organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 2-(1H-imidazol-3-ium-4-yl)ethanaminium dichloride, a re-determination

aLaboratoire de Chimie Inorganique et Environnement, Universite de Tlemcen, BP119, 13000, Tlemcen, Algeria, and bCentre de Diffractometrie X, UMR 6226 CNRS, Unite Sciences Chimiques de Rennes, Universite de Rennes I, 263 Avenue du General Leclerc, 35042 Rennes, France
*Correspondence e-mail: l_bouklihacene@mail.univ-tlemcen.dz, lilibou25@yahoo.fr

Edited by M. Weil, Vienna University of Technology, Austria (Received 21 September 2015; accepted 7 October 2015; online 14 October 2015)

The crystal structure of the title mol­ecular salt, C5H11N3+·2Cl, was redetermined. In comparison with the previous study [Bonnet et al. (1975[Bonnet, J.-J., Jeannin, Y. & Laaouini, M. (1975). Bull. Soc. Fr. Miner. Crist. 98, 208-213.]). Bull. Soc. Fr. Mineral. Crist. 98, 208–213.], the positions of some H atoms were corrected, allowing a more accurate description of the hydrogen-bonding scheme. In addition, the absolute structure was also determined. The maximum differences in terms of bond lengths and angles between the two determinations are 0.022 Å and 1.43°, respectively. The organic cation display a anti conformation of the protonated amine function and the imidazolium ring. The dihedral angle between the imidazolium plane and the plane through the C—C—N side chain is 29.58 (3)°. In the crystal, the organic cations and Cl anions are stacked alternatively into layers parallel to (100). N—H⋯Cl hydrogen bonds between all H atoms of the ammonium group and both N—H groups of the imidazolium ring and the Cl acceptor anions lead to the linkage of organic and inorganic layers into a three-dimensional network.

1. Related literature

Histamine [2-(1H-imidazol-4-yl)ethanamine] is a biogenic amine present in essentially all mammalian tissues and involved in several defense mechanisms of the body. It plays a role in various physiological processes, such as control of gastric acid secretion, neurotransmission, regulation of the microcirculation, and modulation of inflammatory (Cooper et al., 1990[Cooper, D. G., Young, R. C., Durant, G. J., Ganellin, C. R., Jammes, P. G. & Taylor, J. B. (1990). Editors. Comprehensive Medicinal Chemistry. Oxford: Pergamon.]; Barnes, 2001[Barnes, J. P. (2001). Pulm. Pharmacol. Ther. 14, 329-339.]) and immunological reactions (Schwartz et al., 1991[Schwartz, J. C., Arrang, J. M., Garbarg, M., Pollard, H. & Ruat, M. (1991). Physiol. Rev. 71, 1-51.]; Bachert et al., 1998[Bachert, C. (1998). Clin. Exp. Allergy, 28, 15-19.]; Emanuel et al., 1999[Emanuel, M. B. (1999). Clin. Exp. Allergy, 29, 1-11.]). The contribution of histamine in these physiological and pathological processes and the use in pharmacology make it an inter­esting substance in biochemistry (Leurs et al., 1995[Leurs, R., Smit, M. J. & Timmerman, H. (1995). Pharmacol. Ther. 66, 413-463.]; Galoppin & Ponvert, 1997[Galoppin, L. & Ponvert, C. (1997). Rev. Fr. Allergol. 37, 865-880.]; O'Mahony et al., 2011[O'Mahony, L., Akdis, M. & Akdis, C. A. (2011). J. Allergy, Clin. Immunol. 128, 1153-1162.]; Jadidi-Niaragh & Mirshafiey, 2010[Jadidi-Niaragh, F. & Mirshafiey, A. (2010). Neuropharmacology, 59, 180-189.]; Gustiananda et al., 2012[Gustiananda, M., Andreoni, A., Tabares, L. C., Tepper, A. W., Fortunato, L., Aartsma, T. J. & Canters, G. W. (2012). Biosens. Bioelectron. 31, 419-425.]). The structure of the title compound has been determined previously by Bonnet et al. (1975[Bonnet, J.-J., Jeannin, Y. & Laaouini, M. (1975). Bull. Soc. Fr. Miner. Crist. 98, 208-213.]) who reported lattice parameters of a =7.596 (6), b = 12.706 (8), c = 4.457 (4) Å, β = 91.64 (5)° at room temperature. For the structure of the histamine copper(II) chloride complex and its catalytic activity study, see: Belfilali et al. (2015a[Belfilali, I., Louhibi, S., Mahboub, R., Touzani, R., El Kadiri, S. & Roisnel, T. (2015a). Res. Chem. Intermed. 41, 1819-1831.]), and for the structure of monopronated histamine with Cl as counter-anion, see: Belfilali et al. (2015b[Belfilali, I., Yebdri, S., Louhibi, S., Boukli-hacene, L. & Roisnel, T. (2015b). Acta Cryst. E71, o301-o302.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C5H11N3+·2Cl

  • Mr = 184.07

  • Monoclinic, P 21

  • a = 4.4358 (2) Å

  • b = 12.6281 (4) Å

  • c = 7.5588 (3) Å

  • β = 91.910 (1)°

  • V = 423.18 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.70 mm−1

  • T = 150 K

  • 0.43 × 0.32 × 0.09 mm

2.2. Data collection

  • Bruker APEXII CCD, diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2006[Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.825, Tmax = 0.939

  • 3729 measured reflections

  • 1855 independent reflections

  • 1815 reflections with I > 2σ(I)

  • Rint = 0.024

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.023

  • wR(F2) = 0.058

  • S = 1.08

  • 1855 reflections

  • 106 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.17 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 841 Friedel pairs

  • Absolute structure parameter: 0.06 (5)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯Cl1i 0.92 (3) 2.19 (3) 3.1071 (17) 171 (2)
N1—H1B⋯Cl1 0.95 (3) 2.34 (3) 3.1930 (17) 150 (2)
N1—H1C⋯Cl2i 0.89 (3) 2.44 (3) 3.1768 (16) 141 (2)
N6—H6⋯Cl2ii 0.88 (3) 2.28 (3) 3.1046 (16) 157 (2)
N8—H8⋯Cl2iii 0.84 (3) 2.28 (3) 3.1157 (15) 169 (3)
Symmetry codes: (i) x+1, y, z; (ii) [-x+2, y-{\script{1\over 2}}, -z+1]; (iii) x, y, z+1.

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Synthesis and crystallization top

A stoichiometric mixture of histamine di­hydro­chloride (1.0 mmol) and 3-eth­oxy-4-hy­droxy­benzaldehyde was irradiated in a microwave oven at 200 Watt for 10 minutes. The reaction mixture was then allowed to attain room temperature and the obtained crystals were separated by filtration.

Refinement top

Hydrogen atoms linked to nitro­gen atoms were found from Fourier difference maps and were refined with distance restraints in the range 0.84 (3) - 0.95 (3) Å and with a common Uiso parameter of 0.05 Å2. C-bound hydrogen atoms were refined with calculated positions, with C—H = 0.95 and U(H)iso = 1.2Ueq(C) for aromatic H atoms and with C—H = 0.99 and U(H)iso = 1.2Ueq(C) for methyl­ene H atoms.

Related literature top

Histamine [2-(1H-imidazol-4-yl)ethanamine] is a biogenic amine present in essentially all mammalian tissues and involved in several defense mechanisms of the body. It plays a role in various physiological processes, such as control of gastric acid secretion, neurotransmission, regulation of the microcirculation, and modulation of inflammatory (Cooper et al., 1990; Barnes et al., 2001) and immunological reactions (Schwartz et al., 1991; Bachert et al., 1998; Emanuel et al., 1999). The contribution of histamine in these physiological and pathological processes and the use in pharmacology make it an interesting substance in biochemistry (Leurs et al., 1995; Galoppin & Ponvert, 1997; O'Mahony et al., 2011; Jadidi-Niaragh & Mirshafiey, 2010; Gustiananda et al., 2012). The structure of the title compound has been determined previously by Bonnet et al. (1975) who reported lattice parameters of a =7.596 (6), b = 12.706 (8), c = 4.457 (4) Å, β = 91.64 (5)° at room temperature. For the structure of the histamine copper(II) chloride complex and its catalytic activity study, see: Belfilali et al. (2015a), and for the structure of monopronated histamine with Cl- as counter-anion, see: Belfilali et al. (2015b).

Structure description top

Histamine [2-(1H-imidazol-4-yl)ethanamine] is a biogenic amine present in essentially all mammalian tissues and involved in several defense mechanisms of the body. It plays a role in various physiological processes, such as control of gastric acid secretion, neurotransmission, regulation of the microcirculation, and modulation of inflammatory (Cooper et al., 1990; Barnes et al., 2001) and immunological reactions (Schwartz et al., 1991; Bachert et al., 1998; Emanuel et al., 1999). The contribution of histamine in these physiological and pathological processes and the use in pharmacology make it an interesting substance in biochemistry (Leurs et al., 1995; Galoppin & Ponvert, 1997; O'Mahony et al., 2011; Jadidi-Niaragh & Mirshafiey, 2010; Gustiananda et al., 2012). The structure of the title compound has been determined previously by Bonnet et al. (1975) who reported lattice parameters of a =7.596 (6), b = 12.706 (8), c = 4.457 (4) Å, β = 91.64 (5)° at room temperature. For the structure of the histamine copper(II) chloride complex and its catalytic activity study, see: Belfilali et al. (2015a), and for the structure of monopronated histamine with Cl- as counter-anion, see: Belfilali et al. (2015b).

Synthesis and crystallization top

A stoichiometric mixture of histamine di­hydro­chloride (1.0 mmol) and 3-eth­oxy-4-hy­droxy­benzaldehyde was irradiated in a microwave oven at 200 Watt for 10 minutes. The reaction mixture was then allowed to attain room temperature and the obtained crystals were separated by filtration.

Refinement details top

Hydrogen atoms linked to nitro­gen atoms were found from Fourier difference maps and were refined with distance restraints in the range 0.84 (3) - 0.95 (3) Å and with a common Uiso parameter of 0.05 Å2. C-bound hydrogen atoms were refined with calculated positions, with C—H = 0.95 and U(H)iso = 1.2Ueq(C) for aromatic H atoms and with C—H = 0.99 and U(H)iso = 1.2Ueq(C) for methyl­ene H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. Tautomeric forms of histamine.
[Figure 2] Fig. 2. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 3] Fig. 3. Part of the crystal structure with hydrogen bonds shown as dashed lines.
2-(1H-imidazol-3-ium-4-yl)ethanaminium dichloride top
Crystal data top
C5H11N3+·2ClF(000) = 192
Mr = 184.07Dx = 1.445 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 2786 reflections
a = 4.4358 (2) Åθ = 2.7–27.5°
b = 12.6281 (4) ŵ = 0.70 mm1
c = 7.5588 (3) ÅT = 150 K
β = 91.910 (1)°Prism, colourless
V = 423.18 (3) Å30.43 × 0.32 × 0.09 mm
Z = 2
Data collection top
Bruker APEXII CCD,
diffractometer
1815 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
CCD rotation images, thin slices scansθmax = 27.5°, θmin = 3.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2006)
h = 55
Tmin = 0.825, Tmax = 0.939k = 1613
3729 measured reflectionsl = 99
1855 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.023H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.058 w = 1/[σ2(Fo2) + (0.0327P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.001
1855 reflectionsΔρmax = 0.22 e Å3
106 parametersΔρmin = 0.17 e Å3
1 restraintAbsolute structure: Flack (1983), 841 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.06 (5)
Crystal data top
C5H11N3+·2ClV = 423.18 (3) Å3
Mr = 184.07Z = 2
Monoclinic, P21Mo Kα radiation
a = 4.4358 (2) ŵ = 0.70 mm1
b = 12.6281 (4) ÅT = 150 K
c = 7.5588 (3) Å0.43 × 0.32 × 0.09 mm
β = 91.910 (1)°
Data collection top
Bruker APEXII CCD,
diffractometer
1855 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2006)
1815 reflections with I > 2σ(I)
Tmin = 0.825, Tmax = 0.939Rint = 0.024
3729 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.023H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.058Δρmax = 0.22 e Å3
S = 1.08Δρmin = 0.17 e Å3
1855 reflectionsAbsolute structure: Flack (1983), 841 Friedel pairs
106 parametersAbsolute structure parameter: 0.06 (5)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.9759 (4)0.18301 (13)0.4308 (2)0.0201 (3)
H1A1.115 (6)0.232 (2)0.472 (3)0.05*
H1B0.787 (6)0.217 (2)0.441 (3)0.05*
H1C1.015 (6)0.179 (2)0.316 (4)0.05*
C20.9990 (5)0.07908 (15)0.5236 (2)0.0209 (4)
H2A1.20440.04970.51250.025*
H2B0.8530.02850.4690.025*
C30.9317 (4)0.09457 (15)0.7190 (2)0.0214 (4)
H3A1.0530.15450.76690.026*
H3B0.7160.11270.72990.026*
C41.0019 (4)0.00243 (13)0.8252 (2)0.0160 (3)
C51.1983 (4)0.08313 (15)0.8024 (2)0.0189 (3)
H51.31850.09450.70250.023*
N61.1904 (3)0.14577 (12)0.95191 (19)0.0206 (3)
H61.284 (6)0.206 (2)0.964 (3)0.05*
C70.9952 (4)0.10582 (15)1.0615 (2)0.0211 (4)
H70.94750.13421.17360.025*
N80.8764 (3)0.01892 (12)0.98803 (17)0.0168 (3)
H80.745 (6)0.021 (2)1.031 (4)0.05*
Cl10.47163 (8)0.32961 (3)0.59693 (5)0.02068 (11)
Cl20.43148 (9)0.15270 (3)0.11930 (5)0.01937 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0192 (7)0.0233 (9)0.0178 (7)0.0004 (6)0.0021 (6)0.0025 (6)
C20.0264 (9)0.0187 (9)0.0175 (9)0.0022 (7)0.0010 (7)0.0001 (7)
C30.0267 (9)0.0202 (9)0.0174 (8)0.0047 (8)0.0036 (7)0.0012 (7)
C40.0168 (7)0.0158 (8)0.0155 (7)0.0017 (7)0.0002 (6)0.0027 (6)
C50.0208 (8)0.0177 (8)0.0183 (8)0.0006 (7)0.0026 (6)0.0036 (7)
N60.0214 (7)0.0173 (8)0.0233 (7)0.0014 (6)0.0018 (6)0.0014 (6)
C70.0225 (9)0.0215 (9)0.0195 (7)0.0013 (7)0.0008 (7)0.0033 (7)
N80.0167 (7)0.0168 (7)0.0173 (7)0.0009 (6)0.0032 (5)0.0017 (5)
Cl10.01948 (19)0.0235 (2)0.01936 (17)0.00067 (18)0.00474 (13)0.00219 (16)
Cl20.01775 (18)0.0187 (2)0.02194 (18)0.00186 (17)0.00442 (13)0.00354 (15)
Geometric parameters (Å, º) top
N1—C21.490 (2)C4—C51.355 (3)
N1—H1A0.92 (3)C4—N81.383 (2)
N1—H1B0.95 (3)C5—N61.381 (2)
N1—H1C0.89 (3)C5—H50.95
C2—C31.530 (2)N6—C71.319 (2)
C2—H2A0.99N6—H60.88 (3)
C2—H2B0.99C7—N81.331 (2)
C3—C41.492 (2)C7—H70.95
C3—H3A0.99N8—H80.84 (3)
C3—H3B0.99
C2—N1—H1A113.7 (15)H3A—C3—H3B107.9
C2—N1—H1B113.9 (15)C5—C4—N8106.22 (14)
H1A—N1—H1B105 (2)C5—C4—C3132.25 (16)
C2—N1—H1C112.9 (18)N8—C4—C3121.30 (14)
H1A—N1—H1C103 (2)C4—C5—N6107.03 (15)
H1B—N1—H1C108 (2)C4—C5—H5126.5
N1—C2—C3109.22 (15)N6—C5—H5126.5
N1—C2—H2A109.8C7—N6—C5109.26 (15)
C3—C2—H2A109.8C7—N6—H6126.0 (18)
N1—C2—H2B109.8C5—N6—H6124.3 (17)
C3—C2—H2B109.8N6—C7—N8108.21 (15)
H2A—C2—H2B108.3N6—C7—H7125.9
C4—C3—C2111.78 (14)N8—C7—H7125.9
C4—C3—H3A109.3C7—N8—C4109.27 (14)
C2—C3—H3A109.3C7—N8—H8126.6 (18)
C4—C3—H3B109.3C4—N8—H8124.2 (18)
C2—C3—H3B109.3
N1—C2—C3—C4170.28 (15)C4—C5—N6—C70.6 (2)
C2—C3—C4—C526.5 (3)C5—N6—C7—N80.2 (2)
C2—C3—C4—N8159.79 (15)N6—C7—N8—C40.27 (19)
N8—C4—C5—N60.70 (17)C5—C4—N8—C70.61 (17)
C3—C4—C5—N6173.73 (18)C3—C4—N8—C7174.57 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl1i0.92 (3)2.19 (3)3.1071 (17)171 (2)
N1—H1B···Cl10.95 (3)2.34 (3)3.1930 (17)150 (2)
N1—H1C···Cl2i0.89 (3)2.44 (3)3.1768 (16)141 (2)
N6—H6···Cl2ii0.88 (3)2.28 (3)3.1046 (16)157 (2)
N8—H8···Cl2iii0.84 (3)2.28 (3)3.1157 (15)169 (3)
Symmetry codes: (i) x+1, y, z; (ii) x+2, y1/2, z+1; (iii) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl1i0.92 (3)2.19 (3)3.1071 (17)171 (2)
N1—H1B···Cl10.95 (3)2.34 (3)3.1930 (17)150 (2)
N1—H1C···Cl2i0.89 (3)2.44 (3)3.1768 (16)141 (2)
N6—H6···Cl2ii0.88 (3)2.28 (3)3.1046 (16)157 (2)
N8—H8···Cl2iii0.84 (3)2.28 (3)3.1157 (15)169 (3)
Symmetry codes: (i) x+1, y, z; (ii) x+2, y1/2, z+1; (iii) x, y, z+1.
 

Acknowledgements

The authors gratefully acknowledge the support of the Algerian Ministry of Higher Education and Scientific Research and thank Frédéric Atil from the Club de Minéralogie de Chamonix, du Mont-Blanc et des Alpes du Nord.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBachert, C. (1998). Clin. Exp. Allergy, 28, 15–19.  CrossRef CAS PubMed Google Scholar
First citationBarnes, J. P. (2001). Pulm. Pharmacol. Ther. 14, 329–339.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBelfilali, I., Louhibi, S., Mahboub, R., Touzani, R., El Kadiri, S. & Roisnel, T. (2015a). Res. Chem. Intermed. 41, 1819–1831.  Web of Science CSD CrossRef CAS Google Scholar
First citationBelfilali, I., Yebdri, S., Louhibi, S., Boukli-hacene, L. & Roisnel, T. (2015b). Acta Cryst. E71, o301–o302.  CSD CrossRef IUCr Journals Google Scholar
First citationBonnet, J.-J., Jeannin, Y. & Laaouini, M. (1975). Bull. Soc. Fr. Miner. Crist. 98, 208–213.  CAS Google Scholar
First citationBruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCooper, D. G., Young, R. C., Durant, G. J., Ganellin, C. R., Jammes, P. G. & Taylor, J. B. (1990). Editors. Comprehensive Medicinal Chemistry. Oxford: Pergamon.  Google Scholar
First citationEmanuel, M. B. (1999). Clin. Exp. Allergy, 29, 1–11.  Web of Science PubMed CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGaloppin, L. & Ponvert, C. (1997). Rev. Fr. Allergol. 37, 865–880.  Google Scholar
First citationGustiananda, M., Andreoni, A., Tabares, L. C., Tepper, A. W., Fortunato, L., Aartsma, T. J. & Canters, G. W. (2012). Biosens. Bioelectron. 31, 419–425.  Web of Science CrossRef CAS PubMed Google Scholar
First citationJadidi-Niaragh, F. & Mirshafiey, A. (2010). Neuropharmacology, 59, 180–189.  Web of Science CAS PubMed Google Scholar
First citationLeurs, R., Smit, M. J. & Timmerman, H. (1995). Pharmacol. Ther. 66, 413–463.  CrossRef CAS PubMed Web of Science Google Scholar
First citationO'Mahony, L., Akdis, M. & Akdis, C. A. (2011). J. Allergy, Clin. Immunol. 128, 1153–1162.  Google Scholar
First citationSchwartz, J. C., Arrang, J. M., Garbarg, M., Pollard, H. & Ruat, M. (1991). Physiol. Rev. 71, 1–51.  PubMed CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds