organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 2-(4-chloro­benzamido)­benzoic acid

aDepartamento de Química - Facultad de Ciencias Naturales y Exactas, Universidad del Valle, Apartado 25360, Santiago de Cali, Colombia, and bInstituto de Física de São Carlos, IFSC, Universidade de São Paulo, USP, São Carlos, SP, Brazil
*Correspondence e-mail: rodimo26@yahoo.es

Edited by E. R. T. Tiekink, University of Malaya, Malaysia (Received 22 September 2015; accepted 23 September 2015; online 17 October 2015)

In the title mol­ecule, C14H10ClNO3, the amide C=O bond is anti to the o-carb­oxy substituent in the adjacent benzene ring, a conformation that facilitates the formation of an intra­molecular amide-N—H⋯O(carbon­yl) hydrogen bond that closes an S(6) loop. The central amide segment is twisted away from the carb­oxy- and chloro-substituted benzene rings by 13.93 (17) and 15.26 (15)°, respectively. The most prominent supra­molecular inter­actions in the crystal packing are carb­oxy­lic acid-H⋯O(carbox­yl) hydrogen bonds that lead to centrosymmetric dimeric aggregates connected by eight-membered {⋯HOC=O}2 synthons.

1. Related literature

For our studies on the effects of substituents on the structures of N-(ar­yl)-amides, see: Moreno-Fuquen et al. (2014[Moreno-Fuquen, R., Azcárate, A. & Kennedy, A. R. (2014). Acta Cryst. E70, o344.], 2015[Moreno-Fuquen, R., Azcárate, A. & Kennedy, A. R. (2015). Acta Cryst. E71, o389-o390.]). For benzanilide properties, see: Nuta et al. (2013[Nuta, D. C., Chifiriuc, A. C., Draghici, C., Limban, C., Missir, A. V. & Morusciag, L. (2013). Farmacia (Bucarest), 61, 966-974.]); Leander (1992[Leander, J. D. (1992). Epilepsia, 33, 705-711.]); Ahles et al. (2004[Ahles, T. A., Herndon, J. E., Small, E. J., Vogelzang, N. J., Kornblith, A. B., Ratain, M. J., Stadler, W. S., Palchak, D., Marshall, E., Wilding, G., Petrylak, D. & Holland, C. (2004). Cancer, 101, 2202-2208.]). For related structures, see: Saeed et al. (2008[Saeed, A., Khera, R. A., Abbas, N., Gotoh, K. & Ishida, H. (2008). Acta Cryst. E64, o2043.], 2010[Saeed, A., Khera, R. A. & Simpson, J. (2010). Acta Cryst. E66, o214.]); Rodrigues et al. (2011[Rodrigues, V. Z., Kucková, L., Gowda, B. T. & Kožíšek, J. (2011). Acta Cryst. E67, o3171.]). For hydrogen bonding, see: Desiraju & Steiner (1999[Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond. Oxford University Press, pp. 86-89.]), Nardelli (1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C14H10ClNO3

  • Mr = 275.69

  • Monoclinic C 2/c

  • a = 26.8843 (10) Å

  • b = 5.0367 (2) Å

  • c = 20.9264 (12) Å

  • β = 117.489 (2)°

  • V = 2513.7 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.31 mm−1

  • T = 295 K

  • 0.40 × 0.08 × 0.06 mm

2.2. Data collection

  • Nonius KappaCCD diffractometer

  • 4248 measured reflections

  • 2295 independent reflections

  • 1049 reflections with I > 2σ(I)

  • Rint = 0.057

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.132

  • S = 0.92

  • 2295 reflections

  • 176 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—NH1⋯O2 0.93 (3) 1.96 (3) 2.678 (3) 133 (3)
O3—OH3⋯O2i 0.82 1.83 2.645 (3) 175
Symmetry code: (i) [-x+{\script{3\over 2}}, -y+{\script{3\over 2}}, -z+1].

Data collection: COLLECT (Nonius, 2000[Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: HKL SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: HKL DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXL2014/7.

Supporting information


Comment top

The crystal structure determination of 2-(4-chlorobenzamido)benzoic acid, (I), was investigated in a continuation of our studies on substituted N-phenyl benzamides which have been synthesized from picryl esters. This study was also performed to study the effect of substituents on the structures of benzanilides (Moreno-Fuquen et al., 2014, 2015). Benzanilide systems are used as antimicrobial drugs (Nuta et al., 2013), as anticonvulsants (Leander, 1992) or as treatment for patients with prostate carcinoma (Ahles et al., 2004). Structures of similar molecules were compared with (I), i.e. 4-chloro-N-(2-methoxyphenyl)benzamide (Saeed et al., 2010), 4-chloro-N-phenylbenzamide (Rodrigues et al., 2011) and 4-chloro-N-(o-tolyl)benzamide (Saeed et al., 2008). The molecular structure of (I) is shown in Fig. 1. The CO bond is anti to the o-carboxy substituent in the benzoyl ring. The N—H and C=O bonds in the central amide group are also anti to each other. Comparing (I) with the three aforementioned structures reveals that significant differences in bond lengths and bond angles are not observed. The central amide segment (C1-C7(O1)-N1-C8) is twisted away from the carboxy- and chloro-substituted benzene rings by 13.93 (17) and 15.26 (15)°, respectively. Molecules of (I) are held together by intermolecular O—H···O hydrogen bonds of moderate strength (Desiraju & Steiner, 1999). The O3 atom is linked to O2i atom (i = -x+3/2, -y+3/2, -z+1) with O···O distances of 2.645 (2), (see Table 1, Nardelli, 1995). Except for the presence of hydrogen bonding in the formation of dimer, no other significant intermolecular interactions are observed in the structure.

Related literature top

For our studies on the effects of substituents on the structures of N-(aryl)-amides, see: Moreno-Fuquen et al. (2014, 2015). For benzanilide properties, see: Nuta et al. (2013); Leander (1992); Ahles et al. (2004). For related structures, see: Saeed et al. (2008, 2010); Rodrigues et al. (2011). For hydrogen bonding, see: Desiraju & Steiner (1999), Nardelli (1995).

Experimental top

2,4,6-Trinitrophenyl 4-chlorobenzoate (0.060 g, 0.163 mmol) and 2-carboxyaniline (0.045 g, 0.328 mmol) were dissolved in toluene (15 ml) and stirred for 6 h under reflux. On completion of the reaction part of the solvent was evaporated and a crystalline yellow solid was obtained; m.p. 470 (1) K.

Refinement top

All H-atoms were located in difference Fourier maps and were positioned geometrically [C—H = 0.93 Å] and were refined using a riding-model approximation with Uiso(H) constrained to 1.2Ueq(C). The O-bound H atoms was similarly fixed with O—H = 0.82 Å, and with Uiso(H) constrained to 1.5Ueq(O). The N-bound H atom was found from the Fourier maps and was refined freely.

Structure description top

The crystal structure determination of 2-(4-chlorobenzamido)benzoic acid, (I), was investigated in a continuation of our studies on substituted N-phenyl benzamides which have been synthesized from picryl esters. This study was also performed to study the effect of substituents on the structures of benzanilides (Moreno-Fuquen et al., 2014, 2015). Benzanilide systems are used as antimicrobial drugs (Nuta et al., 2013), as anticonvulsants (Leander, 1992) or as treatment for patients with prostate carcinoma (Ahles et al., 2004). Structures of similar molecules were compared with (I), i.e. 4-chloro-N-(2-methoxyphenyl)benzamide (Saeed et al., 2010), 4-chloro-N-phenylbenzamide (Rodrigues et al., 2011) and 4-chloro-N-(o-tolyl)benzamide (Saeed et al., 2008). The molecular structure of (I) is shown in Fig. 1. The CO bond is anti to the o-carboxy substituent in the benzoyl ring. The N—H and C=O bonds in the central amide group are also anti to each other. Comparing (I) with the three aforementioned structures reveals that significant differences in bond lengths and bond angles are not observed. The central amide segment (C1-C7(O1)-N1-C8) is twisted away from the carboxy- and chloro-substituted benzene rings by 13.93 (17) and 15.26 (15)°, respectively. Molecules of (I) are held together by intermolecular O—H···O hydrogen bonds of moderate strength (Desiraju & Steiner, 1999). The O3 atom is linked to O2i atom (i = -x+3/2, -y+3/2, -z+1) with O···O distances of 2.645 (2), (see Table 1, Nardelli, 1995). Except for the presence of hydrogen bonding in the formation of dimer, no other significant intermolecular interactions are observed in the structure.

For our studies on the effects of substituents on the structures of N-(aryl)-amides, see: Moreno-Fuquen et al. (2014, 2015). For benzanilide properties, see: Nuta et al. (2013); Leander (1992); Ahles et al. (2004). For related structures, see: Saeed et al. (2008, 2010); Rodrigues et al. (2011). For hydrogen bonding, see: Desiraju & Steiner (1999), Nardelli (1995).

Computing details top

Data collection: COLLECT (Nonius, 2000); cell refinement: HKL SCALEPACK (Otwinowski & Minor, 1997); data reduction: HKL DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL2014/7 (Sheldrick, 2015).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitrary radius.
2-(4-Chlorobenzamido)benzoic acid top
Crystal data top
C14H10ClNO3Dx = 1.457 Mg m3
Mr = 275.69Melting point: 470(1) K
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 26.8843 (10) ÅCell parameters from 2553 reflections
b = 5.0367 (2) Åθ = 3.1–25.4°
c = 20.9264 (12) ŵ = 0.31 mm1
β = 117.489 (2)°T = 295 K
V = 2513.7 (2) Å3Needle, yellow
Z = 80.40 × 0.08 × 0.06 mm
F(000) = 1136
Data collection top
Nonius KappaCCD
diffractometer
1049 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.057
Graphite monochromatorθmax = 25.4°, θmin = 3.1°
CCD rotation images, thick slices scansh = 3132
4248 measured reflectionsk = 66
2295 independent reflectionsl = 2524
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.132H atoms treated by a mixture of independent and constrained refinement
S = 0.92 w = 1/[σ2(Fo2) + (0.0632P)2]
where P = (Fo2 + 2Fc2)/3
2295 reflections(Δ/σ)max < 0.001
176 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C14H10ClNO3V = 2513.7 (2) Å3
Mr = 275.69Z = 8
Monoclinic, C2/cMo Kα radiation
a = 26.8843 (10) ŵ = 0.31 mm1
b = 5.0367 (2) ÅT = 295 K
c = 20.9264 (12) Å0.40 × 0.08 × 0.06 mm
β = 117.489 (2)°
Data collection top
Nonius KappaCCD
diffractometer
1049 reflections with I > 2σ(I)
4248 measured reflectionsRint = 0.057
2295 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.132H atoms treated by a mixture of independent and constrained refinement
S = 0.92Δρmax = 0.20 e Å3
2295 reflectionsΔρmin = 0.19 e Å3
176 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.74640 (9)0.2731 (4)0.30942 (12)0.0824 (7)
C50.90834 (14)0.0840 (7)0.34839 (18)0.0786 (9)
H50.92650.18470.32820.094*
C100.58970 (13)0.0955 (6)0.29315 (17)0.0739 (9)
H100.56470.22050.26230.089*
C90.64347 (12)0.0846 (5)0.30083 (15)0.0623 (8)
H90.65430.20080.27500.075*
C20.85453 (13)0.2133 (6)0.40771 (18)0.0766 (9)
H20.83660.31550.42800.092*
C110.57224 (13)0.0750 (6)0.33029 (18)0.0754 (9)
H110.53570.06670.32420.090*
C60.85319 (14)0.1349 (6)0.33124 (17)0.0730 (9)
H60.83440.27160.29930.088*
C30.90974 (14)0.2649 (6)0.42543 (18)0.0801 (10)
H30.92890.40040.45770.096*
C40.93606 (13)0.1173 (7)0.39566 (17)0.0701 (9)
NH10.7536 (13)0.280 (6)0.3758 (17)0.102 (11)*
Cl11.00534 (4)0.1835 (2)0.41722 (6)0.1062 (4)
N10.73632 (10)0.1205 (5)0.35559 (12)0.0592 (7)
O30.67865 (8)0.6206 (3)0.46790 (10)0.0688 (6)
OH30.70150.72860.49490.103*
O20.75129 (8)0.5079 (3)0.45041 (10)0.0641 (6)
C140.70192 (12)0.4755 (5)0.43671 (14)0.0548 (7)
C80.68169 (11)0.1015 (5)0.34751 (14)0.0529 (7)
C70.76554 (12)0.0609 (6)0.33845 (15)0.0599 (7)
C130.66432 (11)0.2748 (5)0.38605 (14)0.0535 (7)
C10.82537 (12)0.0120 (5)0.36030 (15)0.0568 (7)
C120.60946 (12)0.2573 (6)0.37640 (15)0.0664 (8)
H120.59790.37180.40180.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0839 (16)0.0631 (13)0.1073 (17)0.0111 (11)0.0502 (14)0.0225 (12)
C50.075 (2)0.090 (2)0.083 (2)0.0100 (19)0.047 (2)0.004 (2)
C100.063 (2)0.071 (2)0.072 (2)0.0093 (16)0.0174 (18)0.0023 (17)
C90.063 (2)0.0595 (17)0.0591 (19)0.0054 (15)0.0242 (16)0.0031 (15)
C20.066 (2)0.081 (2)0.090 (2)0.0010 (17)0.0417 (18)0.0156 (19)
C110.056 (2)0.083 (2)0.083 (2)0.0118 (18)0.0279 (18)0.0009 (19)
C60.080 (2)0.072 (2)0.074 (2)0.0010 (17)0.0420 (19)0.0089 (16)
C30.066 (2)0.085 (2)0.089 (2)0.0102 (17)0.035 (2)0.0121 (19)
C40.0581 (19)0.083 (2)0.073 (2)0.0059 (17)0.0343 (17)0.0122 (18)
Cl10.0657 (6)0.1390 (9)0.1189 (8)0.0021 (5)0.0469 (6)0.0093 (6)
N10.0576 (16)0.0555 (15)0.0681 (16)0.0068 (13)0.0322 (13)0.0118 (13)
O30.0622 (13)0.0726 (12)0.0763 (13)0.0053 (10)0.0360 (11)0.0183 (11)
O20.0560 (13)0.0685 (12)0.0694 (13)0.0070 (10)0.0304 (11)0.0138 (10)
C140.0581 (19)0.0553 (17)0.0522 (18)0.0026 (15)0.0264 (16)0.0028 (14)
C80.0513 (17)0.0527 (15)0.0506 (16)0.0041 (13)0.0202 (14)0.0055 (14)
C70.068 (2)0.0570 (18)0.0555 (18)0.0000 (16)0.0298 (16)0.0024 (15)
C130.0515 (17)0.0564 (16)0.0514 (17)0.0007 (14)0.0228 (14)0.0040 (14)
C10.0608 (19)0.0581 (17)0.0554 (18)0.0033 (15)0.0302 (16)0.0025 (14)
C120.0564 (19)0.074 (2)0.071 (2)0.0005 (16)0.0314 (16)0.0024 (16)
Geometric parameters (Å, º) top
O1—C71.219 (3)C6—H60.9300
C5—C41.371 (4)C3—C41.360 (4)
C5—C61.379 (4)C3—H30.9300
C5—H50.9300C4—Cl11.734 (3)
C10—C111.378 (4)N1—C71.357 (3)
C10—C91.380 (4)N1—C81.402 (3)
C10—H100.9300N1—NH10.93 (3)
C9—C81.401 (4)O3—C141.315 (3)
C9—H90.9300O3—OH30.8200
C2—C31.378 (4)O2—C141.233 (3)
C2—C11.382 (4)C14—C131.476 (4)
C2—H20.9300C8—C131.406 (4)
C11—C121.373 (4)C7—C11.501 (4)
C11—H110.9300C13—C121.396 (4)
C6—C11.377 (4)C12—H120.9300
C4—C5—C6119.1 (3)C5—C4—Cl1119.4 (3)
C4—C5—H5120.5C7—N1—C8128.6 (3)
C6—C5—H5120.5C7—N1—NH1118 (2)
C11—C10—C9121.4 (3)C8—N1—NH1113 (2)
C11—C10—H10119.3C14—O3—OH3109.5
C9—C10—H10119.3O2—C14—O3121.3 (3)
C10—C9—C8120.0 (3)O2—C14—C13124.4 (3)
C10—C9—H9120.0O3—C14—C13114.3 (3)
C8—C9—H9120.0C9—C8—N1121.3 (3)
C3—C2—C1121.0 (3)C9—C8—C13119.0 (3)
C3—C2—H2119.5N1—C8—C13119.7 (2)
C1—C2—H2119.5O1—C7—N1124.0 (3)
C12—C11—C10119.1 (3)O1—C7—C1120.8 (3)
C12—C11—H11120.5N1—C7—C1115.1 (3)
C10—C11—H11120.5C12—C13—C8119.1 (3)
C1—C6—C5121.5 (3)C12—C13—C14118.3 (3)
C1—C6—H6119.2C8—C13—C14122.6 (3)
C5—C6—H6119.2C6—C1—C2117.9 (3)
C4—C3—C2119.8 (3)C6—C1—C7117.3 (3)
C4—C3—H3120.1C2—C1—C7124.9 (3)
C2—C3—H3120.1C11—C12—C13121.5 (3)
C3—C4—C5120.7 (3)C11—C12—H12119.2
C3—C4—Cl1119.9 (3)C13—C12—H12119.2
C11—C10—C9—C80.4 (4)N1—C8—C13—C141.4 (4)
C9—C10—C11—C120.7 (5)O2—C14—C13—C12179.1 (3)
C4—C5—C6—C10.2 (5)O3—C14—C13—C120.2 (3)
C1—C2—C3—C40.4 (5)O2—C14—C13—C80.8 (4)
C2—C3—C4—C50.4 (5)O3—C14—C13—C8179.9 (2)
C2—C3—C4—Cl1179.4 (2)C5—C6—C1—C20.2 (4)
C6—C5—C4—C30.1 (5)C5—C6—C1—C7179.6 (3)
C6—C5—C4—Cl1179.7 (2)C3—C2—C1—C60.1 (4)
C10—C9—C8—N1178.9 (2)C3—C2—C1—C7179.3 (3)
C10—C9—C8—C130.1 (4)O1—C7—C1—C615.5 (4)
C7—N1—C8—C918.7 (4)N1—C7—C1—C6166.6 (2)
C7—N1—C8—C13162.3 (3)O1—C7—C1—C2163.9 (3)
C8—N1—C7—O13.2 (5)N1—C7—C1—C214.0 (4)
C8—N1—C7—C1174.6 (2)C10—C11—C12—C130.4 (4)
C9—C8—C13—C120.3 (4)C8—C13—C12—C110.1 (4)
N1—C8—C13—C12178.7 (2)C14—C13—C12—C11179.8 (2)
C9—C8—C13—C14179.6 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—NH1···O20.93 (3)1.96 (3)2.678 (3)133 (3)
O3—OH3···O2i0.821.832.645 (3)175
Symmetry code: (i) x+3/2, y+3/2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—NH1···O20.93 (3)1.96 (3)2.678 (3)133 (3)
O3—OH3···O2i0.821.832.645 (3)175
Symmetry code: (i) x+3/2, y+3/2, z+1.
 

Acknowledgements

RMF is grateful to the Universidad del Valle, Colombia, for partial financial support.

References

First citationAhles, T. A., Herndon, J. E., Small, E. J., Vogelzang, N. J., Kornblith, A. B., Ratain, M. J., Stadler, W. S., Palchak, D., Marshall, E., Wilding, G., Petrylak, D. & Holland, C. (2004). Cancer, 101, 2202–2208.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDesiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond. Oxford University Press, pp. 86-89.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationLeander, J. D. (1992). Epilepsia, 33, 705-711.  CrossRef PubMed CAS Web of Science Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMoreno-Fuquen, R., Azcárate, A. & Kennedy, A. R. (2014). Acta Cryst. E70, o344.  CSD CrossRef IUCr Journals Google Scholar
First citationMoreno-Fuquen, R., Azcárate, A. & Kennedy, A. R. (2015). Acta Cryst. E71, o389–o390.  CSD CrossRef IUCr Journals Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationNonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationNuta, D. C., Chifiriuc, A. C., Draghici, C., Limban, C., Missir, A. V. & Morusciag, L. (2013). Farmacia (Bucarest), 61, 966–974.  CAS Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationRodrigues, V. Z., Kucková, L., Gowda, B. T. & Kožíšek, J. (2011). Acta Cryst. E67, o3171.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSaeed, A., Khera, R. A., Abbas, N., Gotoh, K. & Ishida, H. (2008). Acta Cryst. E64, o2043.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSaeed, A., Khera, R. A. & Simpson, J. (2010). Acta Cryst. E66, o214.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds