organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 3-benzyl­sulfanyl-6-(5-methyl-1,2-oxazol-3-yl)-1,2,4-triazolo[3,4-b][1,3,4]thia­diazole

aDepartment of Chemistry, National Institute of Technology, Warangal, Telangana 506004, India, and bDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey
*Correspondence e-mail: rajeswarnitw@gmail.com

Edited by E. R. T. Tiekink, University of Malaya, Malaysia (Received 14 September 2015; accepted 17 September 2015; online 3 October 2015)

In the title compound, C14H11N5OS2, the triazolo–thia­diazole system is essentially planar (r.m.s. deviation = 0.002 Å) and makes dihedral angles of 6.33 (12) and 42.95 (14)° with the planes of the oxazole and phenyl rings, respectively. In the crystal, face-to-face ππ inter­actions are observed between the thia­diazole and oxazole rings [centroid–centroid distance = 3.4707 (18) Å], leading to columns along [010].

1. Related literature

For the pharmocological properties of isoxazole, see: Kuz'min et al. (2007[Kuz'min, V. E., Artemenko, A. G., Muratov, E. N., Volineckaya, I. L., Makarov, V. A., Riabova, O. B., Wutzler, P. & Schmidtke, M. (2007). J. Med. Chem. 50, 4205-4213.]); Yermolina et al. (2011[Yermolina, M. V., Wang, J., Caffrey, M., Rong, L. L. & Wardrop, D. J. (2011). J. Med. Chem. 54, 765-781.]); Lilienkampf et al. (2010[Lilienkampf, A., Pieroni, M., Wan, B., Wang, Y., Franzblau, S. G. & Kozikowski, A. P. (2010). J. Med. Chem. 53, 678-688.]); Kamal et al. (2011[Kamal, A., Bharathi, E. V., Reddy, J. S., Ramaiah, M. J., Dastagiri, D., Reddy, M. K., Viswanath, A., Reddy, T. L., Shaik, T. B., Pushpavalli, S. N. & Bhadra, M. P. (2011). Eur. J. Med. Chem. 46, 691-703.]). For the bioactivity of 1,2,4-triazoles coupled with the thia­diazole heterocylic ring system, see: Singh & Singh (2009[Singh, R. J. & Singh, D. K. (2009). S. Afr. J. Chem. 62, 105-108.]). For biological applications, such as anti­microbial, anti­cancer, anti­viral and anti­helmentic properties, see: Habib et al. (1997[Habib, N. S., Soliman, R., Ashour, F. A. & el-Taiebi, M. (1997). Pharmazie, 52, 844-847.]); Bhat et al. (2004[Bhat, K., Prasad, D., Poojary, B. & Holla, B. (2004). Phosphorus Sulfur Silicon, 179, 1595-1603.]); Farghaly et al. (2006[Farghaly, A. R., De Clercq, E. & El-Kashef, H. (2006). Arkivoc, (x), 137-151.]); Khalil et al. (1999[Khalil, M. A., Raslan, M. A., Dawood, K. M. K. M. & Sayed, S. M. (1999). Heterocycl. Commun. 5, 463-472.]). For the synthesis, see: Vaarla & Rao (2014[Vaarla, K. & Rao, V. R. (2014). J. Heterocycl. Chem. doi:10.1002/jhet.2168.]). For a similar structure, see: Dinçer et al. (2005[Dinçer, M., Özdemir, N., Çetin, A., Cansız, A. & Büyükgüngör, O. (2005). Acta Cryst. C61, o665-o667.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C14H11N5OS2

  • Mr = 329.40

  • Orthorhombic, P c a 21

  • a = 16.271 (5) Å

  • b = 5.3804 (13) Å

  • c = 16.700 (4) Å

  • V = 1462.0 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.37 mm−1

  • T = 296 K

  • 0.50 × 0.45 × 0.30 mm

2.2. Data collection

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1999[Bruker (1999). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.836, Tmax = 0.896

  • 10433 measured reflections

  • 3117 independent reflections

  • 2905 reflections with I > 2σ(I)

  • Rint = 0.027

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.077

  • S = 1.08

  • 3117 reflections

  • 200 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.20 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.])

  • Absolute structure parameter: 0.02 (2)

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP (Bruker, 2004[Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Nitrogen heterocyclic compounds have received much attention among researchers throughout the world for their applications as biological probes in the field of drug discovery. Isoxazole is a five membered O- and N-containing heterocylic compound and widely used as key building pharmacophore for drugs (Kuz'min et al., 2007; Yermolina et al., 2011; Lilienkampf et al., 2010; Kamal et al., 2011). Isoxazoles have a wide range of biological applications such as antiviral, anticancer, antibiotic, antituberculosis, antiinflammatory and antimicrobial agents, and as COX-2 inhibitors (Singh & Singh, 2009).

A large number of [1,2,4] triazolo[3,4-b][1,3,4]thiadiazoles have remarkable biological applications such as antimicrobial (Habib et al., 1997), anticancer (Bhat et al., 2004), antiviral (Farghaly et al., 2006) and antihelmentic (Khalil et al., 1999) properties.

The title molecule is shown in Fig. 1. The plane of the triazolo-thiadiazole system [r.m.s. deviation = 0.002 Å] forms dihedral angles of 6.33 (12) and 42.95 (14)° with the oxazole (O1/N1/C2–C4) and phenyl (C9–C14) rings, respectively. All the bond lengths and bond angles in the compound are within normal ranges and comparable with those reported in a similar compound (Dinçer et al., 2005).

The crystal structure is stabilized by face-to-face ππ interactions [Cg1···Cg2 (x, -1 + y, z) = 3.4707 (18) Å and Cg2···Cg1 (x, 1 + y, z) = 3.4707 (18) Å] between the ring centroids, Cg1 and Cg2, of the thiadiazole and oxazole rings, respectively. Fig. 2 shows the molecular packing of the title compound down the b axis.

Related literature top

For the pharmocological properties of isoxazole, see: Kuz'min et al. (2007); Yermolina et al. (2011); Lilienkampf et al. (2010); Kamal et al. (2011). For the bioactivity of 1,2,4-triazoles coupled with the thiadiazole heterocylic ring system, see: Singh & Singh (2009). For biological applications, such as antimicrobial, anticancer, antiviral and antihelmentic properties, see: Habib et al. (1997); Bhat et al. (2004); Farghaly et al. (2006); Khalil et al. (1999). For the synthesis, see: Vaarla & Rao (2014). For a similar structure, see: Dinçer et al. (2005).

Experimental top

The title compound was synthesized according to the published procedure (Vaarla & Rao, 2014). The compound was synthesized in two steps. In step one, a mixture containing equivalent amounts of 5-methylisoxazole-3-carboxylic acid and 4-amino-4H-[1,2,4]triazole-3,5-dithiol was refluxed in the presence of phosphorus oxychloride for about 5 h. After monitoring by TLC, the reaction mixture was cooled to room temperature and poured into crushed ice. The separated solid was filtered, dried and recrystallized from methanol.

In the second step the intermediate 6-(5-methylisoxazol-3-yl)-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazole-3-thiol (1 eq.) was treated with benzyl bromide (1.1 eq.) in ethanol. The reaction mixture was refluxed for 5 h. After completion of the reaction, the reaction mixture was cooled to room temperature. The isolated solid product was filtered and washed with ethanol. Recrystallization was from ethanol.

Refinement top

All H atoms were placed in calculated positions with C—H = 0.93 to 0.97 Å, refined in the riding model with Uiso(H) parameters set to 1.2Ueq(C) or 1.5Ueq (CH3 only). The (0 0 - 2), (2 0 1) and (2 0 0) reflections, whose intensities were affected by the beamstop, were removed from the final refinement.

Structure description top

Nitrogen heterocyclic compounds have received much attention among researchers throughout the world for their applications as biological probes in the field of drug discovery. Isoxazole is a five membered O- and N-containing heterocylic compound and widely used as key building pharmacophore for drugs (Kuz'min et al., 2007; Yermolina et al., 2011; Lilienkampf et al., 2010; Kamal et al., 2011). Isoxazoles have a wide range of biological applications such as antiviral, anticancer, antibiotic, antituberculosis, antiinflammatory and antimicrobial agents, and as COX-2 inhibitors (Singh & Singh, 2009).

A large number of [1,2,4] triazolo[3,4-b][1,3,4]thiadiazoles have remarkable biological applications such as antimicrobial (Habib et al., 1997), anticancer (Bhat et al., 2004), antiviral (Farghaly et al., 2006) and antihelmentic (Khalil et al., 1999) properties.

The title molecule is shown in Fig. 1. The plane of the triazolo-thiadiazole system [r.m.s. deviation = 0.002 Å] forms dihedral angles of 6.33 (12) and 42.95 (14)° with the oxazole (O1/N1/C2–C4) and phenyl (C9–C14) rings, respectively. All the bond lengths and bond angles in the compound are within normal ranges and comparable with those reported in a similar compound (Dinçer et al., 2005).

The crystal structure is stabilized by face-to-face ππ interactions [Cg1···Cg2 (x, -1 + y, z) = 3.4707 (18) Å and Cg2···Cg1 (x, 1 + y, z) = 3.4707 (18) Å] between the ring centroids, Cg1 and Cg2, of the thiadiazole and oxazole rings, respectively. Fig. 2 shows the molecular packing of the title compound down the b axis.

For the pharmocological properties of isoxazole, see: Kuz'min et al. (2007); Yermolina et al. (2011); Lilienkampf et al. (2010); Kamal et al. (2011). For the bioactivity of 1,2,4-triazoles coupled with the thiadiazole heterocylic ring system, see: Singh & Singh (2009). For biological applications, such as antimicrobial, anticancer, antiviral and antihelmentic properties, see: Habib et al. (1997); Bhat et al. (2004); Farghaly et al. (2006); Khalil et al. (1999). For the synthesis, see: Vaarla & Rao (2014). For a similar structure, see: Dinçer et al. (2005).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The title molecule with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 30% probability level.
[Figure 2] Fig. 2. View of the molecular packing of the title compound down the b axis. All H atoms have been omitted for clarity.
3-Benzylsulfanyl-6-(5-methyl-1,2-oxazol-3-yl)-1,2,4-triazolo[3,4-b][1,3,4]thiadiazole top
Crystal data top
C14H11N5OS2F(000) = 680
Mr = 329.40Dx = 1.497 Mg m3
Orthorhombic, Pca21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2acCell parameters from 5610 reflections
a = 16.271 (5) Åθ = 5.0–55.6°
b = 5.3804 (13) ŵ = 0.37 mm1
c = 16.700 (4) ÅT = 296 K
V = 1462.0 (7) Å3Block, colourless
Z = 40.50 × 0.45 × 0.30 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3117 independent reflections
Radiation source: fine-focus sealed tube2905 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ω and φ scanθmax = 28.4°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
h = 2021
Tmin = 0.836, Tmax = 0.896k = 67
10433 measured reflectionsl = 1621
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.031 w = 1/[σ2(Fo2) + (0.0411P)2 + 0.1925P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.077(Δ/σ)max = 0.001
S = 1.08Δρmax = 0.18 e Å3
3117 reflectionsΔρmin = 0.20 e Å3
200 parametersAbsolute structure: Flack (1983)
1 restraintAbsolute structure parameter: 0.02 (2)
Crystal data top
C14H11N5OS2V = 1462.0 (7) Å3
Mr = 329.40Z = 4
Orthorhombic, Pca21Mo Kα radiation
a = 16.271 (5) ŵ = 0.37 mm1
b = 5.3804 (13) ÅT = 296 K
c = 16.700 (4) Å0.50 × 0.45 × 0.30 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3117 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
2905 reflections with I > 2σ(I)
Tmin = 0.836, Tmax = 0.896Rint = 0.027
10433 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.031H-atom parameters constrained
wR(F2) = 0.077Δρmax = 0.18 e Å3
S = 1.08Δρmin = 0.20 e Å3
3117 reflectionsAbsolute structure: Flack (1983)
200 parametersAbsolute structure parameter: 0.02 (2)
1 restraint
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.58876 (4)0.55792 (12)0.27749 (5)0.0430 (2)
S20.56435 (4)0.13539 (13)0.56223 (5)0.0480 (2)
O10.41434 (13)1.1668 (4)0.26095 (13)0.0513 (7)
N10.47539 (15)0.9833 (5)0.26294 (16)0.0500 (9)
N20.51832 (12)0.5539 (4)0.41898 (14)0.0359 (6)
N30.57592 (12)0.3670 (4)0.41555 (14)0.0348 (6)
N40.66919 (15)0.1462 (4)0.35159 (18)0.0478 (8)
N50.65754 (15)0.0517 (4)0.42870 (17)0.0464 (8)
C10.30250 (19)1.3389 (5)0.3361 (2)0.0539 (10)
C20.37083 (16)1.1579 (4)0.32957 (17)0.0396 (8)
C30.40056 (18)0.9771 (5)0.37679 (18)0.0415 (8)
C40.46538 (15)0.8755 (4)0.33223 (17)0.0350 (7)
C50.52042 (14)0.6671 (4)0.35064 (17)0.0342 (7)
C60.61891 (16)0.3354 (4)0.34707 (18)0.0381 (7)
C70.60185 (15)0.1833 (5)0.46600 (18)0.0388 (8)
C80.61793 (19)0.3882 (5)0.6143 (2)0.0488 (9)
C90.70934 (17)0.3711 (4)0.60716 (16)0.0391 (8)
C100.7528 (2)0.5388 (5)0.5610 (2)0.0523 (9)
C110.8368 (2)0.5174 (7)0.5528 (3)0.0639 (11)
C120.8789 (2)0.3276 (7)0.5891 (2)0.0603 (11)
C130.8372 (2)0.1623 (6)0.6353 (3)0.0628 (11)
C140.7532 (2)0.1828 (6)0.6448 (2)0.0556 (11)
H1A0.324001.498700.350700.0810*
H1B0.264401.284000.376300.0810*
H1C0.274801.351100.285500.0810*
H30.382400.930200.427400.0500*
H8A0.599800.545900.592400.0590*
H8B0.603000.384700.670500.0590*
H100.725100.667200.535300.0630*
H110.865400.633300.522200.0770*
H120.935300.312100.582200.0730*
H130.865400.034400.660700.0750*
H140.725600.069000.676900.0670*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0443 (3)0.0412 (3)0.0434 (4)0.0021 (3)0.0010 (3)0.0021 (3)
S20.0399 (3)0.0460 (3)0.0582 (4)0.0038 (3)0.0005 (4)0.0125 (3)
O10.0461 (11)0.0513 (11)0.0566 (15)0.0077 (8)0.0012 (9)0.0149 (10)
N10.0457 (13)0.0496 (13)0.0546 (18)0.0096 (10)0.0017 (11)0.0107 (12)
N20.0286 (10)0.0314 (10)0.0476 (13)0.0009 (7)0.0017 (9)0.0029 (9)
N30.0276 (9)0.0299 (10)0.0470 (13)0.0001 (7)0.0024 (9)0.0055 (9)
N40.0436 (13)0.0434 (12)0.0564 (15)0.0092 (10)0.0002 (12)0.0080 (11)
N50.0415 (12)0.0367 (12)0.0611 (16)0.0062 (9)0.0050 (12)0.0029 (11)
C10.0434 (15)0.0392 (14)0.079 (2)0.0064 (11)0.0022 (16)0.0071 (15)
C20.0334 (12)0.0312 (12)0.0543 (17)0.0041 (9)0.0055 (11)0.0018 (12)
C30.0426 (14)0.0345 (12)0.0474 (17)0.0023 (10)0.0002 (12)0.0018 (12)
C40.0322 (11)0.0280 (10)0.0449 (15)0.0040 (8)0.0077 (10)0.0004 (10)
C50.0303 (11)0.0272 (11)0.0450 (15)0.0033 (8)0.0048 (11)0.0058 (10)
C60.0332 (12)0.0334 (11)0.0478 (15)0.0024 (9)0.0036 (12)0.0068 (11)
C70.0312 (12)0.0342 (12)0.0509 (16)0.0024 (9)0.0054 (11)0.0011 (11)
C80.0520 (17)0.0423 (14)0.0522 (18)0.0040 (12)0.0088 (14)0.0035 (13)
C90.0451 (14)0.0368 (12)0.0354 (14)0.0027 (10)0.0008 (11)0.0051 (11)
C100.0605 (17)0.0420 (14)0.0544 (17)0.0026 (12)0.0032 (17)0.0069 (14)
C110.059 (2)0.0688 (19)0.064 (2)0.0199 (16)0.0027 (18)0.0050 (18)
C120.0470 (17)0.072 (2)0.062 (2)0.0033 (15)0.0081 (15)0.0165 (18)
C130.057 (2)0.0575 (19)0.074 (2)0.0046 (15)0.0232 (18)0.0005 (17)
C140.0602 (19)0.0467 (16)0.060 (2)0.0040 (13)0.0082 (15)0.0126 (15)
Geometric parameters (Å, º) top
S1—C51.753 (3)C8—C91.495 (4)
S1—C61.739 (3)C9—C101.382 (4)
S2—C71.738 (3)C9—C141.390 (4)
S2—C81.835 (3)C10—C111.378 (5)
O1—N11.401 (3)C11—C121.371 (5)
O1—C21.348 (4)C12—C131.359 (5)
N1—C41.305 (4)C13—C141.380 (5)
N2—N31.376 (3)C1—H1A0.9600
N2—C51.294 (4)C1—H1B0.9600
N3—C61.351 (4)C1—H1C0.9600
N3—C71.366 (4)C3—H30.9300
N4—N51.397 (4)C8—H8A0.9700
N4—C61.308 (3)C8—H8B0.9700
N5—C71.308 (4)C10—H100.9300
C1—C21.482 (4)C11—H110.9300
C2—C31.342 (4)C12—H120.9300
C3—C41.402 (4)C13—H130.9300
C4—C51.468 (3)C14—H140.9300
C5—S1—C686.79 (13)C10—C9—C14117.8 (3)
C7—S2—C899.29 (14)C9—C10—C11120.6 (3)
N1—O1—C2109.1 (2)C10—C11—C12120.9 (3)
O1—N1—C4104.2 (2)C11—C12—C13119.3 (3)
N3—N2—C5106.8 (2)C12—C13—C14120.5 (3)
N2—N3—C6118.7 (2)C9—C14—C13121.0 (3)
N2—N3—C7135.6 (2)C2—C1—H1A110.00
C6—N3—C7105.7 (2)C2—C1—H1B109.00
N5—N4—C6104.6 (2)C2—C1—H1C109.00
N4—N5—C7109.6 (2)H1A—C1—H1B109.00
O1—C2—C1115.7 (2)H1A—C1—H1C109.00
O1—C2—C3109.6 (2)H1B—C1—H1C109.00
C1—C2—C3134.7 (3)C2—C3—H3128.00
C2—C3—C4104.0 (3)C4—C3—H3128.00
N1—C4—C3113.0 (2)S2—C8—H8A109.00
N1—C4—C5116.7 (2)S2—C8—H8B109.00
C3—C4—C5130.2 (3)C9—C8—H8A109.00
S1—C5—N2118.27 (17)C9—C8—H8B109.00
S1—C5—C4119.8 (2)H8A—C8—H8B108.00
N2—C5—C4121.9 (2)C9—C10—H10120.00
S1—C6—N3109.44 (17)C11—C10—H10120.00
S1—C6—N4138.7 (2)C10—C11—H11120.00
N3—C6—N4111.9 (3)C12—C11—H11119.00
S2—C7—N3124.7 (2)C11—C12—H12120.00
S2—C7—N5127.1 (2)C13—C12—H12120.00
N3—C7—N5108.2 (3)C12—C13—H13120.00
S2—C8—C9112.91 (19)C14—C13—H13120.00
C8—C9—C10120.9 (2)C9—C14—H14120.00
C8—C9—C14121.3 (2)C13—C14—H14119.00
C5—S1—C6—N4178.0 (3)N5—N4—C6—N30.3 (3)
C6—S1—C5—N20.6 (2)N5—N4—C6—S1178.5 (2)
C6—S1—C5—C4178.2 (2)C6—N4—N5—C70.5 (3)
C5—S1—C6—N30.21 (18)N4—N5—C7—N30.4 (3)
C8—S2—C7—N5104.8 (3)N4—N5—C7—S2178.5 (2)
C8—S2—C7—N376.5 (2)C1—C2—C3—C4178.8 (3)
C7—S2—C8—C958.4 (2)O1—C2—C3—C40.1 (3)
N1—O1—C2—C1179.0 (2)C2—C3—C4—C5178.1 (3)
C2—O1—N1—C40.2 (3)C2—C3—C4—N10.1 (3)
N1—O1—C2—C30.1 (3)C3—C4—C5—N25.1 (4)
O1—N1—C4—C30.1 (3)N1—C4—C5—S15.5 (3)
O1—N1—C4—C5178.5 (2)N1—C4—C5—N2176.9 (2)
C5—N2—N3—C61.3 (3)C3—C4—C5—S1172.5 (2)
N3—N2—C5—C4178.7 (2)S2—C8—C9—C10109.4 (3)
N3—N2—C5—S11.1 (3)S2—C8—C9—C1468.8 (3)
C5—N2—N3—C7178.4 (3)C8—C9—C10—C11178.1 (3)
N2—N3—C7—S21.4 (4)C14—C9—C10—C110.2 (5)
N2—N3—C6—N4177.8 (2)C8—C9—C14—C13177.4 (3)
C6—N3—C7—N50.2 (3)C10—C9—C14—C131.0 (5)
C7—N3—C6—N40.1 (3)C9—C10—C11—C121.0 (6)
C7—N3—C6—S1178.79 (17)C10—C11—C12—C131.6 (6)
N2—N3—C6—S10.9 (3)C11—C12—C13—C140.9 (6)
N2—N3—C7—N5177.6 (3)C12—C13—C14—C90.4 (6)
C6—N3—C7—S2178.7 (2)

Experimental details

Crystal data
Chemical formulaC14H11N5OS2
Mr329.40
Crystal system, space groupOrthorhombic, Pca21
Temperature (K)296
a, b, c (Å)16.271 (5), 5.3804 (13), 16.700 (4)
V3)1462.0 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.37
Crystal size (mm)0.50 × 0.45 × 0.30
Data collection
DiffractometerBruker Kappa APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 1999)
Tmin, Tmax0.836, 0.896
No. of measured, independent and
observed [I > 2σ(I)] reflections
10433, 3117, 2905
Rint0.027
(sin θ/λ)max1)0.669
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.077, 1.08
No. of reflections3117
No. of parameters200
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.20
Absolute structureFlack (1983)
Absolute structure parameter0.02 (2)

Computer programs: APEX2 (Bruker, 2004), APEX2 and SAINT (Bruker, 2004), SAINT and XPREP (Bruker, 2004), SIR92 (Altomare et al., 1993), SHELXL2014 (Sheldrick, 2015), ORTEP-3 for Windows (Farrugia, 2012), WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

 

Acknowledgements

We are thankful to the Director N.I.T. Warangal for providing research facilities. KV express thanks to University Grants Commission–New Delhi (UGC) for a Senior Research Fellowship. The authors are thankful to SAIF–KOCHI–Cochin University, India, for providing the single crystal X-ray data.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBhat, K., Prasad, D., Poojary, B. & Holla, B. (2004). Phosphorus Sulfur Silicon, 179, 1595–1603.  Web of Science CrossRef CAS Google Scholar
First citationBruker (1999). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDinçer, M., Özdemir, N., Çetin, A., Cansız, A. & Büyükgüngör, O. (2005). Acta Cryst. C61, o665–o667.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarghaly, A. R., De Clercq, E. & El-Kashef, H. (2006). Arkivoc, (x), 137–151.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHabib, N. S., Soliman, R., Ashour, F. A. & el-Taiebi, M. (1997). Pharmazie, 52, 844–847.  CAS PubMed Web of Science Google Scholar
First citationKamal, A., Bharathi, E. V., Reddy, J. S., Ramaiah, M. J., Dastagiri, D., Reddy, M. K., Viswanath, A., Reddy, T. L., Shaik, T. B., Pushpavalli, S. N. & Bhadra, M. P. (2011). Eur. J. Med. Chem. 46, 691–703.  Web of Science CrossRef CAS PubMed Google Scholar
First citationKhalil, M. A., Raslan, M. A., Dawood, K. M. K. M. & Sayed, S. M. (1999). Heterocycl. Commun. 5, 463–472.  CrossRef CAS Google Scholar
First citationKuz'min, V. E., Artemenko, A. G., Muratov, E. N., Volineckaya, I. L., Makarov, V. A., Riabova, O. B., Wutzler, P. & Schmidtke, M. (2007). J. Med. Chem. 50, 4205–4213.  Web of Science PubMed CAS Google Scholar
First citationLilienkampf, A., Pieroni, M., Wan, B., Wang, Y., Franzblau, S. G. & Kozikowski, A. P. (2010). J. Med. Chem. 53, 678–688.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSingh, R. J. & Singh, D. K. (2009). S. Afr. J. Chem. 62, 105–108.  CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVaarla, K. & Rao, V. R. (2014). J. Heterocycl. Chem. doi:10.1002/jhet.2168.  Google Scholar
First citationYermolina, M. V., Wang, J., Caffrey, M., Rong, L. L. & Wardrop, D. J. (2011). J. Med. Chem. 54, 765–781.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds