organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 1,1,2,2-tetra­methyl-1,2-bis­­(2,3,4,5-tetra­methyl­cyclo­penta-2,4-dien-1-yl)disilane

aLeibniz-Institut für Katalyse e. V. der Universität Rostock, Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
*Correspondence e-mail: torsten.beweries@catalysis.de

Edited by E. R. T. Tiekink, University of Malaya, Malaysia (Received 21 October 2015; accepted 21 October 2015; online 28 October 2015)

The mol­ecular structure of the title compound, C22H38Si2, features a trans arrangement of the cyclo­penta­dienyl rings to avoid steric strain [C—Si—Si—C torsion angle = −179.0 (5)°]. The Si—Si bond length is 2.3444 (4) Å. The most notable inter­molecular inter­actions in the mol­ecular packing are C—H⋯π contacts that lead to the formation of wave-like supra­molecular chains along the b axis.

1. Related literature

For synthesis of the title compound, see: Kessler et al. (2013[Kessler, M., Hansen, S., Godemann, C., Spannenberg, A. & Beweries, T. (2013). Chem. Eur. J. 19, 6350-6357.]). For group 4 complexes with this ligand, see: Godemann et al. (2014[Godemann, C., Barsch, E., Spannenberg, A., Ludwig, R. & Beweries, T. (2014). Eur. J. Inorg. Chem. 25, 4068-4072.], 2015[Godemann, C., Dura, L., Hollmann, D., Grabow, K., Bentrup, U., Jiao, H., Schulz, A., Brückner, A. & Beweries, T. (2015). Chem. Commun. 51, 3065-3068.]); Pinkas et al. (2011[Pinkas, J., Gyepes, R., Císařovà, I., Kubišta, J., Mach, K. & Horáček, M. (2011). Collect. Czech. Chem. Commun. 76, 177-191.]); Xu et al. (1997[Xu, S.-S., Deng, X.-B., Wang, B.-Q. & Zhou, X.-Z. (1997). Acta Chim. Sin. 55, 829-832.]); Horáček et al. (2008[Horáček, M., Pinkas, J., Gyepes, R., Kubišta, J. & Mach, K. (2008). Organometallics, 27, 2635-2642.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C22H38Si2

  • Mr = 358.70

  • Monoclinic P 21 /n

  • a = 8.7790 (2) Å

  • b = 15.3039 (4) Å

  • c = 16.4355 (4) Å

  • β = 93.678 (1)°

  • V = 2203.61 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.16 mm−1

  • T = 150 K

  • 0.55 × 0.41 × 0.29 mm

2.2. Data collection

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.92, Tmax = 0.95

  • 46817 measured reflections

  • 5318 independent reflections

  • 4636 reflections with I > 2σ(I)

  • Rint = 0.035

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.097

  • S = 1.06

  • 5318 reflections

  • 229 parameters

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C14–C18 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯Cg1i 1.00 2.76 3.7350 (13) 166
Symmetry code: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2011[Bruker (2011). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Synthesis and crystallization top

The synthesis of the title compound has been described previously (Kessler et al., 2013). A saturated solution of the title compound in n-hexane was very slowly cooled from 60 °C to room temperature resulting in precipitation of colourless crystals.

Refinement top

H atoms were placed in idealized positions with d(C—H) = 1.00 Å (CH) & 0.98 Å (CH3), and refined using a riding model with Uiso(H) fixed at 1.2 Ueq(C) for CH & 1.5 Ueq(C) for CH3.

Related literature top

For synthesis of the title compound, see: Kessler et al. (2013). For group 4 complexes with this ligand, see: Godemann et al. (2014, 2015); Pinkas et al. (2011); Xu et al. (1997); Horáček et al. (2008).

Structure description top

For synthesis of the title compound, see: Kessler et al. (2013). For group 4 complexes with this ligand, see: Godemann et al. (2014, 2015); Pinkas et al. (2011); Xu et al. (1997); Horáček et al. (2008).

Synthesis and crystallization top

The synthesis of the title compound has been described previously (Kessler et al., 2013). A saturated solution of the title compound in n-hexane was very slowly cooled from 60 °C to room temperature resulting in precipitation of colourless crystals.

Refinement details top

H atoms were placed in idealized positions with d(C—H) = 1.00 Å (CH) & 0.98 Å (CH3), and refined using a riding model with Uiso(H) fixed at 1.2 Ueq(C) for CH & 1.5 Ueq(C) for CH3.

Computing details top

Data collection: APEX2 (Bruker, 2011); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound with atom labelling scheme and displacement ellipsoids drawn at 30% probability level.
1,1,2,2-Tetramethyl-1,2-bis(2,3,4,5-tetramethylcyclopenta-2,4-dien-1-yl)disilane top
Crystal data top
C22H38Si2F(000) = 792
Mr = 358.70Dx = 1.081 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 8.7790 (2) ÅCell parameters from 9858 reflections
b = 15.3039 (4) Åθ = 2.5–28.6°
c = 16.4355 (4) ŵ = 0.16 mm1
β = 93.678 (1)°T = 150 K
V = 2203.61 (9) Å3Prism, colourless
Z = 40.55 × 0.41 × 0.29 mm
Data collection top
Bruker APEXII CCD
diffractometer
5318 independent reflections
Radiation source: fine-focus sealed tube4636 reflections with I > 2σ(I)
Curved graphite monochromatorRint = 0.035
Detector resolution: 8.3333 pixels mm-1θmax = 28.0°, θmin = 1.8°
φ and ω scansh = 1111
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
k = 2019
Tmin = 0.92, Tmax = 0.95l = 2121
46817 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.097H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.047P)2 + 0.8183P]
where P = (Fo2 + 2Fc2)/3
5318 reflections(Δ/σ)max = 0.001
229 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C22H38Si2V = 2203.61 (9) Å3
Mr = 358.70Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.7790 (2) ŵ = 0.16 mm1
b = 15.3039 (4) ÅT = 150 K
c = 16.4355 (4) Å0.55 × 0.41 × 0.29 mm
β = 93.678 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
5318 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
4636 reflections with I > 2σ(I)
Tmin = 0.92, Tmax = 0.95Rint = 0.035
46817 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.097H-atom parameters constrained
S = 1.06Δρmax = 0.32 e Å3
5318 reflectionsΔρmin = 0.23 e Å3
229 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.85658 (13)0.71127 (8)0.10459 (7)0.0212 (2)
H10.84370.65010.12440.025*
C21.01814 (13)0.72631 (8)0.08367 (8)0.0227 (2)
C31.01837 (14)0.75224 (8)0.00516 (8)0.0243 (2)
C40.86221 (14)0.75132 (8)0.03149 (7)0.0234 (2)
C50.76715 (14)0.72439 (8)0.02488 (7)0.0228 (2)
C61.15522 (16)0.71322 (10)0.14202 (9)0.0349 (3)
H6A1.24030.69080.11230.052*
H6B1.13040.67120.18420.052*
H6C1.18430.76910.16760.052*
C71.15333 (17)0.77834 (11)0.04066 (10)0.0374 (3)
H7A1.24630.77440.00450.056*
H7B1.14000.83850.06010.056*
H7C1.16200.73920.08730.056*
C80.81945 (17)0.77582 (10)0.11828 (8)0.0332 (3)
H8A0.85330.72990.15460.050*
H8B0.86870.83120.13110.050*
H8C0.70840.78230.12590.050*
C90.59858 (16)0.70960 (11)0.01139 (9)0.0359 (3)
H9A0.54480.76530.01590.054*
H9B0.56480.66880.05250.054*
H9C0.57600.68500.04310.054*
C100.59182 (15)0.77168 (9)0.20801 (9)0.0298 (3)
H10A0.57960.70970.22120.045*
H10B0.52370.78670.16050.045*
H10C0.56610.80750.25460.045*
C110.91263 (16)0.77522 (9)0.28252 (8)0.0283 (3)
H11A0.87100.81030.32580.042*
H11B1.01840.79280.27560.042*
H11C0.90990.71320.29730.042*
C120.69980 (16)0.95635 (9)0.04136 (7)0.0275 (3)
H12A0.69501.01920.02990.041*
H12B0.59660.93400.04750.041*
H12C0.74480.92600.00380.041*
C131.02293 (15)0.96094 (9)0.11437 (8)0.0281 (3)
H13A1.04650.93020.06440.042*
H13B1.09250.94120.15970.042*
H13C1.03531.02400.10660.042*
C140.76149 (13)1.01788 (8)0.21979 (7)0.0205 (2)
H140.77691.07880.19990.025*
C150.59856 (13)1.00765 (8)0.24095 (7)0.0223 (2)
C160.59561 (14)0.98747 (8)0.32073 (8)0.0236 (2)
C170.75209 (14)0.98656 (8)0.35759 (7)0.0228 (2)
C180.84985 (13)1.00645 (8)0.30048 (7)0.0222 (2)
C190.46292 (15)1.01960 (10)0.18157 (9)0.0334 (3)
H19A0.43720.96370.15500.050*
H19B0.48721.06270.14030.050*
H19C0.37581.04020.21070.050*
C200.45939 (16)0.97111 (10)0.36880 (10)0.0367 (3)
H20A0.44941.01850.40820.055*
H20B0.47220.91550.39790.055*
H20C0.36740.96860.33180.055*
C210.78832 (18)0.96916 (10)0.44647 (8)0.0346 (3)
H21A0.89900.96350.45700.052*
H21B0.73850.91490.46200.052*
H21C0.75111.01770.47860.052*
C221.01980 (15)1.01596 (10)0.31332 (9)0.0324 (3)
H22A1.04631.03380.36970.049*
H22B1.05541.06040.27600.049*
H22C1.06870.95990.30260.049*
Si10.79503 (4)0.79312 (2)0.184414 (19)0.01845 (9)
Si20.82065 (4)0.93696 (2)0.138159 (18)0.01799 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0224 (6)0.0182 (5)0.0231 (6)0.0005 (4)0.0010 (4)0.0000 (4)
C20.0193 (6)0.0207 (5)0.0281 (6)0.0035 (4)0.0009 (5)0.0026 (5)
C30.0220 (6)0.0228 (6)0.0287 (6)0.0019 (4)0.0058 (5)0.0031 (5)
C40.0253 (6)0.0226 (6)0.0223 (6)0.0024 (5)0.0009 (5)0.0038 (5)
C50.0219 (6)0.0223 (6)0.0239 (6)0.0014 (4)0.0015 (4)0.0046 (5)
C60.0237 (6)0.0428 (8)0.0373 (7)0.0086 (6)0.0046 (5)0.0002 (6)
C70.0292 (7)0.0442 (8)0.0402 (8)0.0019 (6)0.0139 (6)0.0004 (6)
C80.0373 (7)0.0390 (8)0.0231 (6)0.0037 (6)0.0014 (5)0.0008 (5)
C90.0250 (7)0.0465 (8)0.0354 (7)0.0099 (6)0.0042 (5)0.0049 (6)
C100.0259 (6)0.0287 (7)0.0359 (7)0.0050 (5)0.0114 (5)0.0005 (5)
C110.0353 (7)0.0288 (6)0.0204 (6)0.0030 (5)0.0022 (5)0.0033 (5)
C120.0346 (7)0.0277 (6)0.0200 (6)0.0040 (5)0.0011 (5)0.0023 (5)
C130.0264 (6)0.0264 (6)0.0328 (7)0.0051 (5)0.0113 (5)0.0022 (5)
C140.0195 (5)0.0203 (5)0.0215 (5)0.0016 (4)0.0004 (4)0.0023 (4)
C150.0176 (5)0.0216 (6)0.0273 (6)0.0035 (4)0.0006 (4)0.0049 (5)
C160.0217 (6)0.0203 (5)0.0290 (6)0.0012 (4)0.0040 (5)0.0033 (5)
C170.0260 (6)0.0199 (5)0.0222 (6)0.0033 (4)0.0003 (5)0.0028 (4)
C180.0201 (6)0.0215 (5)0.0244 (6)0.0021 (4)0.0024 (4)0.0060 (5)
C190.0222 (6)0.0429 (8)0.0342 (7)0.0080 (6)0.0059 (5)0.0073 (6)
C200.0292 (7)0.0395 (8)0.0427 (8)0.0005 (6)0.0126 (6)0.0018 (6)
C210.0422 (8)0.0362 (7)0.0249 (6)0.0042 (6)0.0009 (6)0.0012 (6)
C220.0205 (6)0.0409 (8)0.0351 (7)0.0000 (5)0.0042 (5)0.0099 (6)
Si10.01894 (16)0.01846 (16)0.01803 (16)0.00115 (11)0.00177 (11)0.00206 (11)
Si20.01903 (16)0.01773 (16)0.01736 (15)0.00037 (11)0.00222 (11)0.00092 (11)
Geometric parameters (Å, º) top
C1—C51.4969 (16)C12—H12A0.9800
C1—C21.4985 (16)C12—H12B0.9800
C1—Si11.9166 (12)C12—H12C0.9800
C1—H11.0000C13—Si21.8789 (13)
C2—C31.3501 (18)C13—H13A0.9800
C2—C61.5033 (17)C13—H13B0.9800
C3—C41.4617 (17)C13—H13C0.9800
C3—C71.4984 (18)C14—C151.5017 (16)
C4—C51.3505 (17)C14—C181.5031 (16)
C4—C81.4993 (17)C14—Si21.9216 (12)
C5—C91.4994 (17)C14—H141.0000
C6—H6A0.9800C15—C161.3490 (17)
C6—H6B0.9800C15—C191.5016 (17)
C6—H6C0.9800C16—C171.4655 (17)
C7—H7A0.9800C16—C201.4961 (17)
C7—H7B0.9800C17—C181.3467 (17)
C7—H7C0.9800C17—C211.4989 (17)
C8—H8A0.9800C18—C221.5004 (17)
C8—H8B0.9800C19—H19A0.9800
C8—H8C0.9800C19—H19B0.9800
C9—H9A0.9800C19—H19C0.9800
C9—H9B0.9800C20—H20A0.9800
C9—H9C0.9800C20—H20B0.9800
C10—Si11.8787 (13)C20—H20C0.9800
C10—H10A0.9800C21—H21A0.9800
C10—H10B0.9800C21—H21B0.9800
C10—H10C0.9800C21—H21C0.9800
C11—Si11.8780 (13)C22—H22A0.9800
C11—H11A0.9800C22—H22B0.9800
C11—H11B0.9800C22—H22C0.9800
C11—H11C0.9800Si1—Si22.3444 (4)
C12—Si21.8783 (13)
C5—C1—C2103.28 (10)Si2—C13—H13A109.5
C5—C1—Si1110.87 (8)Si2—C13—H13B109.5
C2—C1—Si1111.67 (8)H13A—C13—H13B109.5
C5—C1—H1110.3Si2—C13—H13C109.5
C2—C1—H1110.3H13A—C13—H13C109.5
Si1—C1—H1110.3H13B—C13—H13C109.5
C3—C2—C1108.89 (11)C15—C14—C18103.23 (10)
C3—C2—C6126.77 (12)C15—C14—Si2113.49 (8)
C1—C2—C6124.33 (11)C18—C14—Si2113.19 (8)
C2—C3—C4109.40 (11)C15—C14—H14108.9
C2—C3—C7127.48 (12)C18—C14—H14108.9
C4—C3—C7123.12 (12)Si2—C14—H14108.9
C5—C4—C3108.95 (11)C16—C15—C19126.57 (12)
C5—C4—C8126.95 (12)C16—C15—C14109.08 (10)
C3—C4—C8124.10 (12)C19—C15—C14124.35 (11)
C4—C5—C1109.19 (11)C15—C16—C17109.15 (11)
C4—C5—C9126.30 (12)C15—C16—C20128.13 (12)
C1—C5—C9124.51 (11)C17—C16—C20122.68 (12)
C2—C6—H6A109.5C18—C17—C16109.40 (11)
C2—C6—H6B109.5C18—C17—C21127.92 (12)
H6A—C6—H6B109.5C16—C17—C21122.63 (11)
C2—C6—H6C109.5C17—C18—C22126.61 (12)
H6A—C6—H6C109.5C17—C18—C14108.99 (10)
H6B—C6—H6C109.5C22—C18—C14124.40 (11)
C3—C7—H7A109.5C15—C19—H19A109.5
C3—C7—H7B109.5C15—C19—H19B109.5
H7A—C7—H7B109.5H19A—C19—H19B109.5
C3—C7—H7C109.5C15—C19—H19C109.5
H7A—C7—H7C109.5H19A—C19—H19C109.5
H7B—C7—H7C109.5H19B—C19—H19C109.5
C4—C8—H8A109.5C16—C20—H20A109.5
C4—C8—H8B109.5C16—C20—H20B109.5
H8A—C8—H8B109.5H20A—C20—H20B109.5
C4—C8—H8C109.5C16—C20—H20C109.5
H8A—C8—H8C109.5H20A—C20—H20C109.5
H8B—C8—H8C109.5H20B—C20—H20C109.5
C5—C9—H9A109.5C17—C21—H21A109.5
C5—C9—H9B109.5C17—C21—H21B109.5
H9A—C9—H9B109.5H21A—C21—H21B109.5
C5—C9—H9C109.5C17—C21—H21C109.5
H9A—C9—H9C109.5H21A—C21—H21C109.5
H9B—C9—H9C109.5H21B—C21—H21C109.5
Si1—C10—H10A109.5C18—C22—H22A109.5
Si1—C10—H10B109.5C18—C22—H22B109.5
H10A—C10—H10B109.5H22A—C22—H22B109.5
Si1—C10—H10C109.5C18—C22—H22C109.5
H10A—C10—H10C109.5H22A—C22—H22C109.5
H10B—C10—H10C109.5H22B—C22—H22C109.5
Si1—C11—H11A109.5C11—Si1—C10105.92 (6)
Si1—C11—H11B109.5C11—Si1—C1109.20 (6)
H11A—C11—H11B109.5C10—Si1—C1109.90 (6)
Si1—C11—H11C109.5C11—Si1—Si2110.88 (4)
H11A—C11—H11C109.5C10—Si1—Si2110.06 (5)
H11B—C11—H11C109.5C1—Si1—Si2110.77 (4)
Si2—C12—H12A109.5C12—Si2—C13106.44 (6)
Si2—C12—H12B109.5C12—Si2—C14109.04 (6)
H12A—C12—H12B109.5C13—Si2—C14108.71 (6)
Si2—C12—H12C109.5C12—Si2—Si1111.24 (4)
H12A—C12—H12C109.5C13—Si2—Si1111.25 (4)
H12B—C12—H12C109.5C14—Si2—Si1110.05 (4)
C5—C1—C2—C34.99 (13)C20—C16—C17—C210.01 (19)
Si1—C1—C2—C3114.20 (10)C16—C17—C18—C22177.49 (12)
C5—C1—C2—C6174.52 (12)C21—C17—C18—C220.1 (2)
Si1—C1—C2—C666.29 (14)C16—C17—C18—C142.63 (14)
C1—C2—C3—C43.13 (14)C21—C17—C18—C14179.77 (12)
C6—C2—C3—C4176.37 (12)C15—C14—C18—C173.78 (13)
C1—C2—C3—C7177.06 (12)Si2—C14—C18—C17119.32 (10)
C6—C2—C3—C73.4 (2)C15—C14—C18—C22176.33 (11)
C2—C3—C4—C50.26 (15)Si2—C14—C18—C2260.57 (14)
C7—C3—C4—C5179.56 (12)C5—C1—Si1—C11179.05 (8)
C2—C3—C4—C8179.61 (12)C2—C1—Si1—C1164.46 (10)
C7—C3—C4—C80.2 (2)C5—C1—Si1—C1065.17 (10)
C3—C4—C5—C13.55 (14)C2—C1—Si1—C10179.76 (9)
C8—C4—C5—C1177.13 (12)C5—C1—Si1—Si256.66 (9)
C3—C4—C5—C9176.51 (12)C2—C1—Si1—Si257.93 (9)
C8—C4—C5—C92.8 (2)C15—C14—Si2—C1261.62 (10)
C2—C1—C5—C45.18 (13)C18—C14—Si2—C12178.86 (9)
Si1—C1—C5—C4114.56 (10)C15—C14—Si2—C13177.27 (9)
C2—C1—C5—C9174.88 (12)C18—C14—Si2—C1365.49 (10)
Si1—C1—C5—C965.38 (14)C15—C14—Si2—Si160.65 (9)
C18—C14—C15—C163.64 (13)C18—C14—Si2—Si156.59 (9)
Si2—C14—C15—C16119.27 (10)C11—Si1—Si2—C12178.64 (6)
C18—C14—C15—C19175.62 (11)C10—Si1—Si2—C1261.77 (7)
Si2—C14—C15—C1961.48 (14)C1—Si1—Si2—C1259.96 (6)
C19—C15—C16—C17176.98 (12)C11—Si1—Si2—C1362.88 (7)
C14—C15—C16—C172.25 (14)C10—Si1—Si2—C13179.74 (6)
C19—C15—C16—C200.9 (2)C1—Si1—Si2—C1358.52 (6)
C14—C15—C16—C20179.88 (12)C11—Si1—Si2—C1457.68 (6)
C15—C16—C17—C180.24 (14)C10—Si1—Si2—C1459.19 (6)
C20—C16—C17—C18177.76 (12)C1—Si1—Si2—C14179.08 (5)
C15—C16—C17—C21177.99 (12)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C15–C18 ring.
D—H···AD—HH···AD···AD—H···A
C1—H1···Cg1i1.002.653.646173
Symmetry code: (i) x+3/2, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C15–C18 ring.
D—H···AD—HH···AD···AD—H···A
C1—H1···Cg1i1.002.653.646173
Symmetry code: (i) x+3/2, y1/2, z+1/2.
 

Acknowledgements

Financial support by the BMBF (project `Light2Hydrogen') is gratefully acknowledged.

References

First citationBruker (2008). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2009). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2011). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGodemann, C., Barsch, E., Spannenberg, A., Ludwig, R. & Beweries, T. (2014). Eur. J. Inorg. Chem. 25, 4068–4072.  CSD CrossRef Google Scholar
First citationGodemann, C., Dura, L., Hollmann, D., Grabow, K., Bentrup, U., Jiao, H., Schulz, A., Brückner, A. & Beweries, T. (2015). Chem. Commun. 51, 3065–3068.  CSD CrossRef CAS Google Scholar
First citationHoráček, M., Pinkas, J., Gyepes, R., Kubišta, J. & Mach, K. (2008). Organometallics, 27, 2635–2642.  Google Scholar
First citationKessler, M., Hansen, S., Godemann, C., Spannenberg, A. & Beweries, T. (2013). Chem. Eur. J. 19, 6350–6357.  CSD CrossRef CAS PubMed Google Scholar
First citationPinkas, J., Gyepes, R., Císařovà, I., Kubišta, J., Mach, K. & Horáček, M. (2011). Collect. Czech. Chem. Commun. 76, 177–191.  CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXu, S.-S., Deng, X.-B., Wang, B.-Q. & Zhou, X.-Z. (1997). Acta Chim. Sin. 55, 829–832.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds