research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of rac-3-[2,3-bis­­(phenyl­sulfan­yl)-3H-indol-3-yl]propanoic acid

aDepartment of Chemistry, University of Minnesota, Minneapolis, MN 55455-0431, USA
*Correspondence e-mail: nolan001@umn.edu

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 18 October 2015; accepted 26 October 2015; online 31 October 2015)

The title compound, C23H19NO2S2, was obtained as an unexpected regioisomer from an attempted synthesis of an inter­mediate for a substituent-effect study on ergot alkaloids. This is the first report of a 1H-indole mono­thio­ating at the 2- and 3-positions to give a 3H-indole. In the crystal, the acid H atom is twisted roughly 180° from the typical carb­oxy conformation and forms centrosymmetric O—H⋯N hydrogen-bonded dimers with the indole N atom of an inversion-related mol­ecule. Together with a weak C—H⋯O hydrogen bond involving the carbonyl O atom, chains are formed along [100].

1. Chemical context

The ergot alkaloids, a family of natural and synthetic compounds based on a tetra­cyclic skeleton [(2), Fig. 1[link]], have been long known to exhibit various pharmacological activities (Hofmann, 1978[Hofmann, A. (1978). Pharmacology, 16, 1-11.]). Examples include pergolide (Gilbert et al., 2000[Gilbert, D. L., Sethuraman, G., Sine, L., Peters, S. & Sallee, F. R. (2000). Neurology, 54, 1310-1315.]), bromo­criptine (Weber et al., 1981[Weber, G., Neidhardt, M., Frey, H., Galle, K. & Geiger, A. (1981). Arch. Dermatol. Res. 271, 437-439.]), and cabergoline (Dosa et al., 2013[Dosa, P. I., Ward, T., Walters, M. A. & Kim, S. W. (2013). ACS Med. Chem. Lett. 4, 254-258.]), which have been used as treatments for Tourette's syndrome, psoriasis, and Parkinson's disease, respectively. Uhle's ketone (3) is a commonly used inter­mediate in the synthesis of some ergot alkaloids (Moldvai et al., 2004[Moldvai, I., Temesvári-Major, E., Incze, M., Szentirmay, É., Gács-Baitz, E. & Szántay, C. (2004). J. Org. Chem. 69, 5993-6000.]; Uhle, 1951[Uhle, F. C. (1951). J. Am. Chem. Soc. 73, 2402-2403.]).

[Scheme 1]
[Figure 1]
Figure 1
The ergot alkaloid skeleton, (2), Uhle's ketone, (3), the intended product, (4), and the synthesis of the title compound (bottom row).

Our group envisioned the synthesis of novel Uhle's ketone derivatives bearing a reductively removable thio functionality at the 1- or 2-position to facilitate study of substituent effects at the 12–14 positions of several ergot alkaloids. 1,2-Bis(phenyl­thio)­indole-3-propanoic acid (4) was a planned inter­mediate. However, phenyl­thio­ation and hydrolysis of methyl indole-3-propano­ate (5) gave the title compound (1) as the only observed bis­thio­ation product. 2,3-bis­(thio)-3H-indoles such as (1) have not previously been reported as a product of 3-alkyl­indoles reacting with sulfenyl chlorides.

2. Structural commentary

The mol­ecular structure of the title compound is shown in Fig. 2[link]. The O1—H1O bond is syn-periplanar with C1—C2 (Fig. 3[link]), in contrast to the anti-periplanar hydroxyl conformation usually observed in carboxyl groups. This is a consequence of an O1—H1O⋯N1 hydrogen bond (Table 1[link]; §3). The remaining structural features are typical. The atoms of the indole unit (N1/C4–C11) have an r.m.s. deviation of 0.010 (2) Å from the mean plane, with quaternary carbon C4 only 0.012 (2) Å out of plane. The O1/C1–C4/S2/C18 (O1–C18) chain adopts a staggered conformation whose plane of best fit is inclined by 87.97 (8)° to that of the indole unit. Phenyl ring C18–C23 is inclined by 79.39 (10)° to the mean plane of the O1–C18 chain. Phenyl ring C12–C17 ring is inclined by 71.91 (7)° to the mean plane of the indole unit (Fig. 2[link]). The C12—S1 bond is syn-periplanar with bond N1=C11, supporting conjugation between atom S1 and the indole system.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1i 0.84 1.96 2.7622 (18) 159
C3—H3A⋯O2ii 0.99 2.57 3.356 (2) 136
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+2, -y+1, -z+1.
[Figure 2]
Figure 2
The mol­ecular structure of the title compound, showing the atom labeling. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 3]
Figure 3
A view along [04[\overline{3}]] of the O1—H1O⋯N1 hydrogen-bonded inversion dimer. The C12–C17 ring has been omitted for clarity.

3. Supra­molecular features

In the crystal, an O1—H1O⋯N1 hydrogen bond (Table 1[link]) forms inversion dimers with an R22(16) ring motif (Fig. 3[link]). Mol­ecules are also linked by a non-classical C3—H3A⋯O2 hydrogen bond, forming inversion dimers with an R22(10) motif (Fig. 4[link]). Collectively, these inter­actions form chains along [100].

[Figure 4]
Figure 4
A view along [0[\overline{3}]4] of the C3—H3A⋯O2 hydrogen-bonded inversion dimer.

4. Database survey

A search was performed for variously substituted 3H-indoles in the Cambridge Structural Database (CSD, Version 5.36, update 3; Groom & Allen, 2014[Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662-671.]). No entries were found containing a 3-thio or 3-propanoic functionality. Three examples of 2-thio-3H-indoles were found. Spiro-fused cyclo­hexa­none (7) contains a 2-phenyl­thio group with similar geometry as is found in the title compound (Fig. 5[link]; Feldman & Nuriye, 2009[Feldman, K. S. & Nuriye, A. Y. (2009). Tetrahedron Lett. 50, 1914-1916.]). The long chain in chloro­triester (8) is primarily staggered and normal to the indole unit, akin to the title compound (Novikov et al., 2003[Novikov, A. V., Kennedy, A. R. & Rainier, J. D. (2003). J. Org. Chem. 68, 993-996.]). The third example, (9), is a thia­zolium-4-oxide (Moody et al., 2003[Moody, C. J., Slawin, A. M. Z. & Willows, D. (2003). Org. Biomol. Chem. 1, 2716-2722.]).

[Figure 5]
Figure 5
The three 2-thio-3H-indoles found in the Cambridge Structural Database (CSD; Groom & Allen, 2014[Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662-671.]).

5. Synthesis and crystallization

Methyl indole-3-propano­ate (5) was prepared according to Pedras & Jha (2006[Pedras, M. S. C. & Jha, M. (2006). Bioorg. Med. Chem. 14, 4958-4979.]), using p-toluene­sulfonic acid in place of sulfuric acid. Benzene­sulfenyl chloride (PhSCl) solution was prepared according to Li et al. (2013[Li, Z.-S., Wang, W.-M., Lu, W., Niu, C.-W., Li, Y.-H., Li, Z.-M. & Wang, J.-G. (2013). Bioorg. Med. Chem. Lett. 23, 3723-3727.]). In an argon atmosphere, methyl indole-3-propano­ate (2.69 g) was dissolved in di­chloro­methane (30 ml) and then cooled in an ice bath. PhSCl solution (28 mmol, 32 ml) was added dropwise over 30 minutes. The resulting mixture was allowed to warm to room temperature and then was stirred for 2 h. Saturated NaHCO3 solution (aq., 30 ml) was added, followed by extraction with di­chloro­methane (3 × 25 ml). The organic portion was dried with MgSO4, concentrated, and then purified by column chromatography (SiO2, 9:1 hexa­ne–ethyl acetate), giving methyl 2,3-bis­(phenyl­thio)-3H-indole-3-propano­ate [(6), Rf = 0.41 in 2:1] as a yellow powder (3.29 g, 59%, m.p. 360-363 K); 1H NMR (500 MHz, CD2Cl2) δ 7.572–7.553 (m, 2H), 7.455–7.416 (m, 4H), 7.222 (m, 1H), 7.194–7.171 (m, 4H), 7.104–7.073 (m, 2H), 7.045 (m, 1H), 3.563 (s, 3H), 2.647 (ddd, J = 13.8, 11.4, 5.1 Hz, 1H), 2.475 (ddd, J = 13.8, 11.2, 5.1 Hz, 1H), 2.174 (ddd, J = 16.3, 11.4, 5.1 Hz, 1H), 1.798 (ddd, J = 16.3, 11.2, 5.1 Hz, 1H); 13C NMR (126 MHz, CD2Cl2) δ 182.70 (1C), 175.84 (1C), 154.68 (1C), 139.60 (1C), 136.18 (2C), 135.44 (2C), 130.06 (1C), 129.95 (1C), 129.79 (2C), 129.74 (1C), 129.42 (1C), 128.85 (2C), 128.57 (1C), 125.31 (1C), 123.62 (1C), 119.50 (1C), 68.10 (1C), 52.14 (1C), 31.92 (1C), 29.55 (1C); IR (KBr, cm−1) 3057 (w), 2956, 2926, 2851 (w), 1734 (s, C=O), 1508, 1440 (s), 1372, 1298 (O—CH3), 1173, 744 (s), 689; MS (ESI, m/z) [M+H]+ calculated for C24H21NO2S2 420.1086, found 420.1081.

Bisthio­ated ester [(6), 0.52 g] was dissolved in methanol (20 ml). KOH (0.12 g) and water (5 ml) were added. The resulting mixture was refluxed for 1 h and then cooled to room temperature. Hydro­chloric acid was added drop wise until the reaction mixture pH reached 1. The resulting mixture was extracted with di­chloro­methane (3 × 25 ml). The organic portion was dried with MgSO4 and then concentrated giving the title compound (1) as a pale-yellow powder (0.43 g, 90%, m.p. 443–445 K); Rf = 0.49 (SiO2, 1:1 hexa­ne–ethyl acetate); 1H NMR (500 MHz, CD2Cl2; acid proton H1O not observed) δ 7.520–7.389 (m, 6H), 7.245–7.168 (m, 5H), 7.108–7.078 (m, 2H), 7.045 (m, 1H), 2.619 (ddd, J = 13.9, 11.8, 4.7 Hz, H3A), 2.447 (ddd, J = 13.9, 11.0, 5.0 Hz, H3B), 2.130 (ddd, J = 16.4, 11.8, 5.0 Hz, H2A), 1.734 (ddd, J = 16.4, 11.0, 4.7 Hz, H2B); 13C NMR (126 MHz, CD2Cl2) δ 183.24 (C11), 175.84 (C1), 154.38 (C10), 139.52 (C5), 136.20 (2C), 135.50 (2C), 130.16 (1C), 130.14 (1C), 129.91 (2C), 129.61 (1C), 128.90 (2C), 128.15 (1C), 127.48 (1C), 125.52 (1C), 123.65 (1C), 119.36 (1C), 67.93 (C4), 31.67 (C3), 29.18 (C2); IR (KBr, cm−1) 3407 (O—H), 3056 (w), 2925, 2854 (w), 1745 (s, C=O), 1514, 1383, 746 (s), 689; MS (ESI, m/z) [M – H] calculated for C23H19NO2S2 404.0784, found 404.0797.

Crystals of the title compound were grown by slow evaporation of a solution in di­chloro­methane at 270 K.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. H atoms were placed in calculated positions and refined as riding atoms: O—H = 0.84 Å and C—H = 0.95–0.99 Å with Uiso(H) = 1.5Ueq(O1) for atom H1 and 1.2Ueq(C) for other H atoms.

Table 2
Experimental details

Crystal data
Chemical formula C23H19NO2S2
Mr 405.51
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 173
a, b, c (Å) 9.6498 (12), 9.8610 (12), 10.8812 (13)
α, β, γ (°) 87.626 (1), 79.331 (1), 76.022 (1)
V3) 987.4 (2)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.29
Crystal size (mm) 0.23 × 0.12 × 0.10
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.698, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 11689, 4499, 3396
Rint 0.032
(sin θ/λ)max−1) 0.651
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.092, 1.06
No. of reflections 4499
No. of parameters 254
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.27, −0.26
Computer programs: APEX2 and SAINT (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015), enCIFer (Allen et al., 2004) and publCIF (Westrip, 2010).

rac-3-[2,3-Bis(phenylsulfanyl)-3H-indol-3-yl]propanoic acid top
Crystal data top
C23H19NO2S2F(000) = 424
Mr = 405.51Dx = 1.364 Mg m3
Triclinic, P1Melting point: 444 K
a = 9.6498 (12) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.8610 (12) ÅCell parameters from 2977 reflections
c = 10.8812 (13) Åθ = 2.7–27.3°
α = 87.626 (1)°µ = 0.29 mm1
β = 79.331 (1)°T = 173 K
γ = 76.022 (1)°Block, colourless
V = 987.4 (2) Å30.23 × 0.12 × 0.10 mm
Z = 2
Data collection top
Bruker APEXII CCD
diffractometer
3396 reflections with I > 2σ(I)
Radiation source: sealed tubeRint = 0.032
φ and ω scansθmax = 27.6°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 1212
Tmin = 0.698, Tmax = 0.746k = 1212
11689 measured reflectionsl = 1414
4499 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.092 w = 1/[σ2(Fo2) + (0.0362P)2 + 0.1618P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
4499 reflectionsΔρmax = 0.27 e Å3
254 parametersΔρmin = 0.26 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.62197 (5)0.45034 (5)0.16673 (4)0.03266 (13)
S20.92472 (5)0.19331 (5)0.20164 (4)0.03283 (13)
O10.74866 (13)0.71335 (13)0.58120 (12)0.0338 (3)
H10.66880.69280.60750.051*
O20.93299 (13)0.65100 (13)0.42699 (12)0.0370 (3)
N10.54112 (14)0.29215 (14)0.36472 (13)0.0251 (3)
C10.82262 (18)0.62905 (17)0.48697 (16)0.0262 (4)
C20.76080 (18)0.50855 (18)0.46281 (16)0.0289 (4)
H2A0.66240.54530.44330.035*
H2B0.75140.45150.53950.035*
C30.85486 (18)0.41595 (17)0.35510 (16)0.0279 (4)
H3A0.95320.37890.37470.033*
H3B0.86440.47310.27840.033*
C40.79162 (17)0.29341 (17)0.33029 (15)0.0258 (4)
C50.75579 (18)0.20556 (17)0.44228 (15)0.0254 (4)
C60.84042 (19)0.13254 (18)0.52368 (17)0.0310 (4)
H60.94010.13320.51470.037*
C70.7755 (2)0.05780 (18)0.61945 (17)0.0350 (4)
H70.83200.00520.67570.042*
C80.6292 (2)0.05935 (18)0.63364 (17)0.0350 (4)
H80.58720.00730.69940.042*
C90.54286 (19)0.13564 (17)0.55330 (16)0.0295 (4)
H90.44240.13800.56370.035*
C100.60945 (18)0.20787 (16)0.45758 (15)0.0251 (4)
C110.64132 (17)0.34029 (17)0.29370 (15)0.0250 (4)
C120.43242 (19)0.48511 (19)0.16692 (15)0.0295 (4)
C130.3474 (2)0.6178 (2)0.20041 (17)0.0363 (4)
H130.38870.68650.22830.044*
C140.2017 (2)0.6485 (2)0.19258 (18)0.0432 (5)
H140.14270.73910.21520.052*
C150.1417 (2)0.5497 (2)0.15248 (18)0.0442 (5)
H150.04200.57260.14590.053*
C160.2255 (2)0.4172 (2)0.12167 (18)0.0422 (5)
H160.18280.34820.09620.051*
C170.3717 (2)0.3847 (2)0.12777 (17)0.0358 (4)
H170.43010.29390.10520.043*
C180.83442 (18)0.06781 (19)0.16376 (16)0.0307 (4)
C190.7666 (2)0.0890 (2)0.06019 (18)0.0444 (5)
H190.76690.17120.01150.053*
C200.6988 (3)0.0091 (3)0.0277 (2)0.0563 (6)
H200.65280.00570.04330.068*
C210.6979 (2)0.1282 (2)0.0980 (2)0.0506 (6)
H210.64960.19470.07640.061*
C220.7667 (2)0.1509 (2)0.19934 (19)0.0444 (5)
H220.76740.23410.24670.053*
C230.8348 (2)0.05393 (19)0.23299 (17)0.0355 (4)
H230.88200.07030.30340.043*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0282 (2)0.0393 (3)0.0309 (2)0.0096 (2)0.00598 (19)0.0068 (2)
S20.0249 (2)0.0364 (3)0.0345 (3)0.00567 (19)0.00119 (19)0.0076 (2)
O10.0281 (7)0.0349 (7)0.0405 (7)0.0121 (6)0.0035 (6)0.0088 (6)
O20.0303 (7)0.0405 (8)0.0426 (8)0.0175 (6)0.0000 (6)0.0020 (6)
N10.0236 (7)0.0249 (7)0.0271 (7)0.0060 (6)0.0048 (6)0.0018 (6)
C10.0255 (9)0.0273 (9)0.0282 (9)0.0072 (7)0.0101 (7)0.0035 (7)
C20.0246 (9)0.0300 (9)0.0326 (9)0.0104 (7)0.0011 (7)0.0025 (7)
C30.0223 (8)0.0299 (9)0.0325 (9)0.0089 (7)0.0038 (7)0.0017 (7)
C40.0208 (8)0.0271 (9)0.0279 (9)0.0035 (7)0.0027 (7)0.0034 (7)
C50.0262 (9)0.0216 (8)0.0274 (9)0.0041 (7)0.0033 (7)0.0047 (7)
C60.0290 (9)0.0268 (9)0.0361 (10)0.0031 (7)0.0075 (8)0.0026 (8)
C70.0397 (11)0.0265 (9)0.0368 (11)0.0001 (8)0.0127 (8)0.0012 (8)
C80.0449 (11)0.0254 (9)0.0337 (10)0.0089 (8)0.0050 (9)0.0037 (8)
C90.0287 (9)0.0239 (9)0.0362 (10)0.0082 (7)0.0042 (8)0.0006 (7)
C100.0273 (9)0.0212 (8)0.0265 (9)0.0048 (7)0.0046 (7)0.0024 (7)
C110.0241 (8)0.0231 (8)0.0270 (9)0.0040 (7)0.0036 (7)0.0065 (7)
C120.0291 (9)0.0360 (10)0.0223 (9)0.0058 (8)0.0054 (7)0.0048 (7)
C130.0371 (10)0.0378 (11)0.0320 (10)0.0065 (8)0.0043 (8)0.0006 (8)
C140.0363 (11)0.0459 (12)0.0380 (11)0.0020 (9)0.0014 (9)0.0029 (9)
C150.0280 (10)0.0677 (15)0.0333 (11)0.0099 (10)0.0007 (8)0.0100 (10)
C160.0385 (11)0.0565 (13)0.0360 (11)0.0199 (10)0.0072 (9)0.0033 (10)
C170.0376 (11)0.0377 (11)0.0327 (10)0.0090 (9)0.0075 (8)0.0004 (8)
C180.0264 (9)0.0330 (10)0.0291 (9)0.0006 (7)0.0022 (7)0.0085 (8)
C190.0580 (14)0.0411 (12)0.0346 (11)0.0078 (10)0.0146 (10)0.0018 (9)
C200.0702 (16)0.0599 (15)0.0451 (13)0.0130 (12)0.0271 (12)0.0136 (11)
C210.0531 (14)0.0479 (13)0.0542 (14)0.0160 (11)0.0092 (11)0.0176 (11)
C220.0538 (13)0.0347 (11)0.0425 (12)0.0113 (10)0.0007 (10)0.0057 (9)
C230.0374 (10)0.0328 (10)0.0335 (10)0.0013 (8)0.0072 (8)0.0050 (8)
Geometric parameters (Å, º) top
S1—C111.7305 (17)C8—H80.9500
S1—C121.7773 (18)C9—C101.385 (2)
S2—C181.7767 (18)C9—H90.9500
S2—C41.8493 (16)C12—C171.383 (2)
O1—C11.328 (2)C12—C131.389 (3)
O1—H10.8400C13—C141.382 (3)
O2—C11.2040 (19)C13—H130.9500
N1—C111.293 (2)C14—C151.370 (3)
N1—C101.435 (2)C14—H140.9500
C1—C21.504 (2)C15—C161.378 (3)
C2—C31.525 (2)C15—H150.9500
C2—H2A0.9900C16—C171.382 (3)
C2—H2B0.9900C16—H160.9500
C3—C41.533 (2)C17—H170.9500
C3—H3A0.9900C18—C191.389 (3)
C3—H3B0.9900C18—C231.390 (2)
C4—C51.502 (2)C19—C201.382 (3)
C4—C111.533 (2)C19—H190.9500
C5—C61.379 (2)C20—C211.375 (3)
C5—C101.386 (2)C20—H200.9500
C6—C71.392 (2)C21—C221.374 (3)
C6—H60.9500C21—H210.9500
C7—C81.388 (3)C22—C231.379 (3)
C7—H70.9500C22—H220.9500
C8—C91.392 (2)C23—H230.9500
C11—S1—C12102.47 (8)C9—C10—N1126.35 (15)
C18—S2—C4102.65 (8)C5—C10—N1111.96 (14)
C1—O1—H1109.5N1—C11—C4114.43 (14)
C11—N1—C10106.38 (14)N1—C11—S1127.16 (13)
O2—C1—O1119.92 (15)C4—C11—S1118.40 (12)
O2—C1—C2123.81 (16)C17—C12—C13120.40 (17)
O1—C1—C2116.27 (14)C17—C12—S1120.78 (14)
C1—C2—C3112.44 (13)C13—C12—S1118.72 (14)
C1—C2—H2A109.1C14—C13—C12119.08 (19)
C3—C2—H2A109.1C14—C13—H13120.5
C1—C2—H2B109.1C12—C13—H13120.5
C3—C2—H2B109.1C15—C14—C13120.61 (19)
H2A—C2—H2B107.8C15—C14—H14119.7
C2—C3—C4112.42 (13)C13—C14—H14119.7
C2—C3—H3A109.1C14—C15—C16120.29 (19)
C4—C3—H3A109.1C14—C15—H15119.9
C2—C3—H3B109.1C16—C15—H15119.9
C4—C3—H3B109.1C15—C16—C17119.99 (19)
H3A—C3—H3B107.9C15—C16—H16120.0
C5—C4—C3115.35 (14)C17—C16—H16120.0
C5—C4—C1199.58 (13)C16—C17—C12119.61 (18)
C3—C4—C11113.08 (13)C16—C17—H17120.2
C5—C4—S2113.36 (11)C12—C17—H17120.2
C3—C4—S2104.98 (11)C19—C18—C23119.20 (18)
C11—C4—S2110.69 (11)C19—C18—S2119.45 (15)
C6—C5—C10120.95 (16)C23—C18—S2121.31 (14)
C6—C5—C4131.39 (15)C20—C19—C18120.20 (19)
C10—C5—C4107.65 (14)C20—C19—H19119.9
C5—C6—C7118.04 (17)C18—C19—H19119.9
C5—C6—H6121.0C21—C20—C19120.1 (2)
C7—C6—H6121.0C21—C20—H20119.9
C8—C7—C6120.76 (17)C19—C20—H20119.9
C8—C7—H7119.6C22—C21—C20119.9 (2)
C6—C7—H7119.6C22—C21—H21120.0
C7—C8—C9121.26 (17)C20—C21—H21120.0
C7—C8—H8119.4C21—C22—C23120.6 (2)
C9—C8—H8119.4C21—C22—H22119.7
C10—C9—C8117.26 (16)C23—C22—H22119.7
C10—C9—H9121.4C22—C23—C18119.89 (18)
C8—C9—H9121.4C22—C23—H23120.1
C9—C10—C5121.70 (16)C18—C23—H23120.1
O2—C1—C2—C30.9 (2)C10—N1—C11—S1179.11 (12)
O1—C1—C2—C3178.65 (14)C5—C4—C11—N10.43 (18)
C1—C2—C3—C4179.85 (13)C3—C4—C11—N1123.38 (16)
C2—C3—C4—C552.58 (19)S2—C4—C11—N1119.15 (13)
C2—C3—C4—C1161.13 (19)C5—C4—C11—S1178.90 (11)
C2—C3—C4—S2178.10 (12)C3—C4—C11—S155.95 (17)
C18—S2—C4—C560.67 (13)S2—C4—C11—S161.52 (14)
C18—S2—C4—C3172.58 (11)C12—S1—C11—N13.10 (17)
C18—S2—C4—C1150.24 (13)C12—S1—C11—C4176.13 (12)
C3—C4—C5—C657.2 (2)C11—S1—C12—C1774.16 (15)
C11—C4—C5—C6178.58 (17)C11—S1—C12—C13109.44 (14)
S2—C4—C5—C663.8 (2)C17—C12—C13—C140.8 (3)
C3—C4—C5—C10121.86 (15)S1—C12—C13—C14175.62 (14)
C11—C4—C5—C100.53 (16)C12—C13—C14—C150.1 (3)
S2—C4—C5—C10117.07 (13)C13—C14—C15—C161.3 (3)
C10—C5—C6—C71.9 (2)C14—C15—C16—C171.8 (3)
C4—C5—C6—C7179.11 (16)C15—C16—C17—C121.1 (3)
C5—C6—C7—C81.2 (3)C13—C12—C17—C160.2 (3)
C6—C7—C8—C90.2 (3)S1—C12—C17—C16176.11 (14)
C7—C8—C9—C101.0 (3)C4—S2—C18—C19100.86 (16)
C8—C9—C10—C50.4 (2)C4—S2—C18—C2381.59 (15)
C8—C9—C10—N1179.83 (15)C23—C18—C19—C200.9 (3)
C6—C5—C10—C91.1 (3)S2—C18—C19—C20178.48 (16)
C4—C5—C10—C9179.70 (15)C18—C19—C20—C210.2 (3)
C6—C5—C10—N1178.71 (14)C19—C20—C21—C221.2 (3)
C4—C5—C10—N10.51 (18)C20—C21—C22—C231.2 (3)
C11—N1—C10—C9179.99 (16)C21—C22—C23—C180.2 (3)
C11—N1—C10—C50.23 (18)C19—C18—C23—C220.9 (3)
C10—N1—C11—C40.15 (18)S2—C18—C23—C22178.43 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N1i0.841.962.7622 (18)159
C3—H3A···O2ii0.992.573.356 (2)136
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+2, y+1, z+1.
 

Acknowledgements

The authors thank Victor G. Young, Jr (X-Ray Crystallographic Laboratory, University of Minnesota) for assistance with the crystal structure analysis, and the Wayland E. Noland Research Fellowship Fund at the University of Minnesota Foundation for generous financial support of this work.

References

First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDosa, P. I., Ward, T., Walters, M. A. & Kim, S. W. (2013). ACS Med. Chem. Lett. 4, 254–258.  CrossRef CAS PubMed Google Scholar
First citationFeldman, K. S. & Nuriye, A. Y. (2009). Tetrahedron Lett. 50, 1914–1916.  CrossRef CAS Google Scholar
First citationGilbert, D. L., Sethuraman, G., Sine, L., Peters, S. & Sallee, F. R. (2000). Neurology, 54, 1310–1315.  CrossRef PubMed CAS Google Scholar
First citationGroom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.  Web of Science CSD CrossRef CAS Google Scholar
First citationHofmann, A. (1978). Pharmacology, 16, 1–11.  CrossRef CAS PubMed Google Scholar
First citationLi, Z.-S., Wang, W.-M., Lu, W., Niu, C.-W., Li, Y.-H., Li, Z.-M. & Wang, J.-G. (2013). Bioorg. Med. Chem. Lett. 23, 3723–3727.  CrossRef CAS PubMed Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMoldvai, I., Temesvári-Major, E., Incze, M., Szentirmay, É., Gács-Baitz, E. & Szántay, C. (2004). J. Org. Chem. 69, 5993–6000.  CrossRef PubMed CAS Google Scholar
First citationMoody, C. J., Slawin, A. M. Z. & Willows, D. (2003). Org. Biomol. Chem. 1, 2716–2722.  CrossRef PubMed CAS Google Scholar
First citationNovikov, A. V., Kennedy, A. R. & Rainier, J. D. (2003). J. Org. Chem. 68, 993–996.  CrossRef PubMed CAS Google Scholar
First citationPedras, M. S. C. & Jha, M. (2006). Bioorg. Med. Chem. 14, 4958–4979.  CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationUhle, F. C. (1951). J. Am. Chem. Soc. 73, 2402–2403.  CrossRef CAS Google Scholar
First citationWeber, G., Neidhardt, M., Frey, H., Galle, K. & Geiger, A. (1981). Arch. Dermatol. Res. 271, 437–439.  CrossRef CAS PubMed Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds