research communications
rac-3-[2,3-bis(phenylsulfanyl)-3H-indol-3-yl]propanoic acid
ofaDepartment of Chemistry, University of Minnesota, Minneapolis, MN 55455-0431, USA
*Correspondence e-mail: nolan001@umn.edu
The title compound, C23H19NO2S2, was obtained as an unexpected regioisomer from an attempted synthesis of an intermediate for a substituent-effect study on ergot This is the first report of a 1H-indole monothioating at the 2- and 3-positions to give a 3H-indole. In the crystal, the acid H atom is twisted roughly 180° from the typical carboxy conformation and forms centrosymmetric O—H⋯N hydrogen-bonded dimers with the indole N atom of an inversion-related molecule. Together with a weak C—H⋯O hydrogen bond involving the carbonyl O atom, chains are formed along [100].
Keywords: crystal structure; Uhle's ketone; ergot; 3H-indole; thioation; O—H⋯N hydrogen bond.
CCDC reference: 1433300
1. Chemical context
The ergot ], have been long known to exhibit various pharmacological activities (Hofmann, 1978). Examples include pergolide (Gilbert et al., 2000), bromocriptine (Weber et al., 1981), and cabergoline (Dosa et al., 2013), which have been used as treatments for Tourette's syndrome, psoriasis, and Parkinson's disease, respectively. Uhle's ketone (3) is a commonly used intermediate in the synthesis of some ergot (Moldvai et al., 2004; Uhle, 1951).
a family of natural and synthetic compounds based on a tetracyclic skeleton [(2), Fig. 1Our group envisioned the synthesis of novel Uhle's ketone derivatives bearing a reductively removable thio functionality at the 1- or 2-position to facilitate study of substituent effects at the 12–14 positions of several ergot H-indoles such as (1) have not previously been reported as a product of 3-alkylindoles reacting with sulfenyl chlorides.
1,2-Bis(phenylthio)indole-3-propanoic acid (4) was a planned intermediate. However, phenylthioation and hydrolysis of methyl indole-3-propanoate (5) gave the title compound (1) as the only observed bisthioation product. 2,3-bis(thio)-32. Structural commentary
The molecular structure of the title compound is shown in Fig. 2. The O1—H1O bond is syn-periplanar with C1—C2 (Fig. 3), in contrast to the anti-periplanar hydroxyl conformation usually observed in carboxyl groups. This is a consequence of an O1—H1O⋯N1 hydrogen bond (Table 1; §3). The remaining structural features are typical. The atoms of the indole unit (N1/C4–C11) have an r.m.s. deviation of 0.010 (2) Å from the mean plane, with quaternary carbon C4 only 0.012 (2) Å out of plane. The O1/C1–C4/S2/C18 (O1–C18) chain adopts a whose plane of best fit is inclined by 87.97 (8)° to that of the indole unit. Phenyl ring C18–C23 is inclined by 79.39 (10)° to the mean plane of the O1–C18 chain. Phenyl ring C12–C17 ring is inclined by 71.91 (7)° to the mean plane of the indole unit (Fig. 2). The C12—S1 bond is syn-periplanar with bond N1=C11, supporting conjugation between atom S1 and the indole system.
3. Supramolecular features
In the crystal, an O1—H1O⋯N1 hydrogen bond (Table 1) forms inversion dimers with an R22(16) ring motif (Fig. 3). Molecules are also linked by a non-classical C3—H3A⋯O2 hydrogen bond, forming inversion dimers with an R22(10) motif (Fig. 4). Collectively, these interactions form chains along [100].
4. Database survey
A search was performed for variously substituted 3H-indoles in the Cambridge Structural Database (CSD, Version 5.36, update 3; Groom & Allen, 2014). No entries were found containing a 3-thio or 3-propanoic functionality. Three examples of 2-thio-3H-indoles were found. Spiro-fused cyclohexanone (7) contains a 2-phenylthio group with similar geometry as is found in the title compound (Fig. 5; Feldman & Nuriye, 2009). The long chain in chlorotriester (8) is primarily staggered and normal to the indole unit, akin to the title compound (Novikov et al., 2003). The third example, (9), is a thiazolium-4-oxide (Moody et al., 2003).
5. Synthesis and crystallization
Methyl indole-3-propanoate (5) was prepared according to Pedras & Jha (2006), using p-toluenesulfonic acid in place of sulfuric acid. Benzenesulfenyl chloride (PhSCl) solution was prepared according to Li et al. (2013). In an argon atmosphere, methyl indole-3-propanoate (2.69 g) was dissolved in dichloromethane (30 ml) and then cooled in an ice bath. PhSCl solution (28 mmol, 32 ml) was added dropwise over 30 minutes. The resulting mixture was allowed to warm to room temperature and then was stirred for 2 h. Saturated NaHCO3 solution (aq., 30 ml) was added, followed by extraction with dichloromethane (3 × 25 ml). The organic portion was dried with MgSO4, concentrated, and then purified by (SiO2, 9:1 hexane–ethyl acetate), giving methyl 2,3-bis(phenylthio)-3H-indole-3-propanoate [(6), Rf = 0.41 in 2:1] as a yellow powder (3.29 g, 59%, m.p. 360-363 K); 1H NMR (500 MHz, CD2Cl2) δ 7.572–7.553 (m, 2H), 7.455–7.416 (m, 4H), 7.222 (m, 1H), 7.194–7.171 (m, 4H), 7.104–7.073 (m, 2H), 7.045 (m, 1H), 3.563 (s, 3H), 2.647 (ddd, J = 13.8, 11.4, 5.1 Hz, 1H), 2.475 (ddd, J = 13.8, 11.2, 5.1 Hz, 1H), 2.174 (ddd, J = 16.3, 11.4, 5.1 Hz, 1H), 1.798 (ddd, J = 16.3, 11.2, 5.1 Hz, 1H); 13C NMR (126 MHz, CD2Cl2) δ 182.70 (1C), 175.84 (1C), 154.68 (1C), 139.60 (1C), 136.18 (2C), 135.44 (2C), 130.06 (1C), 129.95 (1C), 129.79 (2C), 129.74 (1C), 129.42 (1C), 128.85 (2C), 128.57 (1C), 125.31 (1C), 123.62 (1C), 119.50 (1C), 68.10 (1C), 52.14 (1C), 31.92 (1C), 29.55 (1C); IR (KBr, cm−1) 3057 (w), 2956, 2926, 2851 (w), 1734 (s, C=O), 1508, 1440 (s), 1372, 1298 (O—CH3), 1173, 744 (s), 689; MS (ESI, m/z) [M+H]+ calculated for C24H21NO2S2 420.1086, found 420.1081.
Bisthioated ester [(6), 0.52 g] was dissolved in methanol (20 ml). KOH (0.12 g) and water (5 ml) were added. The resulting mixture was refluxed for 1 h and then cooled to room temperature. Hydrochloric acid was added drop wise until the reaction mixture pH reached 1. The resulting mixture was extracted with dichloromethane (3 × 25 ml). The organic portion was dried with MgSO4 and then concentrated giving the title compound (1) as a pale-yellow powder (0.43 g, 90%, m.p. 443–445 K); Rf = 0.49 (SiO2, 1:1 hexane–ethyl acetate); 1H NMR (500 MHz, CD2Cl2; acid proton H1O not observed) δ 7.520–7.389 (m, 6H), 7.245–7.168 (m, 5H), 7.108–7.078 (m, 2H), 7.045 (m, 1H), 2.619 (ddd, J = 13.9, 11.8, 4.7 Hz, H3A), 2.447 (ddd, J = 13.9, 11.0, 5.0 Hz, H3B), 2.130 (ddd, J = 16.4, 11.8, 5.0 Hz, H2A), 1.734 (ddd, J = 16.4, 11.0, 4.7 Hz, H2B); 13C NMR (126 MHz, CD2Cl2) δ 183.24 (C11), 175.84 (C1), 154.38 (C10), 139.52 (C5), 136.20 (2C), 135.50 (2C), 130.16 (1C), 130.14 (1C), 129.91 (2C), 129.61 (1C), 128.90 (2C), 128.15 (1C), 127.48 (1C), 125.52 (1C), 123.65 (1C), 119.36 (1C), 67.93 (C4), 31.67 (C3), 29.18 (C2); IR (KBr, cm−1) 3407 (O—H), 3056 (w), 2925, 2854 (w), 1745 (s, C=O), 1514, 1383, 746 (s), 689; MS (ESI, m/z) [M – H]− calculated for C23H19NO2S2 404.0784, found 404.0797.
Crystals of the title compound were grown by slow evaporation of a solution in dichloromethane at 270 K.
6. Refinement
Crystal data, data collection and structure . H atoms were placed in calculated positions and refined as riding atoms: O—H = 0.84 Å and C—H = 0.95–0.99 Å with Uiso(H) = 1.5Ueq(O1) for atom H1 and 1.2Ueq(C) for other H atoms.
details are summarized in Table 2Supporting information
CCDC reference: 1433300
https://doi.org/10.1107/S2056989015020241/su5230sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989015020241/su5230Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989015020241/su5230Isup3.cml
Data collection: APEX2 (Bruker, 2007); cell
SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015), enCIFer (Allen et al., 2004) and publCIF (Westrip, 2010).C23H19NO2S2 | F(000) = 424 |
Mr = 405.51 | Dx = 1.364 Mg m−3 |
Triclinic, P1 | Melting point: 444 K |
a = 9.6498 (12) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 9.8610 (12) Å | Cell parameters from 2977 reflections |
c = 10.8812 (13) Å | θ = 2.7–27.3° |
α = 87.626 (1)° | µ = 0.29 mm−1 |
β = 79.331 (1)° | T = 173 K |
γ = 76.022 (1)° | Block, colourless |
V = 987.4 (2) Å3 | 0.23 × 0.12 × 0.10 mm |
Z = 2 |
Bruker APEXII CCD diffractometer | 3396 reflections with I > 2σ(I) |
Radiation source: sealed tube | Rint = 0.032 |
φ and ω scans | θmax = 27.6°, θmin = 1.9° |
Absorption correction: multi-scan (SADABS; Bruker, 2007) | h = −12→12 |
Tmin = 0.698, Tmax = 0.746 | k = −12→12 |
11689 measured reflections | l = −14→14 |
4499 independent reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.038 | H-atom parameters constrained |
wR(F2) = 0.092 | w = 1/[σ2(Fo2) + (0.0362P)2 + 0.1618P] where P = (Fo2 + 2Fc2)/3 |
S = 1.06 | (Δ/σ)max < 0.001 |
4499 reflections | Δρmax = 0.27 e Å−3 |
254 parameters | Δρmin = −0.26 e Å−3 |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.62197 (5) | 0.45034 (5) | 0.16673 (4) | 0.03266 (13) | |
S2 | 0.92472 (5) | 0.19331 (5) | 0.20164 (4) | 0.03283 (13) | |
O1 | 0.74866 (13) | 0.71335 (13) | 0.58120 (12) | 0.0338 (3) | |
H1 | 0.6688 | 0.6928 | 0.6075 | 0.051* | |
O2 | 0.93299 (13) | 0.65100 (13) | 0.42699 (12) | 0.0370 (3) | |
N1 | 0.54112 (14) | 0.29215 (14) | 0.36472 (13) | 0.0251 (3) | |
C1 | 0.82262 (18) | 0.62905 (17) | 0.48697 (16) | 0.0262 (4) | |
C2 | 0.76080 (18) | 0.50855 (18) | 0.46281 (16) | 0.0289 (4) | |
H2A | 0.6624 | 0.5453 | 0.4433 | 0.035* | |
H2B | 0.7514 | 0.4515 | 0.5395 | 0.035* | |
C3 | 0.85486 (18) | 0.41595 (17) | 0.35510 (16) | 0.0279 (4) | |
H3A | 0.9532 | 0.3789 | 0.3747 | 0.033* | |
H3B | 0.8644 | 0.4731 | 0.2784 | 0.033* | |
C4 | 0.79162 (17) | 0.29341 (17) | 0.33029 (15) | 0.0258 (4) | |
C5 | 0.75579 (18) | 0.20556 (17) | 0.44228 (15) | 0.0254 (4) | |
C6 | 0.84042 (19) | 0.13254 (18) | 0.52368 (17) | 0.0310 (4) | |
H6 | 0.9401 | 0.1332 | 0.5147 | 0.037* | |
C7 | 0.7755 (2) | 0.05780 (18) | 0.61945 (17) | 0.0350 (4) | |
H7 | 0.8320 | 0.0052 | 0.6757 | 0.042* | |
C8 | 0.6292 (2) | 0.05935 (18) | 0.63364 (17) | 0.0350 (4) | |
H8 | 0.5872 | 0.0073 | 0.6994 | 0.042* | |
C9 | 0.54286 (19) | 0.13564 (17) | 0.55330 (16) | 0.0295 (4) | |
H9 | 0.4424 | 0.1380 | 0.5637 | 0.035* | |
C10 | 0.60945 (18) | 0.20787 (16) | 0.45758 (15) | 0.0251 (4) | |
C11 | 0.64132 (17) | 0.34029 (17) | 0.29370 (15) | 0.0250 (4) | |
C12 | 0.43242 (19) | 0.48511 (19) | 0.16692 (15) | 0.0295 (4) | |
C13 | 0.3474 (2) | 0.6178 (2) | 0.20041 (17) | 0.0363 (4) | |
H13 | 0.3887 | 0.6865 | 0.2283 | 0.044* | |
C14 | 0.2017 (2) | 0.6485 (2) | 0.19258 (18) | 0.0432 (5) | |
H14 | 0.1427 | 0.7391 | 0.2152 | 0.052* | |
C15 | 0.1417 (2) | 0.5497 (2) | 0.15248 (18) | 0.0442 (5) | |
H15 | 0.0420 | 0.5726 | 0.1459 | 0.053* | |
C16 | 0.2255 (2) | 0.4172 (2) | 0.12167 (18) | 0.0422 (5) | |
H16 | 0.1828 | 0.3482 | 0.0962 | 0.051* | |
C17 | 0.3717 (2) | 0.3847 (2) | 0.12777 (17) | 0.0358 (4) | |
H17 | 0.4301 | 0.2939 | 0.1052 | 0.043* | |
C18 | 0.83442 (18) | 0.06781 (19) | 0.16376 (16) | 0.0307 (4) | |
C19 | 0.7666 (2) | 0.0890 (2) | 0.06019 (18) | 0.0444 (5) | |
H19 | 0.7669 | 0.1712 | 0.0115 | 0.053* | |
C20 | 0.6988 (3) | −0.0091 (3) | 0.0277 (2) | 0.0563 (6) | |
H20 | 0.6528 | 0.0057 | −0.0433 | 0.068* | |
C21 | 0.6979 (2) | −0.1282 (2) | 0.0980 (2) | 0.0506 (6) | |
H21 | 0.6496 | −0.1947 | 0.0764 | 0.061* | |
C22 | 0.7667 (2) | −0.1509 (2) | 0.19934 (19) | 0.0444 (5) | |
H22 | 0.7674 | −0.2341 | 0.2467 | 0.053* | |
C23 | 0.8348 (2) | −0.05393 (19) | 0.23299 (17) | 0.0355 (4) | |
H23 | 0.8820 | −0.0703 | 0.3034 | 0.043* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0282 (2) | 0.0393 (3) | 0.0309 (2) | −0.0096 (2) | −0.00598 (19) | 0.0068 (2) |
S2 | 0.0249 (2) | 0.0364 (3) | 0.0345 (3) | −0.00567 (19) | 0.00119 (19) | −0.0076 (2) |
O1 | 0.0281 (7) | 0.0349 (7) | 0.0405 (7) | −0.0121 (6) | −0.0035 (6) | −0.0088 (6) |
O2 | 0.0303 (7) | 0.0405 (8) | 0.0426 (8) | −0.0175 (6) | 0.0000 (6) | −0.0020 (6) |
N1 | 0.0236 (7) | 0.0249 (7) | 0.0271 (7) | −0.0060 (6) | −0.0048 (6) | −0.0018 (6) |
C1 | 0.0255 (9) | 0.0273 (9) | 0.0282 (9) | −0.0072 (7) | −0.0101 (7) | 0.0035 (7) |
C2 | 0.0246 (9) | 0.0300 (9) | 0.0326 (9) | −0.0104 (7) | −0.0011 (7) | −0.0025 (7) |
C3 | 0.0223 (8) | 0.0299 (9) | 0.0325 (9) | −0.0089 (7) | −0.0038 (7) | −0.0017 (7) |
C4 | 0.0208 (8) | 0.0271 (9) | 0.0279 (9) | −0.0035 (7) | −0.0027 (7) | −0.0034 (7) |
C5 | 0.0262 (9) | 0.0216 (8) | 0.0274 (9) | −0.0041 (7) | −0.0033 (7) | −0.0047 (7) |
C6 | 0.0290 (9) | 0.0268 (9) | 0.0361 (10) | −0.0031 (7) | −0.0075 (8) | −0.0026 (8) |
C7 | 0.0397 (11) | 0.0265 (9) | 0.0368 (11) | 0.0001 (8) | −0.0127 (8) | 0.0012 (8) |
C8 | 0.0449 (11) | 0.0254 (9) | 0.0337 (10) | −0.0089 (8) | −0.0050 (9) | 0.0037 (8) |
C9 | 0.0287 (9) | 0.0239 (9) | 0.0362 (10) | −0.0082 (7) | −0.0042 (8) | −0.0006 (7) |
C10 | 0.0273 (9) | 0.0212 (8) | 0.0265 (9) | −0.0048 (7) | −0.0046 (7) | −0.0024 (7) |
C11 | 0.0241 (8) | 0.0231 (8) | 0.0270 (9) | −0.0040 (7) | −0.0036 (7) | −0.0065 (7) |
C12 | 0.0291 (9) | 0.0360 (10) | 0.0223 (9) | −0.0058 (8) | −0.0054 (7) | 0.0048 (7) |
C13 | 0.0371 (10) | 0.0378 (11) | 0.0320 (10) | −0.0065 (8) | −0.0043 (8) | 0.0006 (8) |
C14 | 0.0363 (11) | 0.0459 (12) | 0.0380 (11) | 0.0020 (9) | 0.0014 (9) | 0.0029 (9) |
C15 | 0.0280 (10) | 0.0677 (15) | 0.0333 (11) | −0.0099 (10) | −0.0007 (8) | 0.0100 (10) |
C16 | 0.0385 (11) | 0.0565 (13) | 0.0360 (11) | −0.0199 (10) | −0.0072 (9) | 0.0033 (10) |
C17 | 0.0376 (11) | 0.0377 (11) | 0.0327 (10) | −0.0090 (9) | −0.0075 (8) | 0.0004 (8) |
C18 | 0.0264 (9) | 0.0330 (10) | 0.0291 (9) | −0.0006 (7) | −0.0022 (7) | −0.0085 (8) |
C19 | 0.0580 (14) | 0.0411 (12) | 0.0346 (11) | −0.0078 (10) | −0.0146 (10) | −0.0018 (9) |
C20 | 0.0702 (16) | 0.0599 (15) | 0.0451 (13) | −0.0130 (12) | −0.0271 (12) | −0.0136 (11) |
C21 | 0.0531 (14) | 0.0479 (13) | 0.0542 (14) | −0.0160 (11) | −0.0092 (11) | −0.0176 (11) |
C22 | 0.0538 (13) | 0.0347 (11) | 0.0425 (12) | −0.0113 (10) | −0.0007 (10) | −0.0057 (9) |
C23 | 0.0374 (10) | 0.0328 (10) | 0.0335 (10) | −0.0013 (8) | −0.0072 (8) | −0.0050 (8) |
S1—C11 | 1.7305 (17) | C8—H8 | 0.9500 |
S1—C12 | 1.7773 (18) | C9—C10 | 1.385 (2) |
S2—C18 | 1.7767 (18) | C9—H9 | 0.9500 |
S2—C4 | 1.8493 (16) | C12—C17 | 1.383 (2) |
O1—C1 | 1.328 (2) | C12—C13 | 1.389 (3) |
O1—H1 | 0.8400 | C13—C14 | 1.382 (3) |
O2—C1 | 1.2040 (19) | C13—H13 | 0.9500 |
N1—C11 | 1.293 (2) | C14—C15 | 1.370 (3) |
N1—C10 | 1.435 (2) | C14—H14 | 0.9500 |
C1—C2 | 1.504 (2) | C15—C16 | 1.378 (3) |
C2—C3 | 1.525 (2) | C15—H15 | 0.9500 |
C2—H2A | 0.9900 | C16—C17 | 1.382 (3) |
C2—H2B | 0.9900 | C16—H16 | 0.9500 |
C3—C4 | 1.533 (2) | C17—H17 | 0.9500 |
C3—H3A | 0.9900 | C18—C19 | 1.389 (3) |
C3—H3B | 0.9900 | C18—C23 | 1.390 (2) |
C4—C5 | 1.502 (2) | C19—C20 | 1.382 (3) |
C4—C11 | 1.533 (2) | C19—H19 | 0.9500 |
C5—C6 | 1.379 (2) | C20—C21 | 1.375 (3) |
C5—C10 | 1.386 (2) | C20—H20 | 0.9500 |
C6—C7 | 1.392 (2) | C21—C22 | 1.374 (3) |
C6—H6 | 0.9500 | C21—H21 | 0.9500 |
C7—C8 | 1.388 (3) | C22—C23 | 1.379 (3) |
C7—H7 | 0.9500 | C22—H22 | 0.9500 |
C8—C9 | 1.392 (2) | C23—H23 | 0.9500 |
C11—S1—C12 | 102.47 (8) | C9—C10—N1 | 126.35 (15) |
C18—S2—C4 | 102.65 (8) | C5—C10—N1 | 111.96 (14) |
C1—O1—H1 | 109.5 | N1—C11—C4 | 114.43 (14) |
C11—N1—C10 | 106.38 (14) | N1—C11—S1 | 127.16 (13) |
O2—C1—O1 | 119.92 (15) | C4—C11—S1 | 118.40 (12) |
O2—C1—C2 | 123.81 (16) | C17—C12—C13 | 120.40 (17) |
O1—C1—C2 | 116.27 (14) | C17—C12—S1 | 120.78 (14) |
C1—C2—C3 | 112.44 (13) | C13—C12—S1 | 118.72 (14) |
C1—C2—H2A | 109.1 | C14—C13—C12 | 119.08 (19) |
C3—C2—H2A | 109.1 | C14—C13—H13 | 120.5 |
C1—C2—H2B | 109.1 | C12—C13—H13 | 120.5 |
C3—C2—H2B | 109.1 | C15—C14—C13 | 120.61 (19) |
H2A—C2—H2B | 107.8 | C15—C14—H14 | 119.7 |
C2—C3—C4 | 112.42 (13) | C13—C14—H14 | 119.7 |
C2—C3—H3A | 109.1 | C14—C15—C16 | 120.29 (19) |
C4—C3—H3A | 109.1 | C14—C15—H15 | 119.9 |
C2—C3—H3B | 109.1 | C16—C15—H15 | 119.9 |
C4—C3—H3B | 109.1 | C15—C16—C17 | 119.99 (19) |
H3A—C3—H3B | 107.9 | C15—C16—H16 | 120.0 |
C5—C4—C3 | 115.35 (14) | C17—C16—H16 | 120.0 |
C5—C4—C11 | 99.58 (13) | C16—C17—C12 | 119.61 (18) |
C3—C4—C11 | 113.08 (13) | C16—C17—H17 | 120.2 |
C5—C4—S2 | 113.36 (11) | C12—C17—H17 | 120.2 |
C3—C4—S2 | 104.98 (11) | C19—C18—C23 | 119.20 (18) |
C11—C4—S2 | 110.69 (11) | C19—C18—S2 | 119.45 (15) |
C6—C5—C10 | 120.95 (16) | C23—C18—S2 | 121.31 (14) |
C6—C5—C4 | 131.39 (15) | C20—C19—C18 | 120.20 (19) |
C10—C5—C4 | 107.65 (14) | C20—C19—H19 | 119.9 |
C5—C6—C7 | 118.04 (17) | C18—C19—H19 | 119.9 |
C5—C6—H6 | 121.0 | C21—C20—C19 | 120.1 (2) |
C7—C6—H6 | 121.0 | C21—C20—H20 | 119.9 |
C8—C7—C6 | 120.76 (17) | C19—C20—H20 | 119.9 |
C8—C7—H7 | 119.6 | C22—C21—C20 | 119.9 (2) |
C6—C7—H7 | 119.6 | C22—C21—H21 | 120.0 |
C7—C8—C9 | 121.26 (17) | C20—C21—H21 | 120.0 |
C7—C8—H8 | 119.4 | C21—C22—C23 | 120.6 (2) |
C9—C8—H8 | 119.4 | C21—C22—H22 | 119.7 |
C10—C9—C8 | 117.26 (16) | C23—C22—H22 | 119.7 |
C10—C9—H9 | 121.4 | C22—C23—C18 | 119.89 (18) |
C8—C9—H9 | 121.4 | C22—C23—H23 | 120.1 |
C9—C10—C5 | 121.70 (16) | C18—C23—H23 | 120.1 |
O2—C1—C2—C3 | 0.9 (2) | C10—N1—C11—S1 | −179.11 (12) |
O1—C1—C2—C3 | −178.65 (14) | C5—C4—C11—N1 | −0.43 (18) |
C1—C2—C3—C4 | −179.85 (13) | C3—C4—C11—N1 | −123.38 (16) |
C2—C3—C4—C5 | −52.58 (19) | S2—C4—C11—N1 | 119.15 (13) |
C2—C3—C4—C11 | 61.13 (19) | C5—C4—C11—S1 | 178.90 (11) |
C2—C3—C4—S2 | −178.10 (12) | C3—C4—C11—S1 | 55.95 (17) |
C18—S2—C4—C5 | 60.67 (13) | S2—C4—C11—S1 | −61.52 (14) |
C18—S2—C4—C3 | −172.58 (11) | C12—S1—C11—N1 | 3.10 (17) |
C18—S2—C4—C11 | −50.24 (13) | C12—S1—C11—C4 | −176.13 (12) |
C3—C4—C5—C6 | −57.2 (2) | C11—S1—C12—C17 | −74.16 (15) |
C11—C4—C5—C6 | −178.58 (17) | C11—S1—C12—C13 | 109.44 (14) |
S2—C4—C5—C6 | 63.8 (2) | C17—C12—C13—C14 | −0.8 (3) |
C3—C4—C5—C10 | 121.86 (15) | S1—C12—C13—C14 | 175.62 (14) |
C11—C4—C5—C10 | 0.53 (16) | C12—C13—C14—C15 | 0.1 (3) |
S2—C4—C5—C10 | −117.07 (13) | C13—C14—C15—C16 | 1.3 (3) |
C10—C5—C6—C7 | 1.9 (2) | C14—C15—C16—C17 | −1.8 (3) |
C4—C5—C6—C7 | −179.11 (16) | C15—C16—C17—C12 | 1.1 (3) |
C5—C6—C7—C8 | −1.2 (3) | C13—C12—C17—C16 | 0.2 (3) |
C6—C7—C8—C9 | −0.2 (3) | S1—C12—C17—C16 | −176.11 (14) |
C7—C8—C9—C10 | 1.0 (3) | C4—S2—C18—C19 | 100.86 (16) |
C8—C9—C10—C5 | −0.4 (2) | C4—S2—C18—C23 | −81.59 (15) |
C8—C9—C10—N1 | 179.83 (15) | C23—C18—C19—C20 | 0.9 (3) |
C6—C5—C10—C9 | −1.1 (3) | S2—C18—C19—C20 | 178.48 (16) |
C4—C5—C10—C9 | 179.70 (15) | C18—C19—C20—C21 | 0.2 (3) |
C6—C5—C10—N1 | 178.71 (14) | C19—C20—C21—C22 | −1.2 (3) |
C4—C5—C10—N1 | −0.51 (18) | C20—C21—C22—C23 | 1.2 (3) |
C11—N1—C10—C9 | −179.99 (16) | C21—C22—C23—C18 | −0.2 (3) |
C11—N1—C10—C5 | 0.23 (18) | C19—C18—C23—C22 | −0.9 (3) |
C10—N1—C11—C4 | 0.15 (18) | S2—C18—C23—C22 | −178.43 (14) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···N1i | 0.84 | 1.96 | 2.7622 (18) | 159 |
C3—H3A···O2ii | 0.99 | 2.57 | 3.356 (2) | 136 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+2, −y+1, −z+1. |
Acknowledgements
The authors thank Victor G. Young, Jr (X-Ray Crystallographic Laboratory, University of Minnesota) for assistance with the
analysis, and the Wayland E. Noland Research Fellowship Fund at the University of Minnesota Foundation for generous financial support of this work.References
Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Dosa, P. I., Ward, T., Walters, M. A. & Kim, S. W. (2013). ACS Med. Chem. Lett. 4, 254–258. CrossRef CAS PubMed Google Scholar
Feldman, K. S. & Nuriye, A. Y. (2009). Tetrahedron Lett. 50, 1914–1916. CrossRef CAS Google Scholar
Gilbert, D. L., Sethuraman, G., Sine, L., Peters, S. & Sallee, F. R. (2000). Neurology, 54, 1310–1315. CrossRef PubMed CAS Google Scholar
Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671. Web of Science CSD CrossRef CAS Google Scholar
Hofmann, A. (1978). Pharmacology, 16, 1–11. CrossRef CAS PubMed Google Scholar
Li, Z.-S., Wang, W.-M., Lu, W., Niu, C.-W., Li, Y.-H., Li, Z.-M. & Wang, J.-G. (2013). Bioorg. Med. Chem. Lett. 23, 3723–3727. CrossRef CAS PubMed Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Moldvai, I., Temesvári-Major, E., Incze, M., Szentirmay, É., Gács-Baitz, E. & Szántay, C. (2004). J. Org. Chem. 69, 5993–6000. CrossRef PubMed CAS Google Scholar
Moody, C. J., Slawin, A. M. Z. & Willows, D. (2003). Org. Biomol. Chem. 1, 2716–2722. CrossRef PubMed CAS Google Scholar
Novikov, A. V., Kennedy, A. R. & Rainier, J. D. (2003). J. Org. Chem. 68, 993–996. CrossRef PubMed CAS Google Scholar
Pedras, M. S. C. & Jha, M. (2006). Bioorg. Med. Chem. 14, 4958–4979. CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Uhle, F. C. (1951). J. Am. Chem. Soc. 73, 2402–2403. CrossRef CAS Google Scholar
Weber, G., Neidhardt, M., Frey, H., Galle, K. & Geiger, A. (1981). Arch. Dermatol. Res. 271, 437–439. CrossRef CAS PubMed Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.