organic compounds
of 2-(4-chlorobenzamido)benzoic acid
aDepartamento de Química - Facultad de Ciencias Naturales y Exactas, Universidad del Valle, Apartado 25360, Santiago de Cali, Colombia, and bInstituto de Física de São Carlos, IFSC, Universidade de São Paulo, USP, São Carlos, SP, Brazil
*Correspondence e-mail: rodimo26@yahoo.es
In the title molecule, C14H10ClNO3, the amide C=O bond is anti to the o-carboxy substituent in the adjacent benzene ring, a conformation that facilitates the formation of an intramolecular amide-N—H⋯O(carbonyl) hydrogen bond that closes an S(6) loop. The central amide segment is twisted away from the carboxy- and chloro-substituted benzene rings by 13.93 (17) and 15.26 (15)°, respectively. The most prominent supramolecular interactions in the crystal packing are carboxylic acid-H⋯O(carboxyl) hydrogen bonds that lead to centrosymmetric dimeric aggregates connected by eight-membered {⋯HOC=O}2 synthons.
Keywords: crystal structure; carboxylic acid; amide; hydrogen bonding.
CCDC reference: 1427117
1. Related literature
For our studies on the effects of substituents on the structures of N-(aryl)-amides, see: Moreno-Fuquen et al. (2014, 2015). For benzanilide properties, see: Nuta et al. (2013); Leander (1992); Ahles et al. (2004). For related structures, see: Saeed et al. (2008, 2010); Rodrigues et al. (2011). For hydrogen bonding, see: Desiraju & Steiner (1999), Nardelli (1995).
2. Experimental
2.1. Crystal data
|
2.2. Data collection
|
2.3. Refinement
|
|
Data collection: COLLECT (Nonius, 2000); cell HKL SCALEPACK (Otwinowski & Minor, 1997); data reduction: HKL DENZO (Otwinowski & Minor, 1997) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL2014/7.
Supporting information
CCDC reference: 1427117
https://doi.org/10.1107/S2056989015017879/tk5391sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989015017879/tk5391Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989015017879/tk5391Isup3.cml
2,4,6-Trinitrophenyl 4-chlorobenzoate (0.060 g, 0.163 mmol) and 2-carboxyaniline (0.045 g, 0.328 mmol) were dissolved in toluene (15 ml) and stirred for 6 h under reflux. On completion of the reaction part of the solvent was evaporated and a crystalline yellow solid was obtained; m.p. 470 (1) K.
All H-atoms were located in difference Fourier maps and were positioned geometrically [C—H = 0.93 Å] and were refined using a riding-model approximation with Uiso(H) constrained to 1.2Ueq(C). The O-bound H atoms was similarly fixed with O—H = 0.82 Å, and with Uiso(H) constrained to 1.5Ueq(O). The N-bound H atom was found from the Fourier maps and was refined freely.
The ═O bond is anti to the o-carboxy substituent in the benzoyl ring. The N—H and C=O bonds in the central amide group are also anti to each other. Comparing (I) with the three aforementioned structures reveals that significant differences in bond lengths and bond angles are not observed. The central amide segment (C1-C7(O1)-N1-C8) is twisted away from the carboxy- and chloro-substituted benzene rings by 13.93 (17) and 15.26 (15)°, respectively. Molecules of (I) are held together by intermolecular O—H···O hydrogen bonds of moderate strength (Desiraju & Steiner, 1999). The O3 atom is linked to O2i atom (i = -x+3/2, -y+3/2, -z+1) with O···O distances of 2.645 (2), (see Table 1, Nardelli, 1995). Except for the presence of hydrogen bonding in the formation of dimer, no other significant intermolecular interactions are observed in the structure.
determination of 2-(4-chlorobenzamido)benzoic acid, (I), was investigated in a continuation of our studies on substituted N-phenyl benzamides which have been synthesized from picryl This study was also performed to study the effect of substituents on the structures of benzanilides (Moreno-Fuquen et al., 2014, 2015). Benzanilide systems are used as antimicrobial drugs (Nuta et al., 2013), as anticonvulsants (Leander, 1992) or as treatment for patients with prostate carcinoma (Ahles et al., 2004). Structures of similar molecules were compared with (I), i.e. 4-chloro-N-(2-methoxyphenyl)benzamide (Saeed et al., 2010), 4-chloro-N-phenylbenzamide (Rodrigues et al., 2011) and 4-chloro-N-(o-tolyl)benzamide (Saeed et al., 2008). The molecular structure of (I) is shown in Fig. 1. The CFor our studies on the effects of substituents on the structures of N-(aryl)-amides, see: Moreno-Fuquen et al. (2014, 2015). For benzanilide properties, see: Nuta et al. (2013); Leander (1992); Ahles et al. (2004). For related structures, see: Saeed et al. (2008, 2010); Rodrigues et al. (2011). For hydrogen bonding, see: Desiraju & Steiner (1999), Nardelli (1995).
Data collection: COLLECT (Nonius, 2000); cell
HKL SCALEPACK (Otwinowski & Minor, 1997); data reduction: HKL DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL2014/7 (Sheldrick, 2015).Fig. 1. The molecular structure of (I) with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitrary radius. |
C14H10ClNO3 | Dx = 1.457 Mg m−3 |
Mr = 275.69 | Melting point: 470(1) K |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
a = 26.8843 (10) Å | Cell parameters from 2553 reflections |
b = 5.0367 (2) Å | θ = 3.1–25.4° |
c = 20.9264 (12) Å | µ = 0.31 mm−1 |
β = 117.489 (2)° | T = 295 K |
V = 2513.7 (2) Å3 | Needle, yellow |
Z = 8 | 0.40 × 0.08 × 0.06 mm |
F(000) = 1136 |
Nonius KappaCCD diffractometer | 1049 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.057 |
Graphite monochromator | θmax = 25.4°, θmin = 3.1° |
CCD rotation images, thick slices scans | h = −31→32 |
4248 measured reflections | k = −6→6 |
2295 independent reflections | l = −25→24 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.043 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.132 | H atoms treated by a mixture of independent and constrained refinement |
S = 0.92 | w = 1/[σ2(Fo2) + (0.0632P)2] where P = (Fo2 + 2Fc2)/3 |
2295 reflections | (Δ/σ)max < 0.001 |
176 parameters | Δρmax = 0.20 e Å−3 |
0 restraints | Δρmin = −0.19 e Å−3 |
C14H10ClNO3 | V = 2513.7 (2) Å3 |
Mr = 275.69 | Z = 8 |
Monoclinic, C2/c | Mo Kα radiation |
a = 26.8843 (10) Å | µ = 0.31 mm−1 |
b = 5.0367 (2) Å | T = 295 K |
c = 20.9264 (12) Å | 0.40 × 0.08 × 0.06 mm |
β = 117.489 (2)° |
Nonius KappaCCD diffractometer | 1049 reflections with I > 2σ(I) |
4248 measured reflections | Rint = 0.057 |
2295 independent reflections |
R[F2 > 2σ(F2)] = 0.043 | 0 restraints |
wR(F2) = 0.132 | H atoms treated by a mixture of independent and constrained refinement |
S = 0.92 | Δρmax = 0.20 e Å−3 |
2295 reflections | Δρmin = −0.19 e Å−3 |
176 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.74640 (9) | −0.2731 (4) | 0.30942 (12) | 0.0824 (7) | |
C5 | 0.90834 (14) | −0.0840 (7) | 0.34839 (18) | 0.0786 (9) | |
H5 | 0.9265 | −0.1847 | 0.3282 | 0.094* | |
C10 | 0.58970 (13) | −0.0955 (6) | 0.29315 (17) | 0.0739 (9) | |
H10 | 0.5647 | −0.2205 | 0.2623 | 0.089* | |
C9 | 0.64347 (12) | −0.0846 (5) | 0.30083 (15) | 0.0623 (8) | |
H9 | 0.6543 | −0.2008 | 0.2750 | 0.075* | |
C2 | 0.85453 (13) | 0.2133 (6) | 0.40771 (18) | 0.0766 (9) | |
H2 | 0.8366 | 0.3155 | 0.4280 | 0.092* | |
C11 | 0.57224 (13) | 0.0750 (6) | 0.33029 (18) | 0.0754 (9) | |
H11 | 0.5357 | 0.0667 | 0.3242 | 0.090* | |
C6 | 0.85319 (14) | −0.1349 (6) | 0.33124 (17) | 0.0730 (9) | |
H6 | 0.8344 | −0.2716 | 0.2993 | 0.088* | |
C3 | 0.90974 (14) | 0.2649 (6) | 0.42543 (18) | 0.0801 (10) | |
H3 | 0.9289 | 0.4004 | 0.4577 | 0.096* | |
C4 | 0.93606 (13) | 0.1173 (7) | 0.39566 (17) | 0.0701 (9) | |
NH1 | 0.7536 (13) | 0.280 (6) | 0.3758 (17) | 0.102 (11)* | |
Cl1 | 1.00534 (4) | 0.1835 (2) | 0.41722 (6) | 0.1062 (4) | |
N1 | 0.73632 (10) | 0.1205 (5) | 0.35559 (12) | 0.0592 (7) | |
O3 | 0.67865 (8) | 0.6206 (3) | 0.46790 (10) | 0.0688 (6) | |
OH3 | 0.7015 | 0.7286 | 0.4949 | 0.103* | |
O2 | 0.75129 (8) | 0.5079 (3) | 0.45041 (10) | 0.0641 (6) | |
C14 | 0.70192 (12) | 0.4755 (5) | 0.43671 (14) | 0.0548 (7) | |
C8 | 0.68169 (11) | 0.1015 (5) | 0.34751 (14) | 0.0529 (7) | |
C7 | 0.76554 (12) | −0.0609 (6) | 0.33845 (15) | 0.0599 (7) | |
C13 | 0.66432 (11) | 0.2748 (5) | 0.38605 (14) | 0.0535 (7) | |
C1 | 0.82537 (12) | 0.0120 (5) | 0.36030 (15) | 0.0568 (7) | |
C12 | 0.60946 (12) | 0.2573 (6) | 0.37640 (15) | 0.0664 (8) | |
H12 | 0.5979 | 0.3718 | 0.4018 | 0.080* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0839 (16) | 0.0631 (13) | 0.1073 (17) | −0.0111 (11) | 0.0502 (14) | −0.0225 (12) |
C5 | 0.075 (2) | 0.090 (2) | 0.083 (2) | 0.0100 (19) | 0.047 (2) | −0.004 (2) |
C10 | 0.063 (2) | 0.071 (2) | 0.072 (2) | −0.0093 (16) | 0.0174 (18) | 0.0023 (17) |
C9 | 0.063 (2) | 0.0595 (17) | 0.0591 (19) | −0.0054 (15) | 0.0242 (16) | −0.0031 (15) |
C2 | 0.066 (2) | 0.081 (2) | 0.090 (2) | −0.0010 (17) | 0.0417 (18) | −0.0156 (19) |
C11 | 0.056 (2) | 0.083 (2) | 0.083 (2) | −0.0118 (18) | 0.0279 (18) | −0.0009 (19) |
C6 | 0.080 (2) | 0.072 (2) | 0.074 (2) | 0.0010 (17) | 0.0420 (19) | −0.0089 (16) |
C3 | 0.066 (2) | 0.085 (2) | 0.089 (2) | −0.0102 (17) | 0.035 (2) | −0.0121 (19) |
C4 | 0.0581 (19) | 0.083 (2) | 0.073 (2) | 0.0059 (17) | 0.0343 (17) | 0.0122 (18) |
Cl1 | 0.0657 (6) | 0.1390 (9) | 0.1189 (8) | 0.0021 (5) | 0.0469 (6) | 0.0093 (6) |
N1 | 0.0576 (16) | 0.0555 (15) | 0.0681 (16) | −0.0068 (13) | 0.0322 (13) | −0.0118 (13) |
O3 | 0.0622 (13) | 0.0726 (12) | 0.0763 (13) | −0.0053 (10) | 0.0360 (11) | −0.0183 (11) |
O2 | 0.0560 (13) | 0.0685 (12) | 0.0694 (13) | −0.0070 (10) | 0.0304 (11) | −0.0138 (10) |
C14 | 0.0581 (19) | 0.0553 (17) | 0.0522 (18) | 0.0026 (15) | 0.0264 (16) | 0.0028 (14) |
C8 | 0.0513 (17) | 0.0527 (15) | 0.0506 (16) | −0.0041 (13) | 0.0202 (14) | 0.0055 (14) |
C7 | 0.068 (2) | 0.0570 (18) | 0.0555 (18) | 0.0000 (16) | 0.0298 (16) | 0.0024 (15) |
C13 | 0.0515 (17) | 0.0564 (16) | 0.0514 (17) | −0.0007 (14) | 0.0228 (14) | 0.0040 (14) |
C1 | 0.0608 (19) | 0.0581 (17) | 0.0554 (18) | 0.0033 (15) | 0.0302 (16) | 0.0025 (14) |
C12 | 0.0564 (19) | 0.074 (2) | 0.071 (2) | −0.0005 (16) | 0.0314 (16) | 0.0024 (16) |
O1—C7 | 1.219 (3) | C6—H6 | 0.9300 |
C5—C4 | 1.371 (4) | C3—C4 | 1.360 (4) |
C5—C6 | 1.379 (4) | C3—H3 | 0.9300 |
C5—H5 | 0.9300 | C4—Cl1 | 1.734 (3) |
C10—C11 | 1.378 (4) | N1—C7 | 1.357 (3) |
C10—C9 | 1.380 (4) | N1—C8 | 1.402 (3) |
C10—H10 | 0.9300 | N1—NH1 | 0.93 (3) |
C9—C8 | 1.401 (4) | O3—C14 | 1.315 (3) |
C9—H9 | 0.9300 | O3—OH3 | 0.8200 |
C2—C3 | 1.378 (4) | O2—C14 | 1.233 (3) |
C2—C1 | 1.382 (4) | C14—C13 | 1.476 (4) |
C2—H2 | 0.9300 | C8—C13 | 1.406 (4) |
C11—C12 | 1.373 (4) | C7—C1 | 1.501 (4) |
C11—H11 | 0.9300 | C13—C12 | 1.396 (4) |
C6—C1 | 1.377 (4) | C12—H12 | 0.9300 |
C4—C5—C6 | 119.1 (3) | C5—C4—Cl1 | 119.4 (3) |
C4—C5—H5 | 120.5 | C7—N1—C8 | 128.6 (3) |
C6—C5—H5 | 120.5 | C7—N1—NH1 | 118 (2) |
C11—C10—C9 | 121.4 (3) | C8—N1—NH1 | 113 (2) |
C11—C10—H10 | 119.3 | C14—O3—OH3 | 109.5 |
C9—C10—H10 | 119.3 | O2—C14—O3 | 121.3 (3) |
C10—C9—C8 | 120.0 (3) | O2—C14—C13 | 124.4 (3) |
C10—C9—H9 | 120.0 | O3—C14—C13 | 114.3 (3) |
C8—C9—H9 | 120.0 | C9—C8—N1 | 121.3 (3) |
C3—C2—C1 | 121.0 (3) | C9—C8—C13 | 119.0 (3) |
C3—C2—H2 | 119.5 | N1—C8—C13 | 119.7 (2) |
C1—C2—H2 | 119.5 | O1—C7—N1 | 124.0 (3) |
C12—C11—C10 | 119.1 (3) | O1—C7—C1 | 120.8 (3) |
C12—C11—H11 | 120.5 | N1—C7—C1 | 115.1 (3) |
C10—C11—H11 | 120.5 | C12—C13—C8 | 119.1 (3) |
C1—C6—C5 | 121.5 (3) | C12—C13—C14 | 118.3 (3) |
C1—C6—H6 | 119.2 | C8—C13—C14 | 122.6 (3) |
C5—C6—H6 | 119.2 | C6—C1—C2 | 117.9 (3) |
C4—C3—C2 | 119.8 (3) | C6—C1—C7 | 117.3 (3) |
C4—C3—H3 | 120.1 | C2—C1—C7 | 124.9 (3) |
C2—C3—H3 | 120.1 | C11—C12—C13 | 121.5 (3) |
C3—C4—C5 | 120.7 (3) | C11—C12—H12 | 119.2 |
C3—C4—Cl1 | 119.9 (3) | C13—C12—H12 | 119.2 |
C11—C10—C9—C8 | 0.4 (4) | N1—C8—C13—C14 | −1.4 (4) |
C9—C10—C11—C12 | −0.7 (5) | O2—C14—C13—C12 | 179.1 (3) |
C4—C5—C6—C1 | 0.2 (5) | O3—C14—C13—C12 | −0.2 (3) |
C1—C2—C3—C4 | 0.4 (5) | O2—C14—C13—C8 | −0.8 (4) |
C2—C3—C4—C5 | −0.4 (5) | O3—C14—C13—C8 | 179.9 (2) |
C2—C3—C4—Cl1 | 179.4 (2) | C5—C6—C1—C2 | −0.2 (4) |
C6—C5—C4—C3 | 0.1 (5) | C5—C6—C1—C7 | −179.6 (3) |
C6—C5—C4—Cl1 | −179.7 (2) | C3—C2—C1—C6 | −0.1 (4) |
C10—C9—C8—N1 | −178.9 (2) | C3—C2—C1—C7 | 179.3 (3) |
C10—C9—C8—C13 | 0.1 (4) | O1—C7—C1—C6 | 15.5 (4) |
C7—N1—C8—C9 | −18.7 (4) | N1—C7—C1—C6 | −166.6 (2) |
C7—N1—C8—C13 | 162.3 (3) | O1—C7—C1—C2 | −163.9 (3) |
C8—N1—C7—O1 | 3.2 (5) | N1—C7—C1—C2 | 14.0 (4) |
C8—N1—C7—C1 | −174.6 (2) | C10—C11—C12—C13 | 0.4 (4) |
C9—C8—C13—C12 | −0.3 (4) | C8—C13—C12—C11 | 0.1 (4) |
N1—C8—C13—C12 | 178.7 (2) | C14—C13—C12—C11 | −179.8 (2) |
C9—C8—C13—C14 | 179.6 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—NH1···O2 | 0.93 (3) | 1.96 (3) | 2.678 (3) | 133 (3) |
O3—OH3···O2i | 0.82 | 1.83 | 2.645 (3) | 175 |
Symmetry code: (i) −x+3/2, −y+3/2, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—NH1···O2 | 0.93 (3) | 1.96 (3) | 2.678 (3) | 133 (3) |
O3—OH3···O2i | 0.82 | 1.83 | 2.645 (3) | 175 |
Symmetry code: (i) −x+3/2, −y+3/2, −z+1. |
Acknowledgements
RMF is grateful to the Universidad del Valle, Colombia, for partial financial support.
References
Ahles, T. A., Herndon, J. E., Small, E. J., Vogelzang, N. J., Kornblith, A. B., Ratain, M. J., Stadler, W. S., Palchak, D., Marshall, E., Wilding, G., Petrylak, D. & Holland, C. (2004). Cancer, 101, 2202–2208. Web of Science CrossRef PubMed CAS Google Scholar
Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond. Oxford University Press, pp. 86-89. Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Leander, J. D. (1992). Epilepsia, 33, 705-711. CrossRef PubMed CAS Web of Science Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Moreno-Fuquen, R., Azcárate, A. & Kennedy, A. R. (2014). Acta Cryst. E70, o344. CSD CrossRef IUCr Journals Google Scholar
Moreno-Fuquen, R., Azcárate, A. & Kennedy, A. R. (2015). Acta Cryst. E71, o389–o390. CSD CrossRef IUCr Journals Google Scholar
Nardelli, M. (1995). J. Appl. Cryst. 28, 659. CrossRef IUCr Journals Google Scholar
Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Nuta, D. C., Chifiriuc, A. C., Draghici, C., Limban, C., Missir, A. V. & Morusciag, L. (2013). Farmacia (Bucarest), 61, 966–974. CAS Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Rodrigues, V. Z., Kucková, L., Gowda, B. T. & Kožíšek, J. (2011). Acta Cryst. E67, o3171. Web of Science CSD CrossRef IUCr Journals Google Scholar
Saeed, A., Khera, R. A., Abbas, N., Gotoh, K. & Ishida, H. (2008). Acta Cryst. E64, o2043. Web of Science CSD CrossRef IUCr Journals Google Scholar
Saeed, A., Khera, R. A. & Simpson, J. (2010). Acta Cryst. E66, o214. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The crystal structure determination of 2-(4-chlorobenzamido)benzoic acid, (I), was investigated in a continuation of our studies on substituted N-phenyl benzamides which have been synthesized from picryl esters. This study was also performed to study the effect of substituents on the structures of benzanilides (Moreno-Fuquen et al., 2014, 2015). Benzanilide systems are used as antimicrobial drugs (Nuta et al., 2013), as anticonvulsants (Leander, 1992) or as treatment for patients with prostate carcinoma (Ahles et al., 2004). Structures of similar molecules were compared with (I), i.e. 4-chloro-N-(2-methoxyphenyl)benzamide (Saeed et al., 2010), 4-chloro-N-phenylbenzamide (Rodrigues et al., 2011) and 4-chloro-N-(o-tolyl)benzamide (Saeed et al., 2008). The molecular structure of (I) is shown in Fig. 1. The C═O bond is anti to the o-carboxy substituent in the benzoyl ring. The N—H and C=O bonds in the central amide group are also anti to each other. Comparing (I) with the three aforementioned structures reveals that significant differences in bond lengths and bond angles are not observed. The central amide segment (C1-C7(O1)-N1-C8) is twisted away from the carboxy- and chloro-substituted benzene rings by 13.93 (17) and 15.26 (15)°, respectively. Molecules of (I) are held together by intermolecular O—H···O hydrogen bonds of moderate strength (Desiraju & Steiner, 1999). The O3 atom is linked to O2i atom (i = -x+3/2, -y+3/2, -z+1) with O···O distances of 2.645 (2), (see Table 1, Nardelli, 1995). Except for the presence of hydrogen bonding in the formation of dimer, no other significant intermolecular interactions are observed in the structure.