 (9) | −0.0006 (9) |
C6A | 0.0287 (10) | 0.0344 (10) | 0.0275 (11) | −0.0018 (8) | −0.0018 (8) | 0.0043 (9) |
C12A | 0.0237 (9) | 0.0273 (9) | 0.0259 (11) | 0.0011 (7) | −0.0022 (8) | 0.0005 (8) |
C13A | 0.0224 (9) | 0.0261 (9) | 0.0266 (11) | −0.0053 (7) | −0.0023 (8) | −0.0003 (8) |
O4B | 0.0628 (10) | 0.0521 (9) | 0.0227 (8) | −0.0119 (7) | −0.0039 (7) | 0.0049 (7) |
N1B | 0.0222 (8) | 0.0415 (9) | 0.0217 (9) | −0.0032 (7) | −0.0014 (7) | 0.0008 (7) |
C2B | 0.0345 (10) | 0.0336 (11) | 0.0384 (13) | −0.0030 (8) | −0.0062 (9) | 0.0006 (9) |
C3B | 0.0494 (13) | 0.0433 (12) | 0.0339 (13) | −0.0160 (10) | −0.0043 (10) | 0.0084 (10) |
C5B | 0.0488 (12) | 0.0450 (13) | 0.0300 (13) | −0.0015 (10) | 0.0015 (10) | −0.0025 (10) |
C6B | 0.0337 (10) | 0.0346 (11) | 0.0298 (12) | −0.0034 (8) | −0.0057 (9) | 0.0034 (9) |
F4A—C4A | 1.370 (2) | C12A—C13A | 1.523 (3) |
O11A—C1A | 1.373 (2) | C2A—H2A | 0.9500 |
O11A—C12A | 1.431 (2) | C3A—H3A | 0.9500 |
O13A—C13A | 1.251 (2) | C5A—H5A | 0.9500 |
O14A—C13A | 1.249 (2) | C6A—H6A | 0.9500 |
O4B—C5B | 1.422 (2) | C12A—H11A | 0.9900 |
O4B—C3B | 1.425 (2) | C12A—H12A | 0.9900 |
N1B—C6B | 1.478 (2) | C2B—C3B | 1.506 (3) |
N1B—C2B | 1.487 (2) | C5B—C6B | 1.494 (3) |
N1B—H12B | 0.938 (18) | C2B—H21B | 0.9900 |
N1B—H11B | 0.968 (18) | C2B—H22B | 0.9900 |
C1A—C6A | 1.391 (3) | C3B—H31B | 0.9900 |
C1A—C2A | 1.381 (3) | C3B—H32B | 0.9900 |
C2A—C3A | 1.395 (3) | C5B—H51B | 0.9900 |
C3A—C4A | 1.372 (3) | C5B—H52B | 0.9900 |
C4A—C5A | 1.364 (3) | C6B—H61B | 0.9900 |
C5A—C6A | 1.382 (3) | C6B—H62B | 0.9900 |
C1A—O11A—C12A | 117.83 (14) | C13A—C12A—H11A | 110.00 |
C3B—O4B—C5B | 109.82 (15) | O11A—C12A—H11A | 110.00 |
C2B—N1B—C6B | 110.58 (15) | C13A—C12A—H12A | 110.00 |
C6B—N1B—H11B | 106.7 (12) | O11A—C12A—H12A | 110.00 |
C2B—N1B—H12B | 110.3 (12) | H11A—C12A—H12A | 108.00 |
H11B—N1B—H12B | 105.8 (16) | N1B—C2B—C3B | 109.48 (16) |
C2B—N1B—H11B | 112.8 (12) | O4B—C3B—C2B | 111.75 (17) |
C6B—N1B—H12B | 110.5 (12) | O4B—C5B—C6B | 111.70 (17) |
O11A—C1A—C6A | 114.80 (16) | N1B—C6B—C5B | 110.52 (15) |
C2A—C1A—C6A | 119.88 (17) | N1B—C2B—H21B | 110.00 |
O11A—C1A—C2A | 125.33 (16) | N1B—C2B—H22B | 110.00 |
C1A—C2A—C3A | 119.71 (17) | C3B—C2B—H21B | 110.00 |
C2A—C3A—C4A | 118.64 (18) | C3B—C2B—H22B | 110.00 |
C3A—C4A—C5A | 122.83 (18) | H21B—C2B—H22B | 108.00 |
F4A—C4A—C5A | 118.33 (16) | O4B—C3B—H31B | 109.00 |
F4A—C4A—C3A | 118.84 (18) | O4B—C3B—H32B | 109.00 |
C4A—C5A—C6A | 118.38 (17) | C2B—C3B—H31B | 109.00 |
C1A—C6A—C5A | 120.53 (18) | C2B—C3B—H32B | 109.00 |
O11A—C12A—C13A | 109.56 (14) | H31B—C3B—H32B | 108.00 |
O13A—C13A—O14A | 125.43 (17) | O4B—C5B—H51B | 109.00 |
O14A—C13A—C12A | 114.50 (16) | O4B—C5B—H52B | 109.00 |
O13A—C13A—C12A | 120.06 (15) | C6B—C5B—H51B | 109.00 |
C3A—C2A—H2A | 120.00 | C6B—C5B—H52B | 109.00 |
C1A—C2A—H2A | 120.00 | H51B—C5B—H52B | 108.00 |
C4A—C3A—H3A | 121.00 | N1B—C6B—H61B | 110.00 |
C2A—C3A—H3A | 121.00 | N1B—C6B—H62B | 110.00 |
C4A—C5A—H5A | 121.00 | C5B—C6B—H61B | 110.00 |
C6A—C5A—H5A | 121.00 | C5B—C6B—H62B | 110.00 |
C5A—C6A—H6A | 120.00 | H61B—C6B—H62B | 108.00 |
C1A—C6A—H6A | 120.00 | ||
C12A—O11A—C1A—C2A | 0.5 (2) | C1A—C2A—C3A—C4A | 1.8 (3) |
C12A—O11A—C1A—C6A | −179.26 (15) | C2A—C3A—C4A—F4A | −179.19 (16) |
C1A—O11A—C12A—C13A | 176.75 (14) | C2A—C3A—C4A—C5A | 0.0 (3) |
C3B—O4B—C5B—C6B | −59.8 (2) | C3A—C4A—C5A—C6A | −1.4 (3) |
C5B—O4B—C3B—C2B | 60.3 (2) | F4A—C4A—C5A—C6A | 177.88 (16) |
C6B—N1B—C2B—C3B | 53.5 (2) | C4A—C5A—C6A—C1A | 0.8 (3) |
C2B—N1B—C6B—C5B | −53.7 (2) | O11A—C12A—C13A—O14A | −160.39 (14) |
C6A—C1A—C2A—C3A | −2.3 (3) | O11A—C12A—C13A—O13A | 20.1 (2) |
O11A—C1A—C2A—C3A | 177.92 (16) | N1B—C2B—C3B—O4B | −57.4 (2) |
C2A—C1A—C6A—C5A | 1.0 (3) | O4B—C5B—C6B—N1B | 57.1 (2) |
O11A—C1A—C6A—C5A | −179.22 (16) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1B—H11B···O14Ai | 0.97 (2) | 1.76 (2) | 2.725 (2) | 175 (2) |
N1B—H12B···O13A | 0.94 (2) | 1.80 (2) | 2.718 (2) | 165 (2) |
C6B—H61B···O14Aii | 0.99 | 2.38 | 3.188 (2) | 138 |
Symmetry codes: (i) x+1, y, z; (ii) −x, −y+2, −z+1. |
C4H10NO+·C8H5Cl2O3− | Z = 2 |
Mr = 308.15 | F(000) = 320 |
Triclinic, P1 | Dx = 1.516 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 5.1733 (4) Å | Cell parameters from 1520 reflections |
b = 11.3751 (10) Å | θ = 3.7–27.8° |
c = 11.7808 (10) Å | µ = 0.49 mm−1 |
α = 86.904 (7)° | T = 200 K |
β = 85.106 (7)° | Needle, colourless |
γ = 77.936 (7)° | 0.50 × 0.13 × 0.10 mm |
V = 675.01 (10) Å3 |
Oxford Diffraction Gemini-S CCD-detector diffractometer | 2646 independent reflections |
Radiation source: fine-focus sealed tube | 2096 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.027 |
Detector resolution: 16.077 pixels mm-1 | θmax = 26.0°, θmin = 3.5° |
ω scans | h = −6→6 |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2014) | k = −14→12 |
Tmin = 0.903, Tmax = 0.989 | l = −14→14 |
5616 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.039 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.091 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.03 | w = 1/[σ2(Fo2) + (0.0328P)2 + 0.273P] where P = (Fo2 + 2Fc2)/3 |
2646 reflections | (Δ/σ)max = 0.001 |
178 parameters | Δρmax = 0.24 e Å−3 |
2 restraints | Δρmin = −0.26 e Å−3 |
Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cl3A | 0.43721 (11) | 0.33427 (5) | 1.07395 (5) | 0.0409 (2) | |
Cl5A | 0.87160 (12) | −0.05932 (5) | 0.83964 (5) | 0.0423 (2) | |
O11A | 1.2226 (3) | 0.31888 (13) | 0.77458 (13) | 0.0356 (5) | |
O13A | 0.8276 (3) | 0.47790 (19) | 0.67505 (15) | 0.0575 (7) | |
O14A | 1.0229 (3) | 0.63014 (15) | 0.69348 (14) | 0.0476 (6) | |
C1A | 1.0356 (4) | 0.26801 (19) | 0.83573 (17) | 0.0271 (6) | |
C2A | 0.8470 (4) | 0.32703 (19) | 0.91505 (17) | 0.0281 (6) | |
C3A | 0.6719 (4) | 0.26282 (19) | 0.97100 (17) | 0.0279 (6) | |
C4A | 0.6730 (4) | 0.14542 (19) | 0.94986 (17) | 0.0307 (7) | |
C5A | 0.8641 (4) | 0.08971 (19) | 0.87030 (18) | 0.0303 (7) | |
C6A | 1.0479 (4) | 0.14815 (19) | 0.81392 (18) | 0.0300 (7) | |
C12A | 1.2129 (4) | 0.44437 (19) | 0.77898 (19) | 0.0306 (7) | |
C13A | 1.0030 (4) | 0.5221 (2) | 0.70886 (18) | 0.0335 (7) | |
O4B | 0.3249 (3) | 0.88990 (15) | 0.45028 (14) | 0.0502 (6) | |
N1B | 0.4795 (4) | 0.70096 (19) | 0.61100 (17) | 0.0416 (7) | |
C2B | 0.5070 (5) | 0.6814 (2) | 0.48655 (19) | 0.0395 (8) | |
C3B | 0.3059 (4) | 0.7719 (2) | 0.4277 (2) | 0.0418 (8) | |
C5B | 0.4761 (4) | 0.8273 (2) | 0.6354 (2) | 0.0415 (8) | |
C6B | 0.2754 (5) | 0.9090 (2) | 0.5686 (2) | 0.0466 (8) | |
H2A | 0.83820 | 0.40890 | 0.93060 | 0.0340* | |
H4A | 0.54740 | 0.10420 | 0.98840 | 0.0370* | |
H6A | 1.18090 | 0.10720 | 0.76100 | 0.0360* | |
H12A | 1.38860 | 0.46070 | 0.75130 | 0.0370* | |
H13A | 1.17790 | 0.46790 | 0.85940 | 0.0370* | |
H11B | 0.607 (4) | 0.648 (2) | 0.641 (2) | 0.0560* | |
H12B | 0.332 (4) | 0.684 (2) | 0.644 (2) | 0.0560* | |
H21B | 0.48270 | 0.59940 | 0.47290 | 0.0470* | |
H22B | 0.68720 | 0.68820 | 0.45520 | 0.0470* | |
H31B | 0.33260 | 0.76060 | 0.34450 | 0.0500* | |
H32B | 0.12620 | 0.75950 | 0.45370 | 0.0500* | |
H51B | 0.65360 | 0.84550 | 0.61490 | 0.0500* | |
H52B | 0.43210 | 0.84010 | 0.71790 | 0.0500* | |
H61B | 0.09660 | 0.89510 | 0.59410 | 0.0560* | |
H62B | 0.27880 | 0.99360 | 0.58300 | 0.0560* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl3A | 0.0453 (3) | 0.0386 (3) | 0.0341 (3) | −0.0032 (3) | 0.0093 (2) | −0.0012 (2) |
Cl5A | 0.0563 (4) | 0.0308 (3) | 0.0431 (3) | −0.0179 (3) | 0.0037 (3) | −0.0068 (2) |
O11A | 0.0296 (8) | 0.0266 (8) | 0.0495 (10) | −0.0083 (6) | 0.0073 (7) | 0.0017 (7) |
O13A | 0.0363 (10) | 0.0903 (15) | 0.0527 (11) | −0.0302 (10) | −0.0208 (8) | 0.0323 (10) |
O14A | 0.0523 (10) | 0.0345 (10) | 0.0491 (10) | 0.0042 (8) | −0.0036 (8) | 0.0083 (8) |
C1A | 0.0251 (10) | 0.0283 (11) | 0.0291 (11) | −0.0076 (9) | −0.0058 (9) | 0.0029 (9) |
C2A | 0.0310 (11) | 0.0228 (11) | 0.0310 (11) | −0.0054 (9) | −0.0070 (9) | 0.0017 (9) |
C3A | 0.0291 (11) | 0.0308 (12) | 0.0226 (10) | −0.0040 (9) | −0.0026 (8) | 0.0026 (9) |
C4A | 0.0329 (12) | 0.0330 (12) | 0.0274 (11) | −0.0113 (9) | −0.0018 (9) | 0.0046 (9) |
C5A | 0.0375 (12) | 0.0256 (11) | 0.0296 (11) | −0.0085 (9) | −0.0083 (9) | 0.0008 (9) |
C6A | 0.0296 (11) | 0.0303 (12) | 0.0292 (11) | −0.0048 (9) | −0.0011 (9) | −0.0009 (9) |
C12A | 0.0284 (11) | 0.0287 (12) | 0.0360 (12) | −0.0096 (9) | −0.0049 (9) | 0.0064 (9) |
C13A | 0.0237 (11) | 0.0456 (15) | 0.0264 (11) | −0.0012 (10) | 0.0042 (9) | 0.0080 (10) |
O4B | 0.0674 (12) | 0.0357 (10) | 0.0378 (10) | 0.0045 (8) | 0.0049 (8) | 0.0120 (8) |
N1B | 0.0414 (12) | 0.0407 (12) | 0.0338 (11) | 0.0095 (9) | −0.0037 (9) | 0.0096 (9) |
C2B | 0.0514 (14) | 0.0278 (13) | 0.0381 (13) | −0.0071 (11) | 0.0001 (11) | −0.0015 (10) |
C3B | 0.0354 (13) | 0.0572 (17) | 0.0337 (13) | −0.0095 (11) | −0.0082 (10) | −0.0012 (11) |
C5B | 0.0343 (13) | 0.0581 (17) | 0.0367 (13) | −0.0181 (11) | 0.0004 (10) | −0.0138 (12) |
C6B | 0.0626 (16) | 0.0292 (13) | 0.0433 (14) | −0.0040 (12) | 0.0095 (12) | −0.0008 (11) |
Cl3A—C3A | 1.746 (2) | C5A—C6A | 1.377 (3) |
Cl5A—C5A | 1.744 (2) | C12A—C13A | 1.522 (3) |
O11A—C1A | 1.364 (3) | C2A—H2A | 0.9500 |
O11A—C12A | 1.421 (3) | C4A—H4A | 0.9500 |
O13A—C13A | 1.228 (3) | C6A—H6A | 0.9500 |
O14A—C13A | 1.257 (3) | C12A—H12A | 0.9900 |
O4B—C6B | 1.416 (3) | C12A—H13A | 0.9900 |
O4B—C3B | 1.407 (3) | C2B—C3B | 1.490 (3) |
N1B—C2B | 1.485 (3) | C5B—C6B | 1.489 (3) |
N1B—C5B | 1.477 (3) | C2B—H21B | 0.9900 |
N1B—H12B | 0.88 (2) | C2B—H22B | 0.9900 |
N1B—H11B | 0.88 (2) | C3B—H31B | 0.9900 |
C1A—C2A | 1.384 (3) | C3B—H32B | 0.9900 |
C1A—C6A | 1.388 (3) | C5B—H51B | 0.9900 |
C2A—C3A | 1.383 (3) | C5B—H52B | 0.9900 |
C3A—C4A | 1.370 (3) | C6B—H61B | 0.9900 |
C4A—C5A | 1.379 (3) | C6B—H62B | 0.9900 |
C1A—O11A—C12A | 120.24 (17) | C13A—C12A—H12A | 109.00 |
C3B—O4B—C6B | 109.96 (17) | O11A—C12A—H12A | 109.00 |
C2B—N1B—C5B | 111.72 (18) | C13A—C12A—H13A | 109.00 |
C5B—N1B—H11B | 114.7 (15) | O11A—C12A—H13A | 109.00 |
C2B—N1B—H12B | 112.3 (15) | H12A—C12A—H13A | 108.00 |
H11B—N1B—H12B | 105 (2) | N1B—C2B—C3B | 110.27 (19) |
C2B—N1B—H11B | 106.6 (15) | O4B—C3B—C2B | 111.23 (18) |
C5B—N1B—H12B | 106.7 (15) | N1B—C5B—C6B | 109.70 (19) |
O11A—C1A—C6A | 114.67 (18) | O4B—C6B—C5B | 111.47 (19) |
C2A—C1A—C6A | 120.75 (19) | N1B—C2B—H21B | 110.00 |
O11A—C1A—C2A | 124.57 (19) | N1B—C2B—H22B | 110.00 |
C1A—C2A—C3A | 117.77 (19) | C3B—C2B—H21B | 110.00 |
Cl3A—C3A—C4A | 118.09 (16) | C3B—C2B—H22B | 110.00 |
C2A—C3A—C4A | 123.29 (19) | H21B—C2B—H22B | 108.00 |
Cl3A—C3A—C2A | 118.62 (16) | O4B—C3B—H31B | 109.00 |
C3A—C4A—C5A | 117.18 (19) | O4B—C3B—H32B | 109.00 |
Cl5A—C5A—C6A | 119.03 (16) | C2B—C3B—H31B | 109.00 |
Cl5A—C5A—C4A | 118.85 (16) | C2B—C3B—H32B | 109.00 |
C4A—C5A—C6A | 122.1 (2) | H31B—C3B—H32B | 108.00 |
C1A—C6A—C5A | 118.84 (19) | N1B—C5B—H51B | 110.00 |
O11A—C12A—C13A | 113.95 (18) | N1B—C5B—H52B | 110.00 |
O14A—C13A—C12A | 115.08 (19) | C6B—C5B—H51B | 110.00 |
O13A—C13A—O14A | 125.4 (2) | C6B—C5B—H52B | 110.00 |
O13A—C13A—C12A | 119.5 (2) | H51B—C5B—H52B | 108.00 |
C3A—C2A—H2A | 121.00 | O4B—C6B—H61B | 109.00 |
C1A—C2A—H2A | 121.00 | O4B—C6B—H62B | 109.00 |
C3A—C4A—H4A | 121.00 | C5B—C6B—H61B | 109.00 |
C5A—C4A—H4A | 121.00 | C5B—C6B—H62B | 109.00 |
C5A—C6A—H6A | 121.00 | H61B—C6B—H62B | 108.00 |
C1A—C6A—H6A | 121.00 | ||
C12A—O11A—C1A—C2A | −8.1 (3) | C1A—C2A—C3A—Cl3A | 178.48 (16) |
C12A—O11A—C1A—C6A | 172.70 (18) | Cl3A—C3A—C4A—C5A | −178.43 (16) |
C1A—O11A—C12A—C13A | −76.5 (2) | C2A—C3A—C4A—C5A | 1.5 (3) |
C3B—O4B—C6B—C5B | 62.3 (2) | C3A—C4A—C5A—Cl5A | −179.46 (16) |
C6B—O4B—C3B—C2B | −61.6 (2) | C3A—C4A—C5A—C6A | 0.2 (3) |
C2B—N1B—C5B—C6B | 51.4 (3) | C4A—C5A—C6A—C1A | −1.8 (3) |
C5B—N1B—C2B—C3B | −51.2 (3) | Cl5A—C5A—C6A—C1A | 177.83 (16) |
C2A—C1A—C6A—C5A | 1.8 (3) | O11A—C12A—C13A—O13A | 15.0 (3) |
O11A—C1A—C2A—C3A | −179.44 (19) | O11A—C12A—C13A—O14A | −167.02 (18) |
C6A—C1A—C2A—C3A | −0.3 (3) | N1B—C2B—C3B—O4B | 56.1 (2) |
O11A—C1A—C6A—C5A | −178.92 (19) | N1B—C5B—C6B—O4B | −56.9 (2) |
C1A—C2A—C3A—C4A | −1.5 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1B—H11B···O13A | 0.88 (2) | 2.07 (2) | 2.892 (3) | 156 (2) |
N1B—H11B···O14A | 0.88 (2) | 2.26 (2) | 2.988 (3) | 141 (2) |
N1B—H12B···O14Ai | 0.88 (2) | 1.87 (2) | 2.737 (3) | 170 (2) |
C12A—H12A···O13Aii | 0.99 | 2.41 | 3.398 (3) | 173 |
Symmetry codes: (i) x−1, y, z; (ii) x+1, y, z. |
C4H10NO+·C8H5Cl2O3− | F(000) = 640 |
Mr = 308.15 | Dx = 1.456 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 2359 reflections |
a = 9.3657 (5) Å | θ = 3.6–28.4° |
b = 7.1702 (3) Å | µ = 0.47 mm−1 |
c = 21.1340 (11) Å | T = 200 K |
β = 97.981 (5)° | Plate, colourless |
V = 1405.48 (12) Å3 | 0.35 × 0.35 × 0.12 mm |
Z = 4 |
Oxford Diffraction Gemini-S CCD-detector diffractometer | 2754 independent reflections |
Radiation source: Enhance (Mo) X-ray source | 2273 reflections with I.2σ(I) |
Graphite monochromator | Rint = 0.026 |
Detector resolution: 16.077 pixels mm-1 | θmax = 26.0°, θmin = 3.4° |
ω scans | h = −9→11 |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2014) | k = −8→8 |
Tmin = 0.933, Tmax = 0.980 | l = −26→20 |
6400 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.038 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.091 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.04 | w = 1/[σ2(Fo2) + (0.0405P)2 + 0.3419P] where P = (Fo2 + 2Fc2)/3 |
2754 reflections | (Δ/σ)max < 0.001 |
178 parameters | Δρmax = 0.28 e Å−3 |
2 restraints | Δρmin = −0.26 e Å−3 |
Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cl2A | 0.23659 (5) | 0.74483 (6) | 0.41042 (2) | 0.0354 (2) | |
Cl4A | 0.15479 (6) | 0.32605 (9) | 0.19759 (2) | 0.0500 (2) | |
O11A | 0.13251 (13) | 0.42531 (17) | 0.47171 (6) | 0.0276 (4) | |
O13A | 0.34279 (13) | 0.1659 (2) | 0.50395 (7) | 0.0390 (5) | |
O14A | 0.19747 (12) | −0.01154 (18) | 0.55307 (6) | 0.0313 (4) | |
C1A | 0.13210 (17) | 0.3923 (3) | 0.40846 (8) | 0.0236 (5) | |
C2A | 0.18091 (18) | 0.5368 (3) | 0.37274 (9) | 0.0255 (5) | |
C3A | 0.18796 (19) | 0.5185 (3) | 0.30830 (9) | 0.0305 (6) | |
C4A | 0.14433 (19) | 0.3520 (3) | 0.27899 (9) | 0.0319 (6) | |
C5A | 0.0933 (2) | 0.2087 (3) | 0.31247 (10) | 0.0348 (6) | |
C6A | 0.08662 (19) | 0.2287 (3) | 0.37705 (9) | 0.0306 (6) | |
C12A | 0.10285 (19) | 0.2707 (3) | 0.51091 (9) | 0.0270 (6) | |
C13A | 0.22590 (18) | 0.1309 (2) | 0.52275 (8) | 0.0226 (5) | |
O4B | 0.56703 (19) | 0.3986 (3) | 0.31170 (7) | 0.0591 (6) | |
N1B | 0.55499 (17) | 0.2047 (2) | 0.42729 (8) | 0.0293 (5) | |
C2B | 0.5720 (2) | 0.4092 (3) | 0.42590 (10) | 0.0353 (7) | |
C3B | 0.6444 (3) | 0.4633 (3) | 0.37002 (11) | 0.0509 (8) | |
C5B | 0.5609 (3) | 0.2016 (4) | 0.31253 (11) | 0.0541 (9) | |
C6B | 0.4830 (2) | 0.1326 (3) | 0.36568 (11) | 0.0412 (7) | |
H3A | 0.22200 | 0.61780 | 0.28470 | 0.0370* | |
H5A | 0.06260 | 0.09580 | 0.29130 | 0.0420* | |
H6A | 0.05060 | 0.12950 | 0.40010 | 0.0370* | |
H12A | 0.01550 | 0.20560 | 0.49020 | 0.0320* | |
H13A | 0.08180 | 0.31880 | 0.55260 | 0.0320* | |
H11B | 0.6420 (17) | 0.149 (3) | 0.4381 (9) | 0.0350* | |
H12B | 0.507 (2) | 0.180 (3) | 0.4587 (8) | 0.0350* | |
H21B | 0.63050 | 0.45170 | 0.46590 | 0.0420* | |
H22B | 0.47630 | 0.46970 | 0.42270 | 0.0420* | |
H31B | 0.65250 | 0.60090 | 0.36850 | 0.0610* | |
H32B | 0.74300 | 0.41080 | 0.37530 | 0.0610* | |
H51B | 0.66010 | 0.15050 | 0.31820 | 0.0650* | |
H52B | 0.51060 | 0.15630 | 0.27110 | 0.0650* | |
H61B | 0.38150 | 0.17540 | 0.35850 | 0.0490* | |
H62B | 0.48330 | −0.00540 | 0.36630 | 0.0490* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl2A | 0.0474 (3) | 0.0221 (3) | 0.0376 (3) | −0.0043 (2) | 0.0088 (2) | 0.0006 (2) |
Cl4A | 0.0576 (4) | 0.0620 (4) | 0.0312 (3) | 0.0069 (3) | 0.0087 (2) | −0.0094 (3) |
O11A | 0.0339 (7) | 0.0222 (7) | 0.0274 (7) | 0.0037 (6) | 0.0072 (5) | 0.0055 (6) |
O13A | 0.0247 (7) | 0.0429 (9) | 0.0524 (9) | 0.0066 (6) | 0.0162 (6) | 0.0154 (7) |
O14A | 0.0291 (7) | 0.0282 (7) | 0.0368 (8) | 0.0031 (6) | 0.0056 (6) | 0.0117 (6) |
C1A | 0.0202 (8) | 0.0236 (9) | 0.0265 (10) | 0.0059 (7) | 0.0019 (7) | 0.0052 (8) |
C2A | 0.0228 (9) | 0.0222 (9) | 0.0315 (10) | 0.0032 (8) | 0.0036 (7) | 0.0015 (8) |
C3A | 0.0290 (10) | 0.0325 (11) | 0.0307 (11) | 0.0034 (9) | 0.0063 (8) | 0.0071 (9) |
C4A | 0.0295 (10) | 0.0386 (12) | 0.0268 (10) | 0.0064 (9) | 0.0010 (8) | −0.0019 (9) |
C5A | 0.0328 (10) | 0.0302 (11) | 0.0389 (12) | −0.0021 (9) | −0.0040 (9) | −0.0053 (9) |
C6A | 0.0283 (10) | 0.0260 (10) | 0.0363 (11) | −0.0026 (8) | 0.0003 (8) | 0.0041 (9) |
C12A | 0.0259 (9) | 0.0278 (10) | 0.0288 (10) | 0.0031 (8) | 0.0090 (7) | 0.0080 (8) |
C13A | 0.0236 (9) | 0.0225 (9) | 0.0214 (9) | 0.0011 (8) | 0.0025 (7) | −0.0005 (8) |
O4B | 0.0774 (12) | 0.0641 (12) | 0.0344 (9) | −0.0058 (10) | 0.0026 (8) | 0.0203 (9) |
N1B | 0.0245 (8) | 0.0311 (9) | 0.0338 (9) | 0.0047 (7) | 0.0089 (7) | 0.0114 (8) |
C2B | 0.0385 (11) | 0.0292 (11) | 0.0367 (12) | 0.0044 (9) | 0.0001 (9) | 0.0014 (9) |
C3B | 0.0611 (15) | 0.0443 (14) | 0.0466 (14) | −0.0155 (12) | 0.0046 (11) | 0.0164 (12) |
C5B | 0.0596 (15) | 0.0678 (18) | 0.0337 (13) | 0.0014 (14) | 0.0025 (11) | −0.0126 (13) |
C6B | 0.0362 (11) | 0.0337 (12) | 0.0524 (14) | −0.0035 (10) | 0.0012 (10) | −0.0015 (10) |
Cl2A—C2A | 1.737 (2) | C5A—C6A | 1.382 (3) |
Cl4A—C4A | 1.7466 (19) | C12A—C13A | 1.522 (3) |
O11A—C1A | 1.357 (2) | C3A—H3A | 0.9500 |
O11A—C12A | 1.434 (2) | C5A—H5A | 0.9500 |
O13A—C13A | 1.241 (2) | C6A—H6A | 0.9500 |
O14A—C13A | 1.254 (2) | C12A—H12A | 0.9900 |
O4B—C5B | 1.414 (4) | C12A—H13A | 0.9900 |
O4B—C3B | 1.418 (3) | C2B—C3B | 1.492 (3) |
N1B—C2B | 1.476 (3) | C5B—C6B | 1.506 (3) |
N1B—C6B | 1.474 (3) | C2B—H21B | 0.9900 |
N1B—H12B | 0.870 (18) | C2B—H22B | 0.9900 |
N1B—H11B | 0.908 (18) | C3B—H31B | 0.9900 |
C1A—C2A | 1.396 (3) | C3B—H32B | 0.9900 |
C1A—C6A | 1.386 (3) | C5B—H51B | 0.9900 |
C2A—C3A | 1.379 (3) | C5B—H52B | 0.9900 |
C3A—C4A | 1.380 (3) | C6B—H61B | 0.9900 |
C4A—C5A | 1.371 (3) | C6B—H62B | 0.9900 |
C1A—O11A—C12A | 117.39 (15) | C13A—C12A—H12A | 109.00 |
C3B—O4B—C5B | 109.44 (17) | O11A—C12A—H12A | 109.00 |
C2B—N1B—C6B | 111.61 (16) | C13A—C12A—H13A | 109.00 |
C6B—N1B—H11B | 110.6 (12) | O11A—C12A—H13A | 109.00 |
C2B—N1B—H12B | 106.6 (14) | H12A—C12A—H13A | 108.00 |
H11B—N1B—H12B | 105.0 (17) | N1B—C2B—C3B | 109.65 (17) |
C2B—N1B—H11B | 110.3 (13) | O4B—C3B—C2B | 111.7 (2) |
C6B—N1B—H12B | 112.4 (12) | O4B—C5B—C6B | 111.2 (2) |
O11A—C1A—C6A | 125.33 (17) | N1B—C6B—C5B | 109.52 (17) |
C2A—C1A—C6A | 118.12 (16) | N1B—C2B—H21B | 110.00 |
O11A—C1A—C2A | 116.55 (17) | N1B—C2B—H22B | 110.00 |
C1A—C2A—C3A | 121.85 (19) | C3B—C2B—H21B | 110.00 |
Cl2A—C2A—C3A | 118.83 (16) | C3B—C2B—H22B | 110.00 |
Cl2A—C2A—C1A | 119.32 (14) | H21B—C2B—H22B | 108.00 |
C2A—C3A—C4A | 118.28 (19) | O4B—C3B—H31B | 109.00 |
C3A—C4A—C5A | 121.29 (18) | O4B—C3B—H32B | 109.00 |
Cl4A—C4A—C3A | 118.72 (15) | C2B—C3B—H31B | 109.00 |
Cl4A—C4A—C5A | 119.99 (16) | C2B—C3B—H32B | 109.00 |
C4A—C5A—C6A | 119.92 (19) | H31B—C3B—H32B | 108.00 |
C1A—C6A—C5A | 120.52 (18) | O4B—C5B—H51B | 109.00 |
O11A—C12A—C13A | 113.66 (14) | O4B—C5B—H52B | 109.00 |
O14A—C13A—C12A | 114.26 (15) | C6B—C5B—H51B | 109.00 |
O13A—C13A—O14A | 126.00 (15) | C6B—C5B—H52B | 109.00 |
O13A—C13A—C12A | 119.72 (15) | H51B—C5B—H52B | 108.00 |
C4A—C3A—H3A | 121.00 | N1B—C6B—H61B | 110.00 |
C2A—C3A—H3A | 121.00 | N1B—C6B—H62B | 110.00 |
C4A—C5A—H5A | 120.00 | C5B—C6B—H61B | 110.00 |
C6A—C5A—H5A | 120.00 | C5B—C6B—H62B | 110.00 |
C5A—C6A—H6A | 120.00 | H61B—C6B—H62B | 108.00 |
C1A—C6A—H6A | 120.00 | ||
C12A—O11A—C1A—C2A | −171.22 (15) | C6A—C1A—C2A—C3A | −1.6 (3) |
C12A—O11A—C1A—C6A | 9.2 (2) | Cl2A—C2A—C3A—C4A | 179.56 (14) |
C1A—O11A—C12A—C13A | 72.91 (19) | C1A—C2A—C3A—C4A | 0.4 (3) |
C5B—O4B—C3B—C2B | −61.7 (2) | C2A—C3A—C4A—Cl4A | −179.24 (14) |
C3B—O4B—C5B—C6B | 61.5 (3) | C2A—C3A—C4A—C5A | 0.9 (3) |
C6B—N1B—C2B—C3B | −52.8 (2) | Cl4A—C4A—C5A—C6A | 179.27 (15) |
C2B—N1B—C6B—C5B | 52.8 (2) | C3A—C4A—C5A—C6A | −0.9 (3) |
O11A—C1A—C6A—C5A | −178.82 (17) | C4A—C5A—C6A—C1A | −0.5 (3) |
C2A—C1A—C6A—C5A | 1.6 (3) | O11A—C12A—C13A—O13A | 6.5 (2) |
O11A—C1A—C2A—C3A | 178.80 (16) | O11A—C12A—C13A—O14A | −175.12 (14) |
C6A—C1A—C2A—Cl2A | 179.20 (14) | N1B—C2B—C3B—O4B | 57.1 (2) |
O11A—C1A—C2A—Cl2A | −0.4 (2) | O4B—C5B—C6B—N1B | −57.3 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1B—H11B···O13Ai | 0.91 (2) | 2.56 (2) | 3.115 (2) | 120 (1) |
N1B—H11B···O14Ai | 0.91 (2) | 1.79 (2) | 2.683 (2) | 169 (2) |
N1B—H12B···O13A | 0.87 (2) | 1.92 (2) | 2.747 (2) | 158 (2) |
C12A—H12A···O14Aii | 0.99 | 2.50 | 3.484 (2) | 173 |
C2B—H21B···O11Aiii | 0.99 | 2.57 | 3.477 (2) | 151 |
C5B—H52B···O4Biv | 0.99 | 2.58 | 3.489 (3) | 153 |
Symmetry codes: (i) −x+1, −y, −z+1; (ii) −x, −y, −z+1; (iii) −x+1, −y+1, −z+1; (iv) −x+1, y−1/2, −z+1/2. |
Acknowledgements
GS acknowledges financial support from the Science and Engineering Faculty, Queensland University of Technology.
References
Agilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, Oxfordshire, England. Google Scholar
Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350. CrossRef Web of Science IUCr Journals Google Scholar
André, V., Braga, D., Grepioni, F. & Duarte, M. T. (2009). Cryst. Growth Des. 9, 5108–5116. Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Ishida, H., Rahman, B. & Kashino, S. (2001a). Acta Cryst. C57, 1450–1453. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Ishida, H., Rahman, B. & Kashino, S. (2001b). Acta Cryst. E57, o627–o629. Web of Science CSD CrossRef IUCr Journals Google Scholar
Ishida, H., Rahman, B. & Kashino, S. (2001c). Acta Cryst. E57, o630–o632. Web of Science CSD CrossRef IUCr Journals Google Scholar
Kennard, C. H. L., Smith, G. & White, A. H. (1982). Acta Cryst. B38, 868–875. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Liu, H.-L., Guo, S.-H., Li, Y.-Y. & Jian, F.-F. (2009). Acta Cryst. E65, o1905. Web of Science CSD CrossRef IUCr Journals Google Scholar
Lynch, D. E., Barfield, J., Frost, J., Antrobus, R. & Simmons, J. (2003). Cryst. Eng. 6, 109–122. Web of Science CSD CrossRef CAS Google Scholar
O'Neil, M. J. (2001). Editor. The Merck Index, 13th ed., pp. 1495–1496. Whitehouse Station, NJ, USA: Merck & Co. Inc. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Smith, G. (2014). Acta Cryst. E70, 528–532. CSD CrossRef IUCr Journals Google Scholar
Smith, G., Kennard, C. H. L. & White, A. H. (1976). J. Chem. Soc. Perkin Trans. 2, pp. 791–792. CSD CrossRef Web of Science Google Scholar
Smith, G. & Lynch, D. E. (2015a). Acta Cryst. E71, 671–674. CSD CrossRef IUCr Journals Google Scholar
Smith, G. & Lynch, D. E. (2015b). Unpublished results. Google Scholar
Smith, G., Lynch, D. E., Sagatys, D. S., Kennard, C. H. L. & Katekar, G. F. (1992). Aust. J. Chem. 45, 1101–1108. CSD CrossRef CAS Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zumdahl, R. L. (2010). In A History of Weed Science in the United States. New York: Elsevier. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.