research communications
μ2-3,3-dimethyl-4-(propan-2-ylidene)thietane-2,2-dithiolato-κ4S:S′:S:S′]bis[tricarbonyliron(I)](Fe—Fe)
of [aSchool of Chemical Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
*Correspondence e-mail: jbertke@illinois.edu
The title complex, [Fe2(C8H12S3)(CO)6] or [{Fe(CO)3}2(μ-L)] [L = 3,3-dimethyl-4-(propan-2-ylidene)thietane-2,2-bis(thiolato)], consists of two Fe(CO)3 moieties double-bridged by a dithiolate ligand. Each of the two FeI atoms has a distorted anti-prismatic coordination environment consisting of three carbonyl groups, two S atoms of the dithiolate ligand and the neighboring FeI atom [Fe—Fe = 2.4921 (4) Å]. Weak C—H⋯O intermolecular interactions result in the formation of dimers. This is the second reported with the 3,3-dimethyl-4-(propan-2-ylidene)thietane-2,2-bis(thiolate) ligand and the first in which it bridges two metal atoms.
Keywords: crystal structure; iron(I); thietane; hexacarbonyl.
CCDC reference: 1429290
1. Chemical context
Iron–sulfur complexes have attracted considerable attention over the past decades (Ogino et al., 1998). This is mainly because such complexes possess the distinctive iron–sulfur cluster core, which is biologically related to the active site of [FeFe]-hydrogenases (Fontecilla-Camps et al., 2007). In particular, [FeFe]-hydrogenases are a class of natural enzymes that can reversibly catalyse the evolution and uptake of hydrogen in several microorganisms (Cammack, 1999; Stephenson & Stickland, 1931). In view of this, a large number of iron–sulfur cluster complexes have been designed and synthesized as the active site models of [FeFe]-hydrogenases (e.g. Capon et al., 2005; Darensbourg et al., 2000; Gloaguen & Rauchfuss, 2009; Rauchfuss, 2015; Tard & Pickett, 2009).
Most recently, we investigated the preparation of iron–sulfur complexes via the reaction of 1,3-cyclobutanedithiolate compounds with [Fe3(CO)12] and have obtained an unexpected iron–sulfur complex, [Fe2(CO)6(C8H12S3)] or [{Fe(CO)3}2(μ-L)] [L = 3,3-dimethyl-4-(propan-2-ylidene)thietane-2,2-bis(thiolate), C8H12S3], (I).
Fig. 1 shows a possible formation process for the 3,3-dimethyl-4-(propan-2-ylidene)thietane-2,2-bis(thiolate) ligand via rearrangement of the dithione starting material and its reaction to form compound (I). Similar rearrangements of dithiones have been reported previously (Elam & Davis, 1967). Herein, we report the synthesis conditions and of the title complex (I).
2. Structural commentary
The molecular structure of (I) consists of two six-coordinate iron(I) atoms, each in a distorted trigonal anti-prismatic coordination environment (Fig. 2). The coordination sphere of Fe1 is filled by three carbonyl C atoms [Fe1—C1 = 1.8158 (19), Fe1—C2 = 1.7900 (18), Fe1—C3 = 1.8047 (18) Å), two S atoms of a bridging dithiolate ligand [Fe1—S1 = 2.2675 (5), Fe1—S2 = 2.2636 (5) Å], and the neighboring FeI atom [Fe1—Fe2 = 2.4921 (4) Å]. The coordination sphere of Fe2 is similarly filled by three carbonyl C atoms [Fe2—C4 = 1.7986 (19), Fe2—C5 = 1.8013 (19), Fe2—C6 = 1.8054 (19) Å], two S atoms [Fe2—S1 = 2.2624 (5), Fe2—S2 = 2.2601 (5) Å], and the neighboring FeI atom.
The C7—S3—C9 bond angle of 77.86 (8)° is significantly smaller than the other angles making up the thietane ring [S3—C7—C8 = 92.82 (10)°; S3—C9—C8 = 96.26 (11)°; C7—C8—C9 = 93.06 (12)°]. The central ring of the anion is nearly planar with a S3—C7—C8—C9 torsion angle of −0.74 (11)°. The plane through S1—C7—S2 is rotated by 89.94 (11)° with respect to the thietane ring. Similarly, the dihedral angle between the thietane ring and the plane through C11—C8—C12 is 89.74 (16)°. The =C(CH3)2 group (C13—C10—C14) is only slightly out of the plane of the central ring, making a dihedral angle of 4.63 (18)°.
3. Supramolecular features
There are no significant supramolecular features to discuss with the extended structure of (I). There are weak C—H⋯O intermolecular interactions between one methyl group from the dithiolate ligand and one of the carbonyl oxygen atoms, Table 1. These interactions result in the formation of dimers of (I), Fig. 3.
4. Database survey
Only one other ). The compound is a mononuclear square-planar platinum(II) bis(triphenylphosphine) complex (Okuma et al., 2007).
with 3,3-dimethyl-4-(propan-2-ylidene)thietane-2,2-bis(thiolate) is reported in the Cambridge Crystallographic Database (Groom & Allen, 2014A search of the Cambridge Crystallographic Database (Groom & Allen, 2014) returns eighteen hexacarbonyldi-iron(I) complexes in which there is a bridging S—C—S dithiolate moiety. The range of Fe—Fe distances for these compounds is 2.461 Å − 2.501 Å [average 2.482 Å] (Alvarez-Toledano et al., 1999; Shi et al., 2011). The Fe1—Fe2 distance in (I) of 2.4921 (4) Å falls within this range. The Fe—S distances for the database compounds range from 2.244 Å − 2.296 Å [average 2.271 Å] (Broadhurst et al., 1982; Nekhaev et al., 1991). All of the Fe—S distances in (I) [average 2.263 Å] fall within this range.
5. Synthesis and crystallization
A mixture of tetramethyl-1,3-cyclobutanedithione (130 mg, 0.76 mmol) and Fe3(CO)12 (383 mg, 0.76 mmol) was dissolved in 15 ml dry toluene. The reaction mixture was refluxed for 2 h, and the solution color change from a green to a red was observed. After removal of the solvent under vacuum, the resulting residue was chromatographed by silica gel column eluting with hexane–CH2Cl2 (10:1, v/v). The main red band was collected to get an orange–red solid (10 mg, 0.02 mmol, 3% yield). Crystals suitable for X-ray diffraction were grown by slow evaporation of hexane of the orange–red solid at room temperature.
6. Refinement
Crystal data, data collection and structure . Methyl H atom positions were optimized by rotation about R—C bonds with idealized C—H, R⋯H and H⋯H distances and included as as riding idealized contributors [C—Hmethyl = 0.98 Å with Uiso(H) = 1.5Ueq(C)]. The 001 reflection was omitted from the final because it was obscured by the shadow of the beam stop.
details are summarized in Table 2Supporting information
CCDC reference: 1429290
https://doi.org/10.1107/S2056989015018496/wm5218sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989015018496/wm5218Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989015018496/wm5218Isup3.cdx
Data collection: APEX2 (Bruker, 2014); cell
SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014) and SHELXTL (Sheldrick, 2008); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: SHELXTL (Sheldrick, 2008), CrystalMaker (CrystalMaker, 1994); software used to prepare material for publication: XCIF (Bruker, 2014), publCIF (Westrip, 2010).[Fe2(C8H12S3)(CO)6] | Z = 2 |
Mr = 484.12 | F(000) = 488 |
Triclinic, P1 | Dx = 1.735 Mg m−3 |
a = 9.3619 (10) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 9.7681 (11) Å | Cell parameters from 9920 reflections |
c = 10.6249 (12) Å | θ = 2.3–27.1° |
α = 88.092 (6)° | µ = 1.93 mm−1 |
β = 78.668 (6)° | T = 100 K |
γ = 76.559 (6)° | Plate, orange |
V = 926.51 (18) Å3 | 0.27 × 0.13 × 0.05 mm |
Bruker Kappa APEXII CCD diffractometer | 4095 independent reflections |
Radiation source: fine-focus sealed tube | 3603 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.034 |
profile data from φ and ω scans | θmax = 27.2°, θmin = 2.7° |
Absorption correction: integration (SADABS; Bruker, 2014) | h = −12→11 |
Tmin = 0.752, Tmax = 0.935 | k = −12→12 |
26313 measured reflections | l = −13→13 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.022 | H-atom parameters constrained |
wR(F2) = 0.055 | w = 1/[σ2(Fo2) + (0.0274P)2 + 0.4094P] where P = (Fo2 + 2Fc2)/3 |
S = 1.04 | (Δ/σ)max = 0.001 |
4095 reflections | Δρmax = 0.46 e Å−3 |
230 parameters | Δρmin = −0.26 e Å−3 |
Experimental. One distinct cell was identified using APEX2 (Bruker, 2014). Twelve frame series were integrated and filtered for statistical outliers using SAINT (Bruker, 2014) then corrected for absorption by integration using SAINT/SADABS v2014/2 (Bruker, 2014) to sort, merge, and scale the combined data. No decay correction was applied. |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Structure was phased by direct methods (Sheldrick, 2015). Systematic conditions suggested the ambiguous space group. The space group choice was confirmed by successful convergence of the full-matrix least-squares refinement on F2. The final map had no significant features. A final analysis of variance between observed and calculated structure factors showed little dependence on amplitude and resolution. |
x | y | z | Uiso*/Ueq | ||
Fe1 | 0.76261 (3) | 0.69641 (2) | 0.81874 (2) | 0.01268 (7) | |
Fe2 | 0.54756 (3) | 0.67026 (2) | 0.72314 (2) | 0.01297 (7) | |
S1 | 0.78928 (4) | 0.57564 (4) | 0.63376 (4) | 0.01365 (9) | |
S2 | 0.66378 (4) | 0.84946 (4) | 0.67671 (4) | 0.01170 (9) | |
S3 | 0.98623 (4) | 0.77978 (5) | 0.51958 (4) | 0.01510 (9) | |
O1 | 1.06505 (15) | 0.74224 (16) | 0.81135 (13) | 0.0298 (3) | |
O2 | 0.79552 (19) | 0.44486 (15) | 0.97850 (14) | 0.0394 (4) | |
O3 | 0.60206 (15) | 0.87309 (13) | 1.04475 (12) | 0.0228 (3) | |
O4 | 0.49994 (16) | 0.40404 (14) | 0.84072 (15) | 0.0342 (4) | |
O5 | 0.30956 (14) | 0.84235 (14) | 0.91503 (13) | 0.0236 (3) | |
O6 | 0.37887 (15) | 0.67444 (16) | 0.51589 (13) | 0.0289 (3) | |
C1 | 0.9483 (2) | 0.72664 (19) | 0.81121 (16) | 0.0194 (4) | |
C2 | 0.7844 (2) | 0.54209 (19) | 0.91537 (17) | 0.0229 (4) | |
C3 | 0.66473 (19) | 0.80602 (18) | 0.95676 (17) | 0.0158 (3) | |
C4 | 0.5173 (2) | 0.50717 (19) | 0.79429 (18) | 0.0217 (4) | |
C5 | 0.39957 (19) | 0.77459 (18) | 0.83967 (17) | 0.0176 (4) | |
C6 | 0.4451 (2) | 0.67316 (19) | 0.59538 (17) | 0.0193 (4) | |
C7 | 0.80188 (18) | 0.74138 (17) | 0.55009 (16) | 0.0126 (3) | |
C8 | 0.78750 (18) | 0.75972 (17) | 0.40463 (15) | 0.0133 (3) | |
C9 | 0.94031 (18) | 0.79590 (17) | 0.36484 (16) | 0.0145 (3) | |
C10 | 1.01847 (19) | 0.83374 (17) | 0.25666 (16) | 0.0152 (3) | |
C11 | 0.7806 (2) | 0.62209 (19) | 0.34363 (17) | 0.0189 (4) | |
H11A | 0.6862 | 0.5968 | 0.3818 | 0.028* | |
H11B | 0.8648 | 0.5469 | 0.3591 | 0.028* | |
H11C | 0.7865 | 0.6344 | 0.2510 | 0.028* | |
C12 | 0.65819 (19) | 0.8813 (2) | 0.38437 (17) | 0.0200 (4) | |
H12A | 0.6693 | 0.9681 | 0.4210 | 0.030* | |
H12B | 0.5630 | 0.8603 | 0.4269 | 0.030* | |
H12C | 0.6594 | 0.8933 | 0.2923 | 0.030* | |
C13 | 0.9618 (2) | 0.8528 (2) | 0.13289 (17) | 0.0205 (4) | |
H13A | 0.8732 | 0.8135 | 0.1409 | 0.031* | |
H13B | 1.0401 | 0.8039 | 0.0632 | 0.031* | |
H13C | 0.9352 | 0.9533 | 0.1138 | 0.031* | |
C14 | 1.1685 (2) | 0.8657 (2) | 0.25251 (18) | 0.0218 (4) | |
H14A | 1.1921 | 0.8566 | 0.3387 | 0.033* | |
H14B | 1.1662 | 0.9620 | 0.2225 | 0.033* | |
H14C | 1.2452 | 0.7994 | 0.1937 | 0.033* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Fe1 | 0.01333 (12) | 0.01381 (12) | 0.01084 (12) | −0.00155 (9) | −0.00425 (9) | 0.00130 (9) |
Fe2 | 0.01163 (12) | 0.01325 (12) | 0.01452 (13) | −0.00397 (9) | −0.00246 (9) | 0.00064 (9) |
S1 | 0.0144 (2) | 0.01203 (18) | 0.0139 (2) | −0.00127 (15) | −0.00330 (15) | 0.00014 (15) |
S2 | 0.01227 (19) | 0.01146 (18) | 0.01142 (19) | −0.00226 (15) | −0.00305 (15) | 0.00056 (15) |
S3 | 0.01174 (19) | 0.0236 (2) | 0.01148 (19) | −0.00601 (16) | −0.00357 (15) | 0.00040 (16) |
O1 | 0.0193 (7) | 0.0544 (9) | 0.0193 (7) | −0.0119 (6) | −0.0086 (5) | 0.0002 (6) |
O2 | 0.0551 (10) | 0.0243 (8) | 0.0281 (8) | 0.0052 (7) | −0.0018 (7) | 0.0122 (6) |
O3 | 0.0259 (7) | 0.0243 (7) | 0.0171 (7) | −0.0016 (6) | −0.0059 (5) | −0.0038 (5) |
O4 | 0.0307 (8) | 0.0213 (7) | 0.0478 (9) | −0.0091 (6) | 0.0012 (7) | 0.0108 (7) |
O5 | 0.0179 (6) | 0.0262 (7) | 0.0248 (7) | −0.0057 (5) | 0.0016 (5) | −0.0053 (6) |
O6 | 0.0243 (7) | 0.0419 (8) | 0.0265 (7) | −0.0134 (6) | −0.0117 (6) | −0.0014 (6) |
C1 | 0.0213 (9) | 0.0254 (9) | 0.0107 (8) | −0.0020 (7) | −0.0054 (7) | 0.0003 (7) |
C2 | 0.0263 (10) | 0.0218 (9) | 0.0162 (9) | 0.0022 (8) | −0.0030 (7) | −0.0004 (7) |
C3 | 0.0159 (8) | 0.0174 (8) | 0.0166 (9) | −0.0047 (7) | −0.0087 (7) | 0.0058 (7) |
C4 | 0.0173 (9) | 0.0211 (9) | 0.0255 (10) | −0.0043 (7) | −0.0009 (7) | −0.0017 (8) |
C5 | 0.0172 (9) | 0.0181 (8) | 0.0211 (9) | −0.0092 (7) | −0.0062 (7) | 0.0034 (7) |
C6 | 0.0165 (9) | 0.0205 (9) | 0.0208 (9) | −0.0067 (7) | 0.0000 (7) | −0.0013 (7) |
C7 | 0.0120 (8) | 0.0135 (7) | 0.0124 (8) | −0.0026 (6) | −0.0030 (6) | 0.0009 (6) |
C8 | 0.0127 (8) | 0.0173 (8) | 0.0096 (8) | −0.0018 (6) | −0.0030 (6) | −0.0007 (6) |
C9 | 0.0146 (8) | 0.0168 (8) | 0.0129 (8) | −0.0029 (6) | −0.0047 (6) | −0.0008 (6) |
C10 | 0.0154 (8) | 0.0142 (8) | 0.0149 (8) | −0.0013 (6) | −0.0026 (6) | −0.0016 (6) |
C11 | 0.0202 (9) | 0.0245 (9) | 0.0145 (8) | −0.0093 (7) | −0.0043 (7) | −0.0025 (7) |
C12 | 0.0166 (9) | 0.0281 (10) | 0.0135 (8) | 0.0000 (7) | −0.0053 (7) | 0.0044 (7) |
C13 | 0.0194 (9) | 0.0275 (10) | 0.0134 (8) | −0.0036 (7) | −0.0028 (7) | 0.0033 (7) |
C14 | 0.0185 (9) | 0.0269 (10) | 0.0213 (9) | −0.0091 (7) | −0.0021 (7) | 0.0010 (8) |
Fe1—C2 | 1.7900 (18) | O6—C6 | 1.140 (2) |
Fe1—C3 | 1.8047 (18) | C7—C8 | 1.578 (2) |
Fe1—C1 | 1.8158 (19) | C8—C9 | 1.529 (2) |
Fe1—S2 | 2.2636 (5) | C8—C12 | 1.529 (2) |
Fe1—S1 | 2.2675 (5) | C8—C11 | 1.532 (2) |
Fe1—Fe2 | 2.4921 (4) | C9—C10 | 1.327 (2) |
Fe2—C4 | 1.7986 (19) | C10—C14 | 1.500 (2) |
Fe2—C5 | 1.8013 (19) | C10—C13 | 1.502 (2) |
Fe2—C6 | 1.8054 (19) | C11—H11A | 0.9800 |
Fe2—S2 | 2.2601 (5) | C11—H11B | 0.9800 |
Fe2—S1 | 2.2624 (5) | C11—H11C | 0.9800 |
S1—C7 | 1.8376 (17) | C12—H12A | 0.9800 |
S2—C7 | 1.8365 (17) | C12—H12B | 0.9800 |
S3—C9 | 1.7725 (17) | C12—H12C | 0.9800 |
S3—C7 | 1.8159 (17) | C13—H13A | 0.9800 |
O1—C1 | 1.139 (2) | C13—H13B | 0.9800 |
O2—C2 | 1.141 (2) | C13—H13C | 0.9800 |
O3—C3 | 1.138 (2) | C14—H14A | 0.9800 |
O4—C4 | 1.139 (2) | C14—H14B | 0.9800 |
O5—C5 | 1.140 (2) | C14—H14C | 0.9800 |
C2—Fe1—C3 | 91.53 (8) | C8—C7—S3 | 92.82 (10) |
C2—Fe1—C1 | 97.19 (9) | C8—C7—S2 | 120.98 (11) |
C3—Fe1—C1 | 98.73 (8) | S3—C7—S2 | 115.14 (9) |
C2—Fe1—S2 | 156.52 (7) | C8—C7—S1 | 121.18 (11) |
C3—Fe1—S2 | 94.05 (5) | S3—C7—S1 | 115.21 (8) |
C1—Fe1—S2 | 104.45 (6) | S2—C7—S1 | 93.42 (8) |
C2—Fe1—S1 | 94.27 (6) | C9—C8—C12 | 112.78 (14) |
C3—Fe1—S1 | 156.84 (5) | C9—C8—C11 | 112.89 (14) |
C1—Fe1—S1 | 102.74 (6) | C12—C8—C11 | 111.99 (14) |
S2—Fe1—S1 | 72.347 (18) | C9—C8—C7 | 93.06 (12) |
C2—Fe1—Fe2 | 100.05 (7) | C12—C8—C7 | 112.71 (13) |
C3—Fe1—Fe2 | 100.38 (5) | C11—C8—C7 | 112.13 (13) |
C1—Fe1—Fe2 | 153.78 (5) | C10—C9—C8 | 135.38 (15) |
S2—Fe1—Fe2 | 56.505 (14) | C10—C9—S3 | 128.31 (14) |
S1—Fe1—Fe2 | 56.527 (14) | C8—C9—S3 | 96.26 (11) |
C4—Fe2—C5 | 92.90 (8) | C9—C10—C14 | 121.21 (16) |
C4—Fe2—C6 | 97.79 (8) | C9—C10—C13 | 123.00 (16) |
C5—Fe2—C6 | 98.27 (8) | C14—C10—C13 | 115.75 (15) |
C4—Fe2—S2 | 156.52 (6) | C8—C11—H11A | 109.5 |
C5—Fe2—S2 | 92.61 (6) | C8—C11—H11B | 109.5 |
C6—Fe2—S2 | 103.96 (6) | H11A—C11—H11B | 109.5 |
C4—Fe2—S1 | 93.49 (6) | C8—C11—H11C | 109.5 |
C5—Fe2—S1 | 154.57 (6) | H11A—C11—H11C | 109.5 |
C6—Fe2—S1 | 105.19 (6) | H11B—C11—H11C | 109.5 |
S2—Fe2—S1 | 72.505 (18) | C8—C12—H12A | 109.5 |
C4—Fe2—Fe1 | 99.98 (6) | C8—C12—H12B | 109.5 |
C5—Fe2—Fe1 | 97.92 (6) | H12A—C12—H12B | 109.5 |
C6—Fe2—Fe1 | 155.23 (6) | C8—C12—H12C | 109.5 |
S2—Fe2—Fe1 | 56.639 (13) | H12A—C12—H12C | 109.5 |
S1—Fe2—Fe1 | 56.720 (15) | H12B—C12—H12C | 109.5 |
C7—S1—Fe2 | 90.00 (5) | C10—C13—H13A | 109.5 |
C7—S1—Fe1 | 86.81 (5) | C10—C13—H13B | 109.5 |
Fe2—S1—Fe1 | 66.753 (15) | H13A—C13—H13B | 109.5 |
C7—S2—Fe2 | 90.10 (5) | C10—C13—H13C | 109.5 |
C7—S2—Fe1 | 86.96 (5) | H13A—C13—H13C | 109.5 |
Fe2—S2—Fe1 | 66.856 (15) | H13B—C13—H13C | 109.5 |
C9—S3—C7 | 77.86 (8) | C10—C14—H14A | 109.5 |
O1—C1—Fe1 | 176.96 (16) | C10—C14—H14B | 109.5 |
O2—C2—Fe1 | 178.63 (18) | H14A—C14—H14B | 109.5 |
O3—C3—Fe1 | 178.75 (16) | C10—C14—H14C | 109.5 |
O4—C4—Fe2 | 178.76 (18) | H14A—C14—H14C | 109.5 |
O5—C5—Fe2 | 177.61 (15) | H14B—C14—H14C | 109.5 |
O6—C6—Fe2 | 179.05 (16) | ||
C9—S3—C7—C8 | 0.66 (9) | S3—C7—C8—C12 | −117.02 (13) |
C9—S3—C7—S2 | −125.68 (10) | S2—C7—C8—C12 | 4.7 (2) |
C9—S3—C7—S1 | 127.24 (10) | S1—C7—C8—C12 | 121.10 (14) |
Fe2—S2—C7—C8 | 99.53 (12) | S3—C7—C8—C11 | 115.51 (12) |
Fe1—S2—C7—C8 | 166.35 (13) | S2—C7—C8—C11 | −122.78 (14) |
Fe2—S2—C7—S3 | −150.28 (8) | S1—C7—C8—C11 | −6.38 (19) |
Fe1—S2—C7—S3 | −83.46 (8) | C12—C8—C9—C10 | −60.3 (3) |
Fe2—S2—C7—S1 | −30.32 (6) | C11—C8—C9—C10 | 67.9 (2) |
Fe1—S2—C7—S1 | 36.49 (5) | C7—C8—C9—C10 | −176.5 (2) |
Fe2—S1—C7—C8 | −99.43 (12) | C12—C8—C9—S3 | 116.98 (13) |
Fe1—S1—C7—C8 | −166.14 (12) | C11—C8—C9—S3 | −114.84 (13) |
Fe2—S1—C7—S3 | 150.19 (8) | C7—C8—C9—S3 | 0.77 (11) |
Fe1—S1—C7—S3 | 83.47 (8) | C7—S3—C9—C10 | 176.85 (18) |
Fe2—S1—C7—S2 | 30.29 (6) | C7—S3—C9—C8 | −0.68 (10) |
Fe1—S1—C7—S2 | −36.43 (5) | C8—C9—C10—C14 | 178.40 (17) |
S3—C7—C8—C9 | −0.74 (11) | S3—C9—C10—C14 | 1.9 (3) |
S2—C7—C8—C9 | 120.97 (13) | C8—C9—C10—C13 | 0.8 (3) |
S1—C7—C8—C9 | −122.63 (13) | S3—C9—C10—C13 | −175.74 (13) |
D—H···A | D—H | H···A | D···A | D—H···A |
C13—H13B···O2i | 0.98 | 2.56 | 3.334 (2) | 136 |
Symmetry code: (i) −x+2, −y+1, −z+1. |
Acknowledgements
This work was supported by the National Institutes of Health through GM061153.
References
Alvarez-Toledano, C., Enriquez, J., Toscano, R. A., Martinez-Garcia, M., Cortes-Cortes, E., Osornio, Y. M., Garcia-Mellado, O. & Gutierrez-Perez, R. (1999). J. Organomet. Chem. 577, 38–43. CAS Google Scholar
Broadhurst, P. V., Johson, B. F. G., Lewis, J. & Raithby, P. R. (1982). J. Chem. Soc. Chem. Commun. pp. 140–141. CrossRef Web of Science Google Scholar
Bruker (2014). APEX2, SADABS, SAINT and XCIF. Bruker AXS, Inc., Madison, Wisconsin, USA. Google Scholar
Cammack, R. (1999). Nature, 397, 214–215. Web of Science CrossRef CAS PubMed Google Scholar
Capon, J. F., Gloaguen, F., Schollhammer, P. & Talarmin, J. (2005). Coord. Chem. Rev. 249, 1664–1676. Web of Science CrossRef CAS Google Scholar
CrystalMaker (1994). CrystalMaker. CrystalMaker Software Ltd, Oxford, England (www.CrystalMaker.com). Google Scholar
Darensbourg, M. Y., Lyon, E. J. & Smee, J. J. (2000). Coord. Chem. Rev. 206–207, 533–561. Web of Science CrossRef CAS Google Scholar
Elam, E. U. & Davis, H. E. (1967). J. Org. Chem. 32, 1562–1565. CrossRef CAS Web of Science Google Scholar
Fontecilla-Camps, J. C., Volbeda, A., Cavazza, C. & Nicolet, Y. (2007). Chem. Rev. 107, 4273–4303. Web of Science CrossRef PubMed CAS Google Scholar
Gloaguen, F. & Rauchfuss, T. B. (2009). Chem. Soc. Rev. 38, 100–108. Web of Science CrossRef PubMed CAS Google Scholar
Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671. Web of Science CSD CrossRef CAS Google Scholar
Nekhaev, A. I., Alekseeva, S. D., Kolobkov, B. I., Aleksandrov, G. G., Toshev, M. T., Dustov, H. B. & Parpiev, N. A. (1991). J. Organomet. Chem. 401, 65–73. CSD CrossRef CAS Web of Science Google Scholar
Ogino, H., Inomata, S. & Tobita, H. (1998). Chem. Rev. 98, 2093–2122. Web of Science CrossRef PubMed CAS Google Scholar
Okuma, K., Nojima, A., Shigetomi, T. & Yokomori, Y. (2007). Tetrahedron, 63, 11748–11753. Web of Science CSD CrossRef CAS Google Scholar
Rauchfuss, T. B. (2015). Acc. Chem. Res. 48, 2107–2116. Web of Science CrossRef CAS PubMed Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Shi, Y.-C., Cheng, H.-R., Yuan, L.-M. & Li, Q.-K. (2011). Acta Cryst. E67, m1534. Web of Science CSD CrossRef IUCr Journals Google Scholar
Stephenson, M. & Stickland, L. H. (1931). Biochem. J. 25, 205–214. CrossRef PubMed CAS Google Scholar
Tard, C. & Pickett, C. J. (2009). Chem. Rev. 109, 2245–2274. Web of Science CrossRef PubMed CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.