research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of the new hybrid material bis­­(1,4-diazo­niabi­cyclo­[2.2.2]octa­ne) di-μ-chlorido-bis­­[tetra­chlorido­bis­­muthate(III)] dihydrate

aLaboratoire de Matériaux et Cristallochimie, Faculté des Sciences de Tunis, Université de Tunis El Manar, 2092 Manar II Tunis, Tunisia
*Correspondence e-mail: habib.boughzala@ipein.rnu.tn

Edited by A. Van der Lee, Université de Montpellier II, France (Received 14 October 2015; accepted 21 October 2015; online 28 October 2015)

The title compound bis­(1,4-diazo­niabi­cyclo­[2.2.2]octa­ne) di-μ-chlorido-bis­[tetra­chlorido­bis­muthate(III)] dihydrate, (C6H14N2)2[Bi2Cl10]·2H2O, was ob­tain­ed by slow evaporation at room temperature of a hydro­chloric aqueous solution (pH = 1) containing bis­muth(III) nitrate and 1,4-di­aza­bicyclo­[2.2.2]octane (DABCO) in a 1:2 molar ratio. The structure displays a two-dimensional arrangement parallel to (100) of isolated [Bi2Cl10]4− bi­octa­hedra (site symmetry -1) separated by layers of organic 1,4-diazo­niabi­cyclo­[2.2.2]octane dications [(DABCOH2)2+] and water mol­ecules. O—H⋯Cl, N—H⋯O and N—H⋯Cl hydrogen bonds lead to additional cohesion of the structure.

1. Chemical context

In recent years, many new organic–inorganic hybrid com­pounds have been synthesized because of their inter­esting physical behaviour and applications in optoelectronics (Jakubas & Sobczyk, 1990[Jakubas, R. & Sobczyk, L. (1990). Phase Transitions, 20, 163-193.]). The main inter­esting optical activity observed in this kind of compounds is generally the result of the presence of an active ns2 lone pair (Chaabouni et al., 1998[Chaabouni, S., Kamoun, S. & Jaud, J. (1998). J. Chem. Crystallogr. 28, 209-212.]) in the inorganic parts. It can also be the result of an important structural distortion in the organic cations (Ishihara et al., 1990[Ishihara, T., Takahashi, J. & Goto, T. (1990). Phys. Rev. B42. 11099-11107.]; Lacroix et al., 1994[Lacroix, P. G., Clément, R., Nakatani, K., Zyss, J. & Ledoux, I. (1994). Science, 263, 658-660.]). The combination of the particular properties of the organic and inorganic moieties can induce inter­esting new properties. In particular for the halogenated bis­muth or anti­mony anionic networks (Ahmed et al., 2001[Ahmed, I. A., Blachnik, R. & Reuter, H. (2001). Z. Anorg. Allg. Chem. 627, 2057-2062.]; Jakubas et al., 2005[Jakubas, R., Piecha, A., Pietraszko, A. & Bator, G. (2005). Phys. Rev. B72, 104107-104115.]), the anionic arrangement leads to four kinds of dimensionalities: quantum dots (zero-di­men­sional, 0D) observed in hybrids such as (C6H14N2)2[Sb2Cl10]·2H2O (Ben Rhaiem et al., 2013[Ben Rhaiem, T., Boughzala, H. & Driss, A. (2013). Acta Cryst. E69, m330.]), quantum wires (one-dimensional, 1D) as is the case in the structure of (C2H7N4O)2 [BiCl5] (Ferjani et al., 2012[Ferjani, H., Boughzala, H. & Driss, A. (2012). Acta Cryst. E68, m615.]), quantum wells (two-dimensional, 2D) and a bulk (three-dimensional, 3D) topology. The organic cations are usually filling the empty space left by the inorganic network. Here we report the structure of a new hybrid bis­muthate compounds having a 0D dimensionality with respect to its inorganic part.

[Scheme 1]

2. Structural commentary

The structural unit (Fig. 1[link]) of the compound is built up by an isolated dimeric deca­chlorido­bis­muthate(III) [Bi2Cl10]4− anion, two organic 1,4-diazo­niabi­cyclo­[2.2.2]octane dications [(DABCOH2)2+] and two water mol­ecules. These components are linked by strong hydrogen bonds. The inorganic moiety is an edge-sharing di­octa­hedron located site with symmetry [\overline 1]. The two (DABCOH2)2+ dications (Fig. 4[link]) in the structural unit are related to the dimeric [Bi2Cl10]4− units by means of N2—H2⋯Cl2 and N2—H2⋯Cl1 inter­actions.

[Figure 1]
Figure 1
Plot of the mol­ecular entities of (C6H14N2)2[Bi2Cl10]. 2H2O, showing the atom numbering scheme. Atomic displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radius. [Symmetry codes: (i) −x + 1, −y + 1, −z + 1; (ii) −x + 2, y + 0.5, −z + 0.5; (iii) x − 1, −y + 0.5, z + 0.5.]
[Figure 4]
Figure 4
Hydrogen-bonding environment of the cationic organic part of the title compound.

The bond lengths and angles of the dication are within normal ranges and are comparable to those observed in similar structures. Table 1[link] summarizes the most important distances in these mol­ecules. The C—N bond lengths vary from 1.479 (11) to 1.508 (12) Å. The C—C bond lengths vary from 1.500 (13) to 1.535 (13) Å. The angles in this mol­ecule are between 109.8 (7) and 110.7 (8)° for C—N—C and between 108.1 (8) and 109.2 (8)° for N—C—C.

Table 1
Selected geometric parameters (Å)

Bi—Cl5 2.588 (2) N1—C5 1.504 (9)
Bi—Cl3 2.601 (2) N2—C4 1.489 (10)
Bi—Cl2 2.6611 (19) N2—C2 1.492 (9)
Bi—Cl4 2.704 (2) N2—C6 1.494 (10)
Bi—Cl1 2.8610 (19) C1—C2 1.517 (11)
Bi—Cl1i 2.884 (2) C6—C5 1.531 (11)
N1—C1 1.485 (9) C3—C4 1.493 (11)
N1—C3 1.503 (9)    
Symmetry code: (i) -x+1, -y+1, -z+1.

As listed in Table 1[link], the bond lengths of bis­muth to terminal chlorides [2.587 (5)–2.704 (5) Å] are shorter than the bridging ones [2.863 (4) and 2.884 (4) Å]. The Cl—Bi—Cl angles vary from 84.46 (12) to 95.4 (2)° for the cis and 173.25 (15) to 176.64 (15)° for the trans arrangement. Using Shannon's method (Shannon, 1976[Shannon, R. D. (1976). Acta Cryst. A32, 751-767.]), the distortion index of 1.87 (9) × 10−3 reveals only a small distortion in the BiCl6 octa­hedron. The bis­muth 6s2 electron pair has stereochemical activity and the hydrogen-bond orientation can be related to the bis­muth polyhedra distortion. The final Fourier difference map reveals four large peaks at approximately 1 Å from the bis­muth atom that can be attributed to the delocalization of the 6s2 electron pair as is the case in most other bis­muth-based structures.

The (C6H14N2)2[Bi2Cl10]·2H2O structure is very close to that of (C6H14N2)2[Sb2Cl10]·2H2O (Ben Rhaiem et al., 2013[Ben Rhaiem, T., Boughzala, H. & Driss, A. (2013). Acta Cryst. E69, m330.]). The cell parameters of both structures can be compared after making a necessary transformation (cba) in the Pnnm anti­mony unit cell to be comparable to the bis­muth one (Table 2[link]). Apart from the higher symmetry of the anti­mony structure, an important distortion is noted in the SbCl6 octa­hedra confirmed by the Shannon's distortion index (Shannon,1976[Shannon, R. D. (1976). Acta Cryst. A32, 751-767.]) [6.20 (9) × 10−3], more than three times larger than the one for the title bis­muth compound [1.87 (9) × 10−3] . It is worth noting that the water mol­ecule plays a more efficient role in the bis­muth based compound. In (C6H14N2)2[Sb2Cl10]·2H2O, the H2O mol­ecules are only linked to (DABCOH2)2+ and in the (C6H14N2)2[Bi2Cl10]·2H2O structure they are directly hydrogen bonded to both the organic and inorganic parts (Fig. 3[link]). The atomic radius of bis­muth is larger than that for anti­mony, and thus an increase of the cell volume is expected. In fact, the main increase is observed for the c axis [13.99 (2) Å] because the metallic coordination polyhedra are aligned along this axis. On the other hand, a roughly equivalent decrease of the b parameter is observed causing the unit-cell volume of the two compounds approximately to be the same. A general comparison of the two structures reveals that they have a similar 3D pattern, built up by isolated bi­octa­hedra, (DABCOH2)2+ cations and water mol­ecules leaving empty the same voids. On the other hand, the water mol­ecule immediate environment is more regular in the Sb structure (Fig. 3[link]b) and the (DABCOH2)2+ cation is more distorted in the Bi structure (Fig. 3[link]a) explaining the lowering of the symmetry in the title compound.

Table 2
Comparison of the cell parameters of the structures of [Bi2Cl10](C6H14N2)2·2H2O and [Sb2Cl10](C6H14N2)2·2H2O.

  [Bi2Cl10](C6H14N2)2·2H2O [Sb2Cl10](C6H14N2)2·2H2O Parameter variation (%) [(XBiXSb)/(XSb)]·100
Crystal system monoclinic ortho­rhom­bic -
Space group P21/c PnnmPnmn (cba) -
a (Å) 7.875 (3) 9.162 (1) => 7.566 (2) 4.08 (2)
b (Å) 18.379 (5) 20.689 (7) => 20.689 (7) −11.16 (3)
c (Å) 10.444 (4) 7.566 (2) => 9.162 (1) 13.99 (2)
β (Å) 105.95 (3) 90.00 -
V3) 1453.4 (9) 1446.8 (7) 0.45 (7)
[Figure 3]
Figure 3
Water-mol­ecule hydrogen-bonding inter­action between organic and inorganic parts: (a) in the title compound [symmetry codes: (i) x + 1, −y + 0.5, z − 0.5; (ii) x, −y + 0.5, z + 0.5]; (b) in the structure of (C6H14N2)2[Sb2Cl10]·2H2O

3. Supra­molecular features

As shown in Fig. 2[link], every anionic unit is linked to four water mol­ecules and two organic cations. The water mol­ecules (Fig. 3[link]) are strongly hydrogen bonded to the inorganic part by means of O—HW1⋯Cl5ii [symmetry code: (ii) x, −y + 0.5, z + 0.5] and O—HW2⋯Cl5 inter­actions. The DABCO cations are hydrogen bonded to water mol­ecules, leading to chains composed of organic moieties, inorganic clusters and H2O mol­ecules running along the b direction (Fig. 1[link]). The water mol­ecules stabilize the structure by playing a bridge role between organic and inorganic parts. Furthermore, they ensure the link in the other directions leading to a hydrogen-bond-based three-dimensional network. The structure can be seen (Fig. 5[link]) as an alternation of organic and inorganic layers parallel to (100) which are linked by a strong hydrogen-bond pattern (Table 3[link]).

Table 3
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
Ow—Hw2⋯Cl5 0.91 2.63 3.458 (8) 163
N1—H1⋯Owii 0.91 1.87 2.739 (10) 159
Ow—Hw1⋯Cl5iii 0.91 2.80 3.475 (9) 138
N2—H2⋯Cl1 0.91 2.73 3.352 (6) 127
N2—H2⋯Cl2 0.91 2.65 3.325 (7) 132
Symmetry codes: (ii) [x-1, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].
[Figure 2]
Figure 2
Hydrogen-bonding environment of the anionic part of the structure. [Symmetry codes: (i) −x + 1, −y + 1, −z + 1; (ii) −x + 1, −y + 1, −z + 1.5; (iii) x, −y + 0.5, z − 0.5.]
[Figure 5]
Figure 5
Projection of the crystal structure of the bis­muthate hybrid compound along the c axis, showing the alternation of organic and inorganic layers.

4. Synthesis and crystallization

(C6H14N2)2[Bi2Cl10]·2H2O crystals were obtained at ambient conditions by dissolving Bi(NO3)3·5H2O and DABCO (C6H12N2) in water in a 1:2 molar ratio. The pH of the solution was adjusted to 1 with HCl. The mixture was stirred and kept for several days. Colourless crystals were obtained after a few weeks.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. The isotropic displacement parameter of the hydrogen atoms for the water mol­ecule were fixed to be restrained to be approximately 1.5 times those of the parent atom and the water mol­ecule geometries were regularised using distance restraints

Table 4
Experimental details

Crystal data
Chemical formula (C6H14N2)2[Bi2Cl10]·2H2O
Mr 1036.88
Crystal system, space group Monoclinic, P21/c
Temperature (K) 293
a, b, c (Å) 7.875 (3), 18.379 (5), 10.444 (4)
β (°) 105.95 (3)
V3) 1453.4 (9)
Z 2
Radiation type Mo Kα
μ (mm−1) 13.03
Crystal size (mm) 0.5 × 0.3 × 0.2
 
Data collection
Diffractometer Enraf–Nonius CAD-4
Absorption correction ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.])
Tmin, Tmax 0.013, 0.074
No. of measured, independent and observed [I > 2σ(I)] reflections 3159, 3159, 2681
Rint 0.035
(sin θ/λ)max−1) 0.638
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.102, 1.06
No. of reflections 3159
No. of parameters 142
No. of restraints 2
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 3.48, −2.57
Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]), XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Bis(1,4-diazoniabicyclo[2.2.2]octane) di-µ-chlorido-bis[tetrachloridobismuthate(III)] dihydrate top
Crystal data top
(C6H14N2)2[Bi2Cl10]·2H2OF(000) = 968
Mr = 1036.88Dx = 2.369 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 7.875 (3) ÅCell parameters from 3158 reflections
b = 18.379 (5) Åθ = 2.2–2.7°
c = 10.444 (4) ŵ = 13.03 mm1
β = 105.95 (3)°T = 293 K
V = 1453.4 (9) Å3Prism, colourless
Z = 20.5 × 0.3 × 0.2 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
2681 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.035
Graphite monochromatorθmax = 27.0°, θmin = 2.2°
ω/2θ scansh = 101
Absorption correction: ψ scan
North et al. (1968). Number of ψ scan sets used was 5 Theta correction was applied. Averaged transmission function was used. No Fourier smoothing was applied.
k = 123
Tmin = 0.013, Tmax = 0.074l = 1213
3159 measured reflections2 standard reflections every 120 min
3159 independent reflections intensity decay: 10%
Refinement top
Refinement on F22 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.036H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.102 w = 1/[σ2(Fo2) + (0.0625P)2 + 4.4831P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
3159 reflectionsΔρmax = 3.48 e Å3
142 parametersΔρmin = 2.57 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Bi0.42097 (3)0.42073 (2)0.34670 (2)0.02518 (11)
Cl10.2576 (2)0.50934 (10)0.50438 (18)0.0329 (4)
Cl20.4635 (3)0.32483 (10)0.54389 (18)0.0361 (4)
Cl30.1117 (3)0.36755 (11)0.2279 (2)0.0441 (5)
Cl40.3821 (3)0.52442 (12)0.1571 (2)0.0438 (5)
Cl50.5941 (4)0.33648 (14)0.2288 (3)0.0635 (7)
OW0.7852 (9)0.2151 (4)0.4798 (8)0.0609 (18)
HW10.701 (11)0.194 (6)0.501 (12)0.070*
HW20.732 (14)0.251 (4)0.434 (10)0.070*
N10.0157 (8)0.3538 (3)0.8660 (6)0.0291 (12)
H10.06680.34050.91730.035*
N20.2250 (8)0.3886 (3)0.7369 (6)0.0319 (13)
H20.30820.40260.68660.038*
C10.1780 (10)0.3089 (4)0.9111 (8)0.0340 (16)
H1A0.15130.25840.88670.041*
H1B0.22380.31171.00720.041*
C60.0703 (11)0.3511 (5)0.6456 (7)0.0403 (19)
H6A0.10620.30450.61790.048*
H6B0.02240.38050.56680.048*
C30.0613 (10)0.4331 (4)0.8868 (8)0.0344 (16)
H3A0.04570.46180.87080.041*
H3B0.13100.44130.97780.041*
C40.1641 (11)0.4551 (4)0.7924 (8)0.0385 (17)
H4A0.09040.48410.72090.046*
H4B0.26500.48430.83860.046*
C50.0695 (11)0.3398 (5)0.7206 (7)0.0386 (17)
H5A0.16730.37310.68740.046*
H5B0.11470.29050.70780.046*
C20.3144 (11)0.3374 (4)0.8454 (8)0.0385 (17)
H2A0.40780.36250.91050.046*
H2B0.36630.29730.80900.046*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Bi0.02361 (17)0.02675 (16)0.02414 (16)0.00230 (9)0.00482 (11)0.00228 (8)
Cl10.0253 (8)0.0374 (9)0.0354 (9)0.0006 (7)0.0073 (7)0.0026 (7)
Cl20.0343 (9)0.0360 (9)0.0374 (9)0.0016 (7)0.0087 (7)0.0066 (7)
Cl30.0352 (10)0.0522 (11)0.0396 (10)0.0140 (9)0.0011 (8)0.0003 (8)
Cl40.0282 (9)0.0570 (12)0.0434 (10)0.0072 (8)0.0052 (8)0.0165 (9)
Cl50.0703 (16)0.0640 (15)0.0643 (15)0.0110 (12)0.0319 (13)0.0197 (12)
OW0.045 (4)0.073 (5)0.067 (5)0.017 (3)0.019 (3)0.016 (4)
N10.024 (3)0.037 (3)0.030 (3)0.001 (2)0.013 (2)0.002 (2)
N20.027 (3)0.035 (3)0.037 (3)0.003 (2)0.016 (3)0.005 (3)
C10.032 (4)0.034 (4)0.036 (4)0.010 (3)0.009 (3)0.011 (3)
C60.044 (5)0.054 (5)0.021 (3)0.002 (4)0.005 (3)0.003 (3)
C30.032 (4)0.030 (3)0.043 (4)0.002 (3)0.012 (3)0.007 (3)
C40.038 (4)0.030 (4)0.050 (5)0.003 (3)0.017 (4)0.001 (3)
C50.033 (4)0.050 (4)0.028 (4)0.005 (3)0.001 (3)0.005 (3)
C20.034 (4)0.041 (4)0.040 (4)0.012 (3)0.010 (3)0.014 (3)
Geometric parameters (Å, º) top
Bi—Cl52.588 (2)N2—H20.9800
Bi—Cl32.601 (2)C1—C21.517 (11)
Bi—Cl22.6611 (19)C1—H1A0.9700
Bi—Cl42.704 (2)C1—H1B0.9700
Bi—Cl12.8610 (19)C6—C51.531 (11)
Bi—Cl1i2.884 (2)C6—H6A0.9700
Cl1—Bii2.884 (2)C6—H6B0.9700
OW—HW10.850 (10)C3—C41.493 (11)
OW—HW20.850 (10)C3—H3A0.9700
N1—C11.485 (9)C3—H3B0.9700
N1—C31.503 (9)C4—H4A0.9700
N1—C51.504 (9)C4—H4B0.9700
N1—H10.9800C5—H5A0.9700
N2—C41.489 (10)C5—H5B0.9700
N2—C21.492 (9)C2—H2A0.9700
N2—C61.494 (10)C2—H2B0.9700
Cl5—Bi—Cl395.45 (9)C2—C1—H1B110.0
Cl5—Bi—Cl290.07 (8)H1A—C1—H1B108.4
Cl3—Bi—Cl291.28 (7)N2—C6—C5108.1 (6)
Cl5—Bi—Cl492.39 (9)N2—C6—H6A110.1
Cl3—Bi—Cl490.73 (7)C5—C6—H6A110.1
Cl2—Bi—Cl4176.66 (6)N2—C6—H6B110.1
Cl5—Bi—Cl1173.58 (7)C5—C6—H6B110.1
Cl3—Bi—Cl188.74 (7)H6A—C6—H6B108.4
Cl2—Bi—Cl184.97 (6)C4—C3—N1108.6 (6)
Cl4—Bi—Cl192.41 (7)C4—C3—H3A110.0
Cl5—Bi—Cl1i91.38 (8)N1—C3—H3A110.0
Cl3—Bi—Cl1i173.16 (6)C4—C3—H3B110.0
Cl2—Bi—Cl1i88.44 (6)N1—C3—H3B110.0
Cl4—Bi—Cl1i89.25 (6)H3A—C3—H3B108.4
Cl1—Bi—Cl1i84.43 (6)N2—C4—C3109.0 (6)
Bi—Cl1—Bii95.57 (6)N2—C4—H4A109.9
HW1—OW—HW2102 (10)C3—C4—H4A109.9
C1—N1—C3110.0 (6)N2—C4—H4B109.9
C1—N1—C5109.4 (6)C3—C4—H4B109.9
C3—N1—C5109.5 (6)H4A—C4—H4B108.3
C1—N1—H1109.3N1—C5—C6108.0 (6)
C3—N1—H1109.3N1—C5—H5A110.1
C5—N1—H1109.3C6—C5—H5A110.1
C4—N2—C2110.9 (6)N1—C5—H5B110.1
C4—N2—C6109.5 (6)C6—C5—H5B110.1
C2—N2—C6109.1 (6)H5A—C5—H5B108.4
C4—N2—H2109.1N2—C2—C1108.5 (6)
C2—N2—H2109.1N2—C2—H2A110.0
C6—N2—H2109.1C1—C2—H2A110.0
N1—C1—C2108.6 (5)N2—C2—H2B110.0
N1—C1—H1A110.0C1—C2—H2B110.0
C2—C1—H1A110.0H2A—C2—H2B108.4
N1—C1—H1B110.0
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
Ow—Hw2···Cl50.912.633.458 (8)163
N1—H1···Owii0.911.872.739 (10)159
Ow—Hw1···Cl5iii0.912.803.475 (9)138
N2—H2···Cl10.912.733.352 (6)127
N2—H2···Cl20.912.653.325 (7)132
Symmetry codes: (ii) x1, y+1/2, z+1/2; (iii) x, y+1/2, z+1/2.
Comparison of the cell parameters of the structures of [Bi2Cl10](C6H14N2)2.2H2O and [Sb2Cl10](C6H14N2)2.2H2O. top
Structural unit[Bi2Cl10](C6H14N2)2.2H2O[Sb2Cl10](C6H14N2)2.2H2OParameter variation (%) [(XBi-XSb)/(XSb)].100
Crystal systemmonoclinicorthorhombic-
Space groupP 21/cPnnm => Pnmn (cba)-
a (Å)7.875 (3)9.162 (1) => 7.566 (2)4.08 (2)
b (Å)18.379 (5)20.689 (7) => 20.689 (7)-11.16 (3)
c (Å)10.444 (4)7.566 (2) => 9.162 (1)13.99 (2)
β (Å)105.95 (3)90.00-
V (Å3)1453.4 (9)1446.8 (7)0.45 (7)
 

References

First citationAhmed, I. A., Blachnik, R. & Reuter, H. (2001). Z. Anorg. Allg. Chem. 627, 2057–2062.  Web of Science CSD CrossRef CAS Google Scholar
First citationBen Rhaiem, T., Boughzala, H. & Driss, A. (2013). Acta Cryst. E69, m330.  CSD CrossRef IUCr Journals Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationChaabouni, S., Kamoun, S. & Jaud, J. (1998). J. Chem. Crystallogr. 28, 209–212.  Web of Science CSD CrossRef CAS Google Scholar
First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFerjani, H., Boughzala, H. & Driss, A. (2012). Acta Cryst. E68, m615.  CSD CrossRef IUCr Journals Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationIshihara, T., Takahashi, J. & Goto, T. (1990). Phys. Rev. B42. 11099–11107.  Google Scholar
First citationJakubas, R., Piecha, A., Pietraszko, A. & Bator, G. (2005). Phys. Rev. B72, 104107–104115.  CrossRef Google Scholar
First citationJakubas, R. & Sobczyk, L. (1990). Phase Transitions, 20, 163–193.  CrossRef CAS Web of Science Google Scholar
First citationLacroix, P. G., Clément, R., Nakatani, K., Zyss, J. & Ledoux, I. (1994). Science, 263, 658–660.  CrossRef PubMed CAS Web of Science Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationShannon, R. D. (1976). Acta Cryst. A32, 751–767.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds