organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of ethyl 2-phenyl-4-(prop-2-yn-1-yl­­oxy)-5,6,7,8-tetra­hydro­pyrido[4′,3′:4,5]thieno[2,3-d]pyrimidine-7-carboxyl­ate

aDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, bDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA, cChemistry and Environmental Division, Manchester Metropolitan University, Manchester M1 5GD, England, dChemistry Department, Faculty of Science, Minia University, 61519 El-Minia, Egypt, and eKirkuk University, College of Science, Department of Chemistry, Kirkuk, Iraq
*Correspondence e-mail: shaabankamel@yahoo.com

Edited by E. R. T. Tiekink, University of Malaya, Malaysia (Received 22 September 2015; accepted 2 October 2015; online 10 October 2015)

In the title compound, C21H19N3O3S, the 5,6,7,8-tetra­hydro­pyridine ring adopts a half-chair conformation. The fused-thieno[2,3-d]pyrimidine ring system is essentially planar (r.m.s. deviation = 0.001 Å) and forms a dihedral angle of 2.66 (6)° with the attached phenyl ring. The three-dimensional crystal packing is stabilized by C—H⋯O and C—H⋯N hydrogen bonds and C—H⋯π inter­actions.

1. Related literature

For general chemistry background to heterocyclic thieno[2,3-d]pyrimidines, see: Litvinov (2004[Litvinov, V. P. (2004). Izvest. Akad. Nauk SSSR, 3, 463-490.]). For the diversity of biological activities of thieno-pyrimidine derivatives, see: Nasr & Gineinah (2002[Nasr, M. N. & Gineinah, M. M. (2002). Arch. Pharm. Pharm. Med. Chem. 335, 289-295.]); Bhuiyan et al. (2005[Bhuiyan, M. M. H., Rahman, K. M. M., Hossain, M. I., Naser, M. A. & Shumi, W. (2005). J. Appl. Sci. Res. 1, 218-222.]); Chambhare et al. (2003[Chambhare, R. V., Khadse, B. G., Bobde, A. S. & Bahekar, R. H. (2003). Eur. J. Med. Chem. 38, 89-100.]); Alagarsamy et al. (2006[Alagarsamy, V., Meena, S., Ramseshu, K. V., Solomon, V. R., Thirumurugan, K., Dhanabal, K. & Murugan, M. (2006). Eur. J. Med. Chem. 41, 1293-1300.]). Kapustina et al. (1992[Kapustina, M. V., Kharizomenova, I. A., Shvedov, V. I., Radkevich, T. P. & Shipilova, L. D. (1992). Pharm. Chem. J. 26, 73-75.]). For related structures, see: Liu et al. (2005[Liu, J.-C., Chen, H.-L., Chen, T., He, H.-W. & Ding, M.-W. (2005). Acta Cryst. E61, o3187-o3189.]); Ren et al. (2006[Ren, Q.-Y., He, H.-W. & Meng, X.-G. (2006). Acta Cryst. E62, o5029-o5031.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C21H19N3O3S

  • Mr = 393.45

  • Monoclinic, P 21 /n

  • a = 13.143 (2) Å

  • b = 8.013 (2) Å

  • c = 17.880 (2) Å

  • β = 96.129 (14)°

  • V = 1872.3 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.20 mm−1

  • T = 296 K

  • 0.28 × 0.14 × 0.08 mm

2.2. Data collection

  • Agilent Xcalibur, Eos, Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.]) Tmin = 0.834, Tmax = 1.000

  • 14345 measured reflections

  • 6319 independent reflections

  • 4721 reflections with I > 2σ(I)

  • Rint = 0.032

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.117

  • S = 1.04

  • 6319 reflections

  • 254 parameters

  • H-atom parameters constrained

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg4 are the centroids of the S1,C9–C11/C15 and C1–C6 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14A⋯O2i 0.97 2.44 3.294 (2) 146
C21—H21⋯N2ii 0.93 2.55 3.418 (2) 156
C12—H12BCg4iii 0.97 2.80 3.6643 (17) 149
C19—H19ACg1iv 0.97 2.92 3.6736 (18) 136
Symmetry codes: (i) [-x-{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{5\over 2}}]; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) -x, -y+1, -z+2; (iv) -x, -y, -z+2.

Data collection: CrysAlis PRO (Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS2014 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Thieno[2,3-d]pyrimidines are a large group of heterocyclic compounds (Litvinov, 2004), and some of them showed antiviral (Nasr & Gineinah, 2002), antimicrobial (Bhuiyan et al., 2005; Chambhare et al., 2003), and antibacterial properties (Alagarsamy et al., 2006). Fused tri- and tetracyclic thieno[2,3-d]pyrimidin-4-ones are synthesized by many methods and among them some compounds have fungicidal, antibacterial, and anti-inflammatory activities (Kapustina et al., 1992). In this context, and following to our on-going study of bio-active molecules, we report here the synthesis and crystal structure of the title compound.

In the title compound (Fig. 1), the 5,6,7,8-tetrahydropyridine ring (N3/C11/-C15) adopts a half-chair conformation [the puckering parameters are QT = 0.4662 (14) Å, θ = 50.06 (17) ° and φ = 30.8 (2) °]. The fused-thieno[2,3-d]pyrimidine ring system (S1/N1/N2C7-C11/C15) is essentially planar (r.m.s. deviation = 0.001 Å) and forms a dihedral angle of 2.66 (6)° with the attached phenyl ring (C1–C6). The C8–O1–C19–C20, C13–N3–C16–O2 and N3–C16–O3–C17 torsion angles are -166.90 (12), -174.90 (13) and 179.78 (12)°, respectively. All bond lengths and angles in the title molecule are normal and comparable with those previously reported for related structures (Liu et al., 2005; Ren et al., 2006).

In the crystal, molecules are linked by C—H···O, C—H···N and C—H···π hydrogen bonds, forming a three dimensional network (Fig. 2 & Table 1).

Related literature top

For general chemistry background to heterocyclic thieno[2,3-d]pyrimidines, see: Litvinov (2004). For the diversity of biological activities of thieno-pyrimidine derivatives, see: Nasr & Gineinah (2002); Bhuiyan et al. (2005); Chambhare et al. (2003); Alagarsamy et al. (2006). Kapustina et al. (1992). For related structures, see: Liu et al. (2005); Ren et al. (2006).

Experimental top

Propargyl bromide (1.1 g, 9 mmol) was added to a suspension of ethyl 4-hydroxy-2-phenyl-5,6-dihydropyrido[4',3':4,5]thieno[2,3-d]pyrimidine-7(8H)-carboxylate (1.07 g, 3 mmol) and K2CO3 (0.82 g, 6 mmol) in DMF (15 ml), and stirred at room temperature for 6 h. The excess solvent was evaporated to dryness in vacuo. The residue was diluted with water and then extracted with CH2Cl2 (3 x 30 ml). The combined organic extracts were dried over anhydrous Na2SO4, filtered and evaporated under reduced pressure to give colourless crystals in a sufficient quality for X-ray diffraction.

Refinement top

All H atoms were positioned geometrically and constrained to ride on their parent atoms (C—H = 0.93–0.97 Å) with Uiso(H) = 1.2 or 1.5 Ueq(C). The (-2 3 10), (6 1 24), (5 11 4), (-3 1 17), (-14 8 5), (6 5 11), (11 3 8) and (-3 4 24) reflections were omitted owing to very bad agreement.

Structure description top

Thieno[2,3-d]pyrimidines are a large group of heterocyclic compounds (Litvinov, 2004), and some of them showed antiviral (Nasr & Gineinah, 2002), antimicrobial (Bhuiyan et al., 2005; Chambhare et al., 2003), and antibacterial properties (Alagarsamy et al., 2006). Fused tri- and tetracyclic thieno[2,3-d]pyrimidin-4-ones are synthesized by many methods and among them some compounds have fungicidal, antibacterial, and anti-inflammatory activities (Kapustina et al., 1992). In this context, and following to our on-going study of bio-active molecules, we report here the synthesis and crystal structure of the title compound.

In the title compound (Fig. 1), the 5,6,7,8-tetrahydropyridine ring (N3/C11/-C15) adopts a half-chair conformation [the puckering parameters are QT = 0.4662 (14) Å, θ = 50.06 (17) ° and φ = 30.8 (2) °]. The fused-thieno[2,3-d]pyrimidine ring system (S1/N1/N2C7-C11/C15) is essentially planar (r.m.s. deviation = 0.001 Å) and forms a dihedral angle of 2.66 (6)° with the attached phenyl ring (C1–C6). The C8–O1–C19–C20, C13–N3–C16–O2 and N3–C16–O3–C17 torsion angles are -166.90 (12), -174.90 (13) and 179.78 (12)°, respectively. All bond lengths and angles in the title molecule are normal and comparable with those previously reported for related structures (Liu et al., 2005; Ren et al., 2006).

In the crystal, molecules are linked by C—H···O, C—H···N and C—H···π hydrogen bonds, forming a three dimensional network (Fig. 2 & Table 1).

For general chemistry background to heterocyclic thieno[2,3-d]pyrimidines, see: Litvinov (2004). For the diversity of biological activities of thieno-pyrimidine derivatives, see: Nasr & Gineinah (2002); Bhuiyan et al. (2005); Chambhare et al. (2003); Alagarsamy et al. (2006). Kapustina et al. (1992). For related structures, see: Liu et al. (2005); Ren et al. (2006).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2014); cell refinement: CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis PRO (Agilent, 2014); program(s) used to solve structure: SHELXS2014 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the title compound with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level.
[Figure 2] Fig. 2. The molecular packing viewed down a axis. H atoms not involved in H bonding are omitted for clarity.
Ethyl 2-phenyl-4-(prop-2-yn-1-yloxy)-5,6,7,8-tetrahydropyrido[4',3':4,5]thieno[2,3-d]pyrimidine-7-carboxylate top
Crystal data top
C21H19N3O3SF(000) = 824
Mr = 393.45Dx = 1.396 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2782 reflections
a = 13.143 (2) Åθ = 3.7–32.7°
b = 8.013 (2) ŵ = 0.20 mm1
c = 17.880 (2) ÅT = 296 K
β = 96.129 (14)°Prism, colourless
V = 1872.3 (6) Å30.28 × 0.14 × 0.08 mm
Z = 4
Data collection top
Agilent Xcalibur, Eos, Gemini
diffractometer
6319 independent reflections
Radiation source: Enhance (Mo) X-ray Source4721 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
Detector resolution: 16.0416 pixels mm-1θmax = 33.1°, θmin = 3.1°
ω scansh = 1619
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2014)
k = 115
Tmin = 0.834, Tmax = 1.000l = 2526
14345 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.117 w = 1/[σ2(Fo2) + (0.0488P)2 + 0.4469P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
6319 reflectionsΔρmax = 0.35 e Å3
254 parametersΔρmin = 0.31 e Å3
Crystal data top
C21H19N3O3SV = 1872.3 (6) Å3
Mr = 393.45Z = 4
Monoclinic, P21/nMo Kα radiation
a = 13.143 (2) ŵ = 0.20 mm1
b = 8.013 (2) ÅT = 296 K
c = 17.880 (2) Å0.28 × 0.14 × 0.08 mm
β = 96.129 (14)°
Data collection top
Agilent Xcalibur, Eos, Gemini
diffractometer
6319 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2014)
4721 reflections with I > 2σ(I)
Tmin = 0.834, Tmax = 1.000Rint = 0.032
14345 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.117H-atom parameters constrained
S = 1.04Δρmax = 0.35 e Å3
6319 reflectionsΔρmin = 0.31 e Å3
254 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > 2sigma(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.00878 (3)0.26271 (5)1.21398 (2)0.0319 (1)
O10.08120 (7)0.17676 (13)0.94088 (4)0.0274 (3)
O20.38389 (8)0.19716 (14)1.25060 (6)0.0369 (3)
O30.45126 (7)0.06635 (13)1.14545 (5)0.0325 (3)
N10.06668 (8)0.31874 (14)0.98114 (5)0.0249 (3)
N20.11346 (8)0.37095 (15)1.11181 (6)0.0276 (3)
N30.28451 (9)0.03958 (16)1.18227 (6)0.0314 (3)
C10.24352 (11)0.48532 (17)0.94671 (7)0.0307 (4)
C20.33262 (12)0.5631 (2)0.93051 (8)0.0366 (4)
C30.40123 (11)0.6245 (2)0.98760 (9)0.0371 (4)
C40.38043 (11)0.6085 (2)1.06113 (8)0.0371 (4)
C50.29176 (10)0.5315 (2)1.07789 (8)0.0335 (4)
C60.22226 (10)0.46768 (16)1.02092 (7)0.0263 (3)
C70.12892 (9)0.38147 (16)1.03956 (7)0.0250 (3)
C80.01623 (9)0.23971 (16)0.99661 (6)0.0235 (3)
C90.04163 (9)0.21700 (16)1.07030 (6)0.0232 (3)
C100.02839 (10)0.28884 (17)1.12482 (7)0.0262 (3)
C110.12525 (9)0.13753 (16)1.10142 (6)0.0242 (3)
C120.21248 (10)0.04461 (17)1.06005 (7)0.0258 (3)
C130.26836 (11)0.05731 (18)1.11502 (7)0.0313 (4)
C140.19118 (10)0.0880 (2)1.22777 (7)0.0316 (4)
C150.11712 (10)0.15527 (17)1.17729 (7)0.0266 (3)
C160.37375 (10)0.10798 (17)1.19685 (7)0.0283 (3)
C170.54903 (11)0.1367 (2)1.15901 (9)0.0382 (4)
C180.62591 (13)0.0838 (2)1.09628 (10)0.0491 (6)
C190.05720 (10)0.20882 (18)0.86513 (6)0.0279 (3)
C200.14696 (11)0.1659 (2)0.81452 (7)0.0336 (4)
C210.21842 (12)0.1381 (3)0.77141 (9)0.0533 (6)
H10.197600.444600.907800.0370*
H20.346300.574000.880800.0440*
H30.461100.676300.976500.0450*
H40.426500.649901.099800.0440*
H50.278300.522101.127700.0400*
H12A0.186900.029101.023300.0310*
H12B0.259600.123001.033500.0310*
H13A0.334000.093101.090300.0380*
H13B0.228700.156301.129800.0380*
H14A0.161700.007901.255300.0380*
H14B0.206100.172501.263900.0380*
H17A0.544600.257501.160900.0460*
H17B0.568700.097001.206600.0460*
H18A0.691800.128001.104200.0740*
H18B0.629300.035901.094600.0740*
H18C0.606200.125001.049500.0740*
H19A0.000700.141600.854100.0330*
H19B0.040000.325500.859400.0330*
H210.275200.115900.737200.0640*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0328 (2)0.0447 (2)0.0173 (1)0.0006 (2)0.0014 (1)0.0032 (1)
O10.0298 (4)0.0363 (5)0.0155 (4)0.0005 (4)0.0002 (3)0.0024 (3)
O20.0381 (5)0.0412 (6)0.0326 (5)0.0020 (4)0.0090 (4)0.0131 (4)
O30.0330 (5)0.0359 (5)0.0287 (4)0.0009 (4)0.0033 (4)0.0053 (4)
N10.0258 (5)0.0280 (5)0.0201 (4)0.0051 (4)0.0008 (4)0.0011 (4)
N20.0279 (5)0.0330 (6)0.0211 (5)0.0039 (4)0.0013 (4)0.0016 (4)
N30.0328 (6)0.0374 (6)0.0243 (5)0.0000 (5)0.0051 (4)0.0073 (5)
C10.0387 (7)0.0254 (6)0.0279 (6)0.0036 (5)0.0028 (5)0.0028 (5)
C20.0459 (8)0.0332 (7)0.0326 (7)0.0015 (6)0.0125 (6)0.0016 (6)
C30.0333 (7)0.0321 (7)0.0469 (8)0.0025 (6)0.0090 (6)0.0037 (6)
C40.0317 (7)0.0403 (8)0.0375 (7)0.0004 (6)0.0039 (6)0.0015 (6)
C50.0310 (6)0.0402 (8)0.0283 (6)0.0006 (6)0.0017 (5)0.0014 (6)
C60.0280 (6)0.0240 (6)0.0264 (6)0.0073 (5)0.0002 (5)0.0005 (5)
C70.0260 (6)0.0258 (6)0.0225 (5)0.0078 (5)0.0012 (4)0.0015 (4)
C80.0267 (6)0.0248 (6)0.0179 (5)0.0075 (5)0.0023 (4)0.0019 (4)
C90.0251 (6)0.0250 (6)0.0186 (5)0.0072 (4)0.0012 (4)0.0010 (4)
C100.0277 (6)0.0317 (7)0.0184 (5)0.0063 (5)0.0018 (4)0.0008 (4)
C110.0272 (6)0.0244 (6)0.0203 (5)0.0072 (5)0.0006 (4)0.0018 (4)
C120.0284 (6)0.0275 (6)0.0211 (5)0.0052 (5)0.0006 (4)0.0049 (4)
C130.0381 (7)0.0292 (7)0.0272 (6)0.0001 (6)0.0064 (5)0.0071 (5)
C140.0351 (7)0.0395 (8)0.0204 (5)0.0013 (6)0.0035 (5)0.0010 (5)
C150.0287 (6)0.0302 (6)0.0200 (5)0.0051 (5)0.0009 (4)0.0012 (5)
C160.0351 (7)0.0268 (6)0.0237 (5)0.0031 (5)0.0066 (5)0.0002 (5)
C170.0355 (7)0.0382 (8)0.0408 (7)0.0040 (6)0.0034 (6)0.0029 (6)
C180.0413 (9)0.0483 (10)0.0556 (10)0.0036 (8)0.0050 (7)0.0020 (8)
C190.0304 (6)0.0355 (7)0.0173 (5)0.0013 (5)0.0006 (4)0.0012 (5)
C200.0339 (7)0.0465 (8)0.0203 (5)0.0003 (6)0.0028 (5)0.0047 (5)
C210.0351 (8)0.0966 (16)0.0278 (7)0.0078 (9)0.0016 (6)0.0129 (8)
Geometric parameters (Å, º) top
S1—C101.7292 (14)C11—C151.3568 (17)
S1—C151.7319 (14)C12—C131.5253 (19)
O1—C81.3397 (15)C14—C151.4968 (19)
O1—C191.4461 (14)C17—C181.489 (2)
O2—C161.2163 (17)C19—C201.4495 (19)
O3—C161.3393 (16)C20—C211.171 (2)
O3—C171.4472 (18)C1—H10.9300
N1—C71.3529 (16)C2—H20.9300
N1—C81.3150 (16)C3—H30.9300
N2—C71.3316 (17)C4—H40.9300
N2—C101.3389 (18)C5—H50.9300
N3—C131.4657 (18)C12—H12A0.9700
N3—C141.4505 (18)C12—H12B0.9700
N3—C161.3451 (18)C13—H13A0.9700
C1—C21.384 (2)C13—H13B0.9700
C1—C61.3921 (18)C14—H14A0.9700
C2—C31.379 (2)C14—H14B0.9700
C3—C41.377 (2)C17—H17A0.9700
C4—C51.380 (2)C17—H17B0.9700
C5—C61.3910 (19)C18—H18A0.9600
C6—C71.4767 (18)C18—H18B0.9600
C8—C91.4052 (16)C18—H18C0.9600
C9—C101.3918 (18)C19—H19A0.9700
C9—C111.4330 (17)C19—H19B0.9700
C11—C121.4949 (18)C21—H210.9300
C10—S1—C1590.73 (6)C2—C1—H1120.00
C8—O1—C19116.38 (10)C6—C1—H1120.00
C16—O3—C17114.33 (11)C1—C2—H2120.00
C7—N1—C8117.57 (10)C3—C2—H2120.00
C7—N2—C10114.61 (11)C2—C3—H3120.00
C13—N3—C14114.45 (11)C4—C3—H3120.00
C13—N3—C16125.49 (11)C3—C4—H4120.00
C14—N3—C16119.01 (11)C5—C4—H4120.00
C2—C1—C6120.37 (13)C4—C5—H5120.00
C1—C2—C3120.45 (13)C6—C5—H5120.00
C2—C3—C4119.53 (14)C11—C12—H12A110.00
C3—C4—C5120.49 (14)C11—C12—H12B110.00
C4—C5—C6120.62 (13)C13—C12—H12A110.00
C1—C6—C5118.54 (12)C13—C12—H12B110.00
C1—C6—C7121.25 (12)H12A—C12—H12B108.00
C5—C6—C7120.21 (12)N3—C13—H13A109.00
N1—C7—N2125.67 (11)N3—C13—H13B109.00
N1—C7—C6116.61 (11)C12—C13—H13A109.00
N2—C7—C6117.71 (11)C12—C13—H13B109.00
O1—C8—N1120.10 (10)H13A—C13—H13B108.00
O1—C8—C9116.89 (11)N3—C14—H14A110.00
N1—C8—C9123.01 (11)N3—C14—H14B110.00
C8—C9—C10113.43 (11)C15—C14—H14A110.00
C8—C9—C11133.67 (11)C15—C14—H14B110.00
C10—C9—C11112.89 (10)H14A—C14—H14B108.00
S1—C10—N2122.89 (10)O3—C17—H17A110.00
S1—C10—C9111.40 (10)O3—C17—H17B110.00
N2—C10—C9125.70 (11)C18—C17—H17A110.00
C9—C11—C12127.49 (10)C18—C17—H17B110.00
C9—C11—C15111.09 (11)H17A—C17—H17B109.00
C12—C11—C15121.42 (11)C17—C18—H18A110.00
C11—C12—C13110.15 (10)C17—C18—H18B109.00
N3—C13—C12111.52 (12)C17—C18—H18C110.00
N3—C14—C15108.88 (10)H18A—C18—H18B109.00
S1—C15—C11113.87 (10)H18A—C18—H18C109.00
S1—C15—C14120.79 (9)H18B—C18—H18C109.00
C11—C15—C14125.33 (12)O1—C19—H19A110.00
O2—C16—O3123.30 (12)O1—C19—H19B110.00
O2—C16—N3124.33 (12)C20—C19—H19A110.00
O3—C16—N3112.37 (11)C20—C19—H19B110.00
O3—C17—C18107.83 (13)H19A—C19—H19B108.00
O1—C19—C20107.35 (11)C20—C21—H21180.00
C19—C20—C21176.57 (18)
C10—S1—C15—C110.63 (11)C2—C3—C4—C50.1 (2)
C15—S1—C10—N2179.24 (12)C3—C4—C5—C60.5 (2)
C15—S1—C10—C90.26 (11)C4—C5—C6—C7178.35 (13)
C10—S1—C15—C14179.45 (12)C4—C5—C6—C10.9 (2)
C19—O1—C8—N13.14 (17)C1—C6—C7—N2179.40 (12)
C8—O1—C19—C20166.90 (12)C5—C6—C7—N1178.14 (13)
C19—O1—C8—C9176.72 (11)C1—C6—C7—N11.06 (18)
C17—O3—C16—N3179.78 (12)C5—C6—C7—N21.40 (19)
C16—O3—C17—C18178.23 (12)O1—C8—C9—C110.2 (2)
C17—O3—C16—O20.06 (19)N1—C8—C9—C101.12 (19)
C8—N1—C7—C6179.19 (11)O1—C8—C9—C10178.73 (11)
C7—N1—C8—C90.62 (19)N1—C8—C9—C11179.97 (14)
C8—N1—C7—N20.3 (2)C8—C9—C10—N20.8 (2)
C7—N1—C8—O1179.22 (11)C8—C9—C10—S1178.11 (9)
C10—N2—C7—C6178.91 (12)C8—C9—C11—C15177.42 (14)
C10—N2—C7—N10.58 (19)C10—C9—C11—C12178.29 (13)
C7—N2—C10—S1178.78 (10)C10—C9—C11—C151.50 (16)
C7—N2—C10—C90.1 (2)C8—C9—C11—C122.8 (2)
C14—N3—C16—O27.3 (2)C11—C9—C10—N2180.00 (13)
C13—N3—C16—O2174.90 (13)C11—C9—C10—S11.04 (15)
C14—N3—C16—O3172.98 (12)C9—C11—C15—C14179.93 (12)
C13—N3—C14—C1546.00 (16)C12—C11—C15—S1178.50 (10)
C13—N3—C16—O35.37 (19)C15—C11—C12—C1314.47 (17)
C14—N3—C13—C1264.08 (15)C9—C11—C15—S11.31 (15)
C16—N3—C13—C12104.02 (15)C9—C11—C12—C13165.30 (13)
C16—N3—C14—C15122.93 (13)C12—C11—C15—C140.3 (2)
C6—C1—C2—C30.2 (2)C11—C12—C13—N344.25 (15)
C2—C1—C6—C7178.48 (13)N3—C14—C15—S1166.88 (10)
C2—C1—C6—C50.7 (2)N3—C14—C15—C1114.4 (2)
C1—C2—C3—C40.2 (2)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg4 are the centroids of the S1,C9–C11/C15 and C1–C6 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C1—H1···N10.932.492.8050 (19)100
C5—H5···N20.932.472.7961 (19)101
C13—H13A···O30.972.302.7085 (19)104
C14—H14A···O2i0.972.443.294 (2)146
C14—H14B···O20.972.332.7509 (19)105
C21—H21···N2ii0.932.553.418 (2)156
C12—H12B···Cg4iii0.972.803.6643 (17)149
C19—H19A···Cg1iv0.972.923.6736 (18)136
Symmetry codes: (i) x1/2, y1/2, z+5/2; (ii) x1/2, y+1/2, z1/2; (iii) x, y+1, z+2; (iv) x, y, z+2.
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg4 are the centroids of the S1,C9–C11/C15 and C1–C6 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C14—H14A···O2i0.972.443.294 (2)146
C21—H21···N2ii0.932.553.418 (2)156
C12—H12B···Cg4iii0.972.803.6643 (17)149
C19—H19A···Cg1iv0.972.923.6736 (18)136
Symmetry codes: (i) x1/2, y1/2, z+5/2; (ii) x1/2, y+1/2, z1/2; (iii) x, y+1, z+2; (iv) x, y, z+2.
 

Acknowledgements

JPJ acknowledges the NSF–MRI program (grant No·CHE-1039027) for funds to purchase the X-ray diffractometer.

References

First citationAgilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.  Google Scholar
First citationAlagarsamy, V., Meena, S., Ramseshu, K. V., Solomon, V. R., Thirumurugan, K., Dhanabal, K. & Murugan, M. (2006). Eur. J. Med. Chem. 41, 1293–1300.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBhuiyan, M. M. H., Rahman, K. M. M., Hossain, M. I., Naser, M. A. & Shumi, W. (2005). J. Appl. Sci. Res. 1, 218–222.  Google Scholar
First citationChambhare, R. V., Khadse, B. G., Bobde, A. S. & Bahekar, R. H. (2003). Eur. J. Med. Chem. 38, 89–100.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKapustina, M. V., Kharizomenova, I. A., Shvedov, V. I., Radkevich, T. P. & Shipilova, L. D. (1992). Pharm. Chem. J. 26, 73–75.  CrossRef Google Scholar
First citationLitvinov, V. P. (2004). Izvest. Akad. Nauk SSSR, 3, 463–490.  Google Scholar
First citationLiu, J.-C., Chen, H.-L., Chen, T., He, H.-W. & Ding, M.-W. (2005). Acta Cryst. E61, o3187–o3189.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNasr, M. N. & Gineinah, M. M. (2002). Arch. Pharm. Pharm. Med. Chem. 335, 289–295.  Web of Science CrossRef CAS Google Scholar
First citationRen, Q.-Y., He, H.-W. & Meng, X.-G. (2006). Acta Cryst. E62, o5029–o5031.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds