research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of [μ2-3,3-di­methyl-4-(propan-2-yl­­idene)thietane-2,2-di­thiol­ato-κ4S:S′:S:S′]bis­[tri­carbonyl­iron(I)](FeFe)

aSchool of Chemical Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
*Correspondence e-mail: jbertke@illinois.edu

Edited by M. Weil, Vienna University of Technology, Austria (Received 16 September 2015; accepted 2 October 2015; online 10 October 2015)

The title complex, [Fe2(C8H12S3)(CO)6] or [{Fe(CO)3}2(μ-L)] [L = 3,3-dimethyl-4-(propan-2-yl­idene)thietane-2,2-bis­(thiol­ato)], consists of two Fe(CO)3 moieties double-bridged by a di­thiol­ate ligand. Each of the two FeI atoms has a distorted anti-prismatic coordination environment consisting of three carbonyl groups, two S atoms of the di­thiol­ate ligand and the neighboring FeI atom [Fe—Fe = 2.4921 (4) Å]. Weak C—H⋯O inter­molecular inter­actions result in the formation of dimers. This is the second crystal structure reported with the 3,3-dimethyl-4-(propan-2-yl­idene)thietane-2,2-bis­(thiol­ate) ligand and the first in which it bridges two metal atoms.

1. Chemical context

Iron–sulfur complexes have attracted considerable attention over the past decades (Ogino et al., 1998[Ogino, H., Inomata, S. & Tobita, H. (1998). Chem. Rev. 98, 2093-2122.]). This is mainly because such complexes possess the distinctive iron–sulfur cluster core, which is biologically related to the active site of [FeFe]-hydrogenases (Fontecilla-Camps et al., 2007[Fontecilla-Camps, J. C., Volbeda, A., Cavazza, C. & Nicolet, Y. (2007). Chem. Rev. 107, 4273-4303.]). In particular, [FeFe]-hydrogenases are a class of natural enzymes that can reversibly catalyse the evolution and uptake of hydrogen in several microorganisms (Cammack, 1999[Cammack, R. (1999). Nature, 397, 214-215.]; Stephenson & Stickland, 1931[Stephenson, M. & Stickland, L. H. (1931). Biochem. J. 25, 205-214.]). In view of this, a large number of iron–sulfur cluster complexes have been designed and synthesized as the active site models of [FeFe]-hydrogenases (e.g. Capon et al., 2005[Capon, J. F., Gloaguen, F., Schollhammer, P. & Talarmin, J. (2005). Coord. Chem. Rev. 249, 1664-1676.]; Darensbourg et al., 2000[Darensbourg, M. Y., Lyon, E. J. & Smee, J. J. (2000). Coord. Chem. Rev. 206-207, 533-561.]; Gloaguen & Rauchfuss, 2009[Gloaguen, F. & Rauchfuss, T. B. (2009). Chem. Soc. Rev. 38, 100-108.]; Rauchfuss, 2015[Rauchfuss, T. B. (2015). Acc. Chem. Res. 48, 2107-2116.]; Tard & Pickett, 2009[Tard, C. & Pickett, C. J. (2009). Chem. Rev. 109, 2245-2274.]).

Most recently, we investigated the preparation of iron–sulfur complexes via the reaction of 1,3-cyclo­butane­dithiol­ate compounds with [Fe3(CO)12] and have obtained an unexpected iron–sulfur complex, [Fe2(CO)6(C8H12S3)] or [{Fe(CO)3}2(μ-L)] [L = 3,3-dimethyl-4-(propan-2-yl­idene)thietane-2,2-bis­(thiol­ate), C8H12S3], (I)[link].

[Scheme 1]

Fig. 1[link] shows a possible formation process for the 3,3-dimethyl-4-(propan-2-yl­idene)thietane-2,2-bis­(thiol­ate) ligand via rearrangement of the di­thione starting material and its reaction to form compound (I)[link]. Similar rearrangements of di­thio­nes have been reported previously (Elam & Davis, 1967[Elam, E. U. & Davis, H. E. (1967). J. Org. Chem. 32, 1562-1565.]). Herein, we report the synthesis conditions and crystal structure of the title complex (I)[link].

[Figure 1]
Figure 1
Schematic representation of a possible formation process for the 3,3-dimethyl-4-(propan-2-yl­idene)thietane-2,2-bis­(thiol­ato) ligand from the starting material.

2. Structural commentary

The mol­ecular structure of (I)[link] consists of two six-coordinate iron(I) atoms, each in a distorted trigonal anti-prismatic coordination environment (Fig. 2[link]). The coordination sphere of Fe1 is filled by three carbonyl C atoms [Fe1—C1 = 1.8158 (19), Fe1—C2 = 1.7900 (18), Fe1—C3 = 1.8047 (18) Å), two S atoms of a bridging di­thiol­ate ligand [Fe1—S1 = 2.2675 (5), Fe1—S2 = 2.2636 (5) Å], and the neighboring FeI atom [Fe1—Fe2 = 2.4921 (4) Å]. The coordination sphere of Fe2 is similarly filled by three carbonyl C atoms [Fe2—C4 = 1.7986 (19), Fe2—C5 = 1.8013 (19), Fe2—C6 = 1.8054 (19) Å], two S atoms [Fe2—S1 = 2.2624 (5), Fe2—S2 = 2.2601 (5) Å], and the neighboring FeI atom.

[Figure 2]
Figure 2
The mol­ecular structure of (I)[link] with displacement ellipsoids drawn at the 35% probability level for non-H atoms and spheres of arbitrary size for H atoms.

The C7—S3—C9 bond angle of 77.86 (8)° is significantly smaller than the other angles making up the thietane ring [S3—C7—C8 = 92.82 (10)°; S3—C9—C8 = 96.26 (11)°; C7—C8—C9 = 93.06 (12)°]. The central ring of the anion is nearly planar with a S3—C7—C8—C9 torsion angle of −0.74 (11)°. The plane through S1—C7—S2 is rotated by 89.94 (11)° with respect to the thietane ring. Similarly, the dihedral angle between the thietane ring and the plane through C11—C8—C12 is 89.74 (16)°. The =C(CH3)2 group (C13—C10—C14) is only slightly out of the plane of the central ring, making a dihedral angle of 4.63 (18)°.

3. Supra­molecular features

There are no significant supra­molecular features to discuss with the extended structure of (I)[link]. There are weak C—H⋯O inter­molecular inter­actions between one methyl group from the di­thiol­ate ligand and one of the carbonyl oxygen atoms, Table 1[link]. These inter­actions result in the formation of dimers of (I)[link], Fig. 3[link].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13B⋯O2i 0.98 2.56 3.334 (2) 136
Symmetry code: (i) -x+2, -y+1, -z+1.
[Figure 3]
Figure 3
A plot of (a) dimers of (I)[link] with the C—H⋯O inter­actions highlighted as blue dashed lines; and (b) an expanded view along the c axis of the packing of (I)[link] with an overlay of the unit cell. Orange = Fe, yellow = S, red = O, gray = C, green = H.

4. Database survey

Only one other crystal structure with 3,3-dimethyl-4-(propan-2-yl­idene)thietane-2,2-bis­(thiol­ate) is reported in the Cambridge Crystallographic Database (Groom & Allen, 2014[Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662-671.]). The compound is a mononuclear square-planar platinum(II) bis­(tri­phenyl­phosphine) complex (Okuma et al., 2007[Okuma, K., Nojima, A., Shigetomi, T. & Yokomori, Y. (2007). Tetrahedron, 63, 11748-11753.]).

A search of the Cambridge Crystallographic Database (Groom & Allen, 2014[Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662-671.]) returns eighteen hexa­carbonyldi-iron(I) complexes in which there is a bridging S—C—S di­thiol­ate moiety. The range of Fe—Fe distances for these compounds is 2.461 Å − 2.501 Å [average 2.482 Å] (Alvarez-Toledano et al., 1999[Alvarez-Toledano, C., Enriquez, J., Toscano, R. A., Martinez-Garcia, M., Cortes-Cortes, E., Osornio, Y. M., Garcia-Mellado, O. & Gutierrez-Perez, R. (1999). J. Organomet. Chem. 577, 38-43.]; Shi et al., 2011[Shi, Y.-C., Cheng, H.-R., Yuan, L.-M. & Li, Q.-K. (2011). Acta Cryst. E67, m1534.]). The Fe1—Fe2 distance in (I)[link] of 2.4921 (4) Å falls within this range. The Fe—S distances for the database compounds range from 2.244 Å − 2.296 Å [average 2.271 Å] (Broadhurst et al., 1982[Broadhurst, P. V., Johson, B. F. G., Lewis, J. & Raithby, P. R. (1982). J. Chem. Soc. Chem. Commun. pp. 140-141.]; Nekhaev et al., 1991[Nekhaev, A. I., Alekseeva, S. D., Kolobkov, B. I., Aleksandrov, G. G., Toshev, M. T., Dustov, H. B. & Parpiev, N. A. (1991). J. Organomet. Chem. 401, 65-73.]). All of the Fe—S distances in (I)[link] [average 2.263 Å] fall within this range.

5. Synthesis and crystallization

A mixture of tetra­methyl-1,3-cyclo­butane­dithione (130 mg, 0.76 mmol) and Fe3(CO)12 (383 mg, 0.76 mmol) was dissolved in 15 ml dry toluene. The reaction mixture was refluxed for 2 h, and the solution color change from a green to a red was observed. After removal of the solvent under vacuum, the resulting residue was chromatographed by silica gel column eluting with hexa­ne–CH2Cl2 (10:1, v/v). The main red band was collected to get an orange–red solid (10 mg, 0.02 mmol, 3% yield). Crystals suitable for X-ray diffraction were grown by slow evaporation of hexane of the orange–red solid at room temperature.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Methyl H atom positions were optimized by rotation about R—C bonds with idealized C—H, R⋯H and H⋯H distances and included as as riding idealized contributors [C—Hmeth­yl = 0.98 Å with Uiso(H) = 1.5Ueq(C)]. The 001 reflection was omitted from the final refinement because it was obscured by the shadow of the beam stop.

Table 2
Experimental details

Crystal data
Chemical formula [Fe2(C8H12S3)(CO)6]
Mr 484.12
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 100
a, b, c (Å) 9.3619 (10), 9.7681 (11), 10.6249 (12)
α, β, γ (°) 88.092 (6), 78.668 (6), 76.559 (6)
V3) 926.51 (18)
Z 2
Radiation type Mo Kα
μ (mm−1) 1.93
Crystal size (mm) 0.27 × 0.13 × 0.05
 
Data collection
Diffractometer Bruker Kappa APEXII CCD
Absorption correction Integration (SADABS; Bruker, 2014[Bruker (2014). APEX2, SADABS, SAINT and XCIF. Bruker AXS, Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.752, 0.935
No. of measured, independent and observed [I > 2σ(I)] reflections 26313, 4095, 3603
Rint 0.034
(sin θ/λ)max−1) 0.643
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.022, 0.055, 1.04
No. of reflections 4095
No. of parameters 230
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.46, −0.26
Computer programs: APEX2, SAINT and XCIF (Bruker, 2014[Bruker (2014). APEX2, SADABS, SAINT and XCIF. Bruker AXS, Inc., Madison, Wisconsin, USA.]), SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), CrystalMaker (CrystalMaker, 1994[CrystalMaker (1994). CrystalMaker. CrystalMaker Software Ltd, Oxford, England (www.CrystalMaker.com).]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014) and SHELXTL (Sheldrick, 2008); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: SHELXTL (Sheldrick, 2008), CrystalMaker (CrystalMaker, 1994); software used to prepare material for publication: XCIF (Bruker, 2014), publCIF (Westrip, 2010).

2-3,3-Dimethyl-4-(propan-2-ylidene)thietane-2,2-dithiolato-κ4S,S':S,S]bis[tricarbonyliron(I)](FeFe) top
Crystal data top
[Fe2(C8H12S3)(CO)6]Z = 2
Mr = 484.12F(000) = 488
Triclinic, P1Dx = 1.735 Mg m3
a = 9.3619 (10) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.7681 (11) ÅCell parameters from 9920 reflections
c = 10.6249 (12) Åθ = 2.3–27.1°
α = 88.092 (6)°µ = 1.93 mm1
β = 78.668 (6)°T = 100 K
γ = 76.559 (6)°Plate, orange
V = 926.51 (18) Å30.27 × 0.13 × 0.05 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
4095 independent reflections
Radiation source: fine-focus sealed tube3603 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
profile data from φ and ω scansθmax = 27.2°, θmin = 2.7°
Absorption correction: integration
(SADABS; Bruker, 2014)
h = 1211
Tmin = 0.752, Tmax = 0.935k = 1212
26313 measured reflectionsl = 1313
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.022H-atom parameters constrained
wR(F2) = 0.055 w = 1/[σ2(Fo2) + (0.0274P)2 + 0.4094P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
4095 reflectionsΔρmax = 0.46 e Å3
230 parametersΔρmin = 0.26 e Å3
Special details top

Experimental. One distinct cell was identified using APEX2 (Bruker, 2014). Twelve frame series were integrated and filtered for statistical outliers using SAINT (Bruker, 2014) then corrected for absorption by integration using SAINT/SADABS v2014/2 (Bruker, 2014) to sort, merge, and scale the combined data. No decay correction was applied.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Structure was phased by direct methods (Sheldrick, 2015). Systematic conditions suggested the ambiguous space group. The space group choice was confirmed by successful convergence of the full-matrix least-squares refinement on F2. The final map had no significant features. A final analysis of variance between observed and calculated structure factors showed little dependence on amplitude and resolution.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.76261 (3)0.69641 (2)0.81874 (2)0.01268 (7)
Fe20.54756 (3)0.67026 (2)0.72314 (2)0.01297 (7)
S10.78928 (4)0.57564 (4)0.63376 (4)0.01365 (9)
S20.66378 (4)0.84946 (4)0.67671 (4)0.01170 (9)
S30.98623 (4)0.77978 (5)0.51958 (4)0.01510 (9)
O11.06505 (15)0.74224 (16)0.81135 (13)0.0298 (3)
O20.79552 (19)0.44486 (15)0.97850 (14)0.0394 (4)
O30.60206 (15)0.87309 (13)1.04475 (12)0.0228 (3)
O40.49994 (16)0.40404 (14)0.84072 (15)0.0342 (4)
O50.30956 (14)0.84235 (14)0.91503 (13)0.0236 (3)
O60.37887 (15)0.67444 (16)0.51589 (13)0.0289 (3)
C10.9483 (2)0.72664 (19)0.81121 (16)0.0194 (4)
C20.7844 (2)0.54209 (19)0.91537 (17)0.0229 (4)
C30.66473 (19)0.80602 (18)0.95676 (17)0.0158 (3)
C40.5173 (2)0.50717 (19)0.79429 (18)0.0217 (4)
C50.39957 (19)0.77459 (18)0.83967 (17)0.0176 (4)
C60.4451 (2)0.67316 (19)0.59538 (17)0.0193 (4)
C70.80188 (18)0.74138 (17)0.55009 (16)0.0126 (3)
C80.78750 (18)0.75972 (17)0.40463 (15)0.0133 (3)
C90.94031 (18)0.79590 (17)0.36484 (16)0.0145 (3)
C101.01847 (19)0.83374 (17)0.25666 (16)0.0152 (3)
C110.7806 (2)0.62209 (19)0.34363 (17)0.0189 (4)
H11A0.68620.59680.38180.028*
H11B0.86480.54690.35910.028*
H11C0.78650.63440.25100.028*
C120.65819 (19)0.8813 (2)0.38437 (17)0.0200 (4)
H12A0.66930.96810.42100.030*
H12B0.56300.86030.42690.030*
H12C0.65940.89330.29230.030*
C130.9618 (2)0.8528 (2)0.13289 (17)0.0205 (4)
H13A0.87320.81350.14090.031*
H13B1.04010.80390.06320.031*
H13C0.93520.95330.11380.031*
C141.1685 (2)0.8657 (2)0.25251 (18)0.0218 (4)
H14A1.19210.85660.33870.033*
H14B1.16620.96200.22250.033*
H14C1.24520.79940.19370.033*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.01333 (12)0.01381 (12)0.01084 (12)0.00155 (9)0.00425 (9)0.00130 (9)
Fe20.01163 (12)0.01325 (12)0.01452 (13)0.00397 (9)0.00246 (9)0.00064 (9)
S10.0144 (2)0.01203 (18)0.0139 (2)0.00127 (15)0.00330 (15)0.00014 (15)
S20.01227 (19)0.01146 (18)0.01142 (19)0.00226 (15)0.00305 (15)0.00056 (15)
S30.01174 (19)0.0236 (2)0.01148 (19)0.00601 (16)0.00357 (15)0.00040 (16)
O10.0193 (7)0.0544 (9)0.0193 (7)0.0119 (6)0.0086 (5)0.0002 (6)
O20.0551 (10)0.0243 (8)0.0281 (8)0.0052 (7)0.0018 (7)0.0122 (6)
O30.0259 (7)0.0243 (7)0.0171 (7)0.0016 (6)0.0059 (5)0.0038 (5)
O40.0307 (8)0.0213 (7)0.0478 (9)0.0091 (6)0.0012 (7)0.0108 (7)
O50.0179 (6)0.0262 (7)0.0248 (7)0.0057 (5)0.0016 (5)0.0053 (6)
O60.0243 (7)0.0419 (8)0.0265 (7)0.0134 (6)0.0117 (6)0.0014 (6)
C10.0213 (9)0.0254 (9)0.0107 (8)0.0020 (7)0.0054 (7)0.0003 (7)
C20.0263 (10)0.0218 (9)0.0162 (9)0.0022 (8)0.0030 (7)0.0004 (7)
C30.0159 (8)0.0174 (8)0.0166 (9)0.0047 (7)0.0087 (7)0.0058 (7)
C40.0173 (9)0.0211 (9)0.0255 (10)0.0043 (7)0.0009 (7)0.0017 (8)
C50.0172 (9)0.0181 (8)0.0211 (9)0.0092 (7)0.0062 (7)0.0034 (7)
C60.0165 (9)0.0205 (9)0.0208 (9)0.0067 (7)0.0000 (7)0.0013 (7)
C70.0120 (8)0.0135 (7)0.0124 (8)0.0026 (6)0.0030 (6)0.0009 (6)
C80.0127 (8)0.0173 (8)0.0096 (8)0.0018 (6)0.0030 (6)0.0007 (6)
C90.0146 (8)0.0168 (8)0.0129 (8)0.0029 (6)0.0047 (6)0.0008 (6)
C100.0154 (8)0.0142 (8)0.0149 (8)0.0013 (6)0.0026 (6)0.0016 (6)
C110.0202 (9)0.0245 (9)0.0145 (8)0.0093 (7)0.0043 (7)0.0025 (7)
C120.0166 (9)0.0281 (10)0.0135 (8)0.0000 (7)0.0053 (7)0.0044 (7)
C130.0194 (9)0.0275 (10)0.0134 (8)0.0036 (7)0.0028 (7)0.0033 (7)
C140.0185 (9)0.0269 (10)0.0213 (9)0.0091 (7)0.0021 (7)0.0010 (8)
Geometric parameters (Å, º) top
Fe1—C21.7900 (18)O6—C61.140 (2)
Fe1—C31.8047 (18)C7—C81.578 (2)
Fe1—C11.8158 (19)C8—C91.529 (2)
Fe1—S22.2636 (5)C8—C121.529 (2)
Fe1—S12.2675 (5)C8—C111.532 (2)
Fe1—Fe22.4921 (4)C9—C101.327 (2)
Fe2—C41.7986 (19)C10—C141.500 (2)
Fe2—C51.8013 (19)C10—C131.502 (2)
Fe2—C61.8054 (19)C11—H11A0.9800
Fe2—S22.2601 (5)C11—H11B0.9800
Fe2—S12.2624 (5)C11—H11C0.9800
S1—C71.8376 (17)C12—H12A0.9800
S2—C71.8365 (17)C12—H12B0.9800
S3—C91.7725 (17)C12—H12C0.9800
S3—C71.8159 (17)C13—H13A0.9800
O1—C11.139 (2)C13—H13B0.9800
O2—C21.141 (2)C13—H13C0.9800
O3—C31.138 (2)C14—H14A0.9800
O4—C41.139 (2)C14—H14B0.9800
O5—C51.140 (2)C14—H14C0.9800
C2—Fe1—C391.53 (8)C8—C7—S392.82 (10)
C2—Fe1—C197.19 (9)C8—C7—S2120.98 (11)
C3—Fe1—C198.73 (8)S3—C7—S2115.14 (9)
C2—Fe1—S2156.52 (7)C8—C7—S1121.18 (11)
C3—Fe1—S294.05 (5)S3—C7—S1115.21 (8)
C1—Fe1—S2104.45 (6)S2—C7—S193.42 (8)
C2—Fe1—S194.27 (6)C9—C8—C12112.78 (14)
C3—Fe1—S1156.84 (5)C9—C8—C11112.89 (14)
C1—Fe1—S1102.74 (6)C12—C8—C11111.99 (14)
S2—Fe1—S172.347 (18)C9—C8—C793.06 (12)
C2—Fe1—Fe2100.05 (7)C12—C8—C7112.71 (13)
C3—Fe1—Fe2100.38 (5)C11—C8—C7112.13 (13)
C1—Fe1—Fe2153.78 (5)C10—C9—C8135.38 (15)
S2—Fe1—Fe256.505 (14)C10—C9—S3128.31 (14)
S1—Fe1—Fe256.527 (14)C8—C9—S396.26 (11)
C4—Fe2—C592.90 (8)C9—C10—C14121.21 (16)
C4—Fe2—C697.79 (8)C9—C10—C13123.00 (16)
C5—Fe2—C698.27 (8)C14—C10—C13115.75 (15)
C4—Fe2—S2156.52 (6)C8—C11—H11A109.5
C5—Fe2—S292.61 (6)C8—C11—H11B109.5
C6—Fe2—S2103.96 (6)H11A—C11—H11B109.5
C4—Fe2—S193.49 (6)C8—C11—H11C109.5
C5—Fe2—S1154.57 (6)H11A—C11—H11C109.5
C6—Fe2—S1105.19 (6)H11B—C11—H11C109.5
S2—Fe2—S172.505 (18)C8—C12—H12A109.5
C4—Fe2—Fe199.98 (6)C8—C12—H12B109.5
C5—Fe2—Fe197.92 (6)H12A—C12—H12B109.5
C6—Fe2—Fe1155.23 (6)C8—C12—H12C109.5
S2—Fe2—Fe156.639 (13)H12A—C12—H12C109.5
S1—Fe2—Fe156.720 (15)H12B—C12—H12C109.5
C7—S1—Fe290.00 (5)C10—C13—H13A109.5
C7—S1—Fe186.81 (5)C10—C13—H13B109.5
Fe2—S1—Fe166.753 (15)H13A—C13—H13B109.5
C7—S2—Fe290.10 (5)C10—C13—H13C109.5
C7—S2—Fe186.96 (5)H13A—C13—H13C109.5
Fe2—S2—Fe166.856 (15)H13B—C13—H13C109.5
C9—S3—C777.86 (8)C10—C14—H14A109.5
O1—C1—Fe1176.96 (16)C10—C14—H14B109.5
O2—C2—Fe1178.63 (18)H14A—C14—H14B109.5
O3—C3—Fe1178.75 (16)C10—C14—H14C109.5
O4—C4—Fe2178.76 (18)H14A—C14—H14C109.5
O5—C5—Fe2177.61 (15)H14B—C14—H14C109.5
O6—C6—Fe2179.05 (16)
C9—S3—C7—C80.66 (9)S3—C7—C8—C12117.02 (13)
C9—S3—C7—S2125.68 (10)S2—C7—C8—C124.7 (2)
C9—S3—C7—S1127.24 (10)S1—C7—C8—C12121.10 (14)
Fe2—S2—C7—C899.53 (12)S3—C7—C8—C11115.51 (12)
Fe1—S2—C7—C8166.35 (13)S2—C7—C8—C11122.78 (14)
Fe2—S2—C7—S3150.28 (8)S1—C7—C8—C116.38 (19)
Fe1—S2—C7—S383.46 (8)C12—C8—C9—C1060.3 (3)
Fe2—S2—C7—S130.32 (6)C11—C8—C9—C1067.9 (2)
Fe1—S2—C7—S136.49 (5)C7—C8—C9—C10176.5 (2)
Fe2—S1—C7—C899.43 (12)C12—C8—C9—S3116.98 (13)
Fe1—S1—C7—C8166.14 (12)C11—C8—C9—S3114.84 (13)
Fe2—S1—C7—S3150.19 (8)C7—C8—C9—S30.77 (11)
Fe1—S1—C7—S383.47 (8)C7—S3—C9—C10176.85 (18)
Fe2—S1—C7—S230.29 (6)C7—S3—C9—C80.68 (10)
Fe1—S1—C7—S236.43 (5)C8—C9—C10—C14178.40 (17)
S3—C7—C8—C90.74 (11)S3—C9—C10—C141.9 (3)
S2—C7—C8—C9120.97 (13)C8—C9—C10—C130.8 (3)
S1—C7—C8—C9122.63 (13)S3—C9—C10—C13175.74 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13B···O2i0.982.563.334 (2)136
Symmetry code: (i) x+2, y+1, z+1.
 

Acknowledgements

This work was supported by the National Institutes of Health through GM061153.

References

First citationAlvarez-Toledano, C., Enriquez, J., Toscano, R. A., Martinez-Garcia, M., Cortes-Cortes, E., Osornio, Y. M., Garcia-Mellado, O. & Gutierrez-Perez, R. (1999). J. Organomet. Chem. 577, 38–43.  CAS Google Scholar
First citationBroadhurst, P. V., Johson, B. F. G., Lewis, J. & Raithby, P. R. (1982). J. Chem. Soc. Chem. Commun. pp. 140–141.  CrossRef Web of Science Google Scholar
First citationBruker (2014). APEX2, SADABS, SAINT and XCIF. Bruker AXS, Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCammack, R. (1999). Nature, 397, 214–215.  Web of Science CrossRef CAS PubMed Google Scholar
First citationCapon, J. F., Gloaguen, F., Schollhammer, P. & Talarmin, J. (2005). Coord. Chem. Rev. 249, 1664–1676.  Web of Science CrossRef CAS Google Scholar
First citationCrystalMaker (1994). CrystalMaker. CrystalMaker Software Ltd, Oxford, England (www.CrystalMaker.com).  Google Scholar
First citationDarensbourg, M. Y., Lyon, E. J. & Smee, J. J. (2000). Coord. Chem. Rev. 206–207, 533–561.  Web of Science CrossRef CAS Google Scholar
First citationElam, E. U. & Davis, H. E. (1967). J. Org. Chem. 32, 1562–1565.  CrossRef CAS Web of Science Google Scholar
First citationFontecilla-Camps, J. C., Volbeda, A., Cavazza, C. & Nicolet, Y. (2007). Chem. Rev. 107, 4273–4303.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGloaguen, F. & Rauchfuss, T. B. (2009). Chem. Soc. Rev. 38, 100–108.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGroom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.  Web of Science CSD CrossRef CAS Google Scholar
First citationNekhaev, A. I., Alekseeva, S. D., Kolobkov, B. I., Aleksandrov, G. G., Toshev, M. T., Dustov, H. B. & Parpiev, N. A. (1991). J. Organomet. Chem. 401, 65–73.  CSD CrossRef CAS Web of Science Google Scholar
First citationOgino, H., Inomata, S. & Tobita, H. (1998). Chem. Rev. 98, 2093–2122.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOkuma, K., Nojima, A., Shigetomi, T. & Yokomori, Y. (2007). Tetrahedron, 63, 11748–11753.  Web of Science CSD CrossRef CAS Google Scholar
First citationRauchfuss, T. B. (2015). Acc. Chem. Res. 48, 2107–2116.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShi, Y.-C., Cheng, H.-R., Yuan, L.-M. & Li, Q.-K. (2011). Acta Cryst. E67, m1534.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationStephenson, M. & Stickland, L. H. (1931). Biochem. J. 25, 205–214.  CrossRef PubMed CAS Google Scholar
First citationTard, C. & Pickett, C. J. (2009). Chem. Rev. 109, 2245–2274.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds