research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of an organic–inorganic hybrid compound based on morpholinium cations and a β-type Anderson polyanion

aInstitute of Low Temperature and Structure Research, Polish Academy of Sciences, Okolna str. 2, PO Box 1410, 50-950 Wroclaw, Poland
*Correspondence e-mail: t.lukianova@int.pan.wroc.pl

Edited by M. Weil, Vienna University of Technology, Austria (Received 27 September 2015; accepted 12 October 2015; online 17 October 2015)

A new organic–inorganic hybrid compound, penta­morpholinium hexa­hydrogen hexa­molybdoferrate(III) sulfate 3.5-hydrate, (C4H10NO)5[FeIII(OH)6Mo6O18](SO4)·3.5H2O, was obtained from an aqueous solution. The polyoxidomolybdate (POM) anion is of the Anderson β-type with a central FeIII ion. Three of five crystallographically independent morpholinium cations are disordered over two sets of sites. An intricate network of inter­molecular N—H⋯O and O—H⋯O inter­actions between cations, POMs, sulfate anions and non-coordinating water mol­ecules creates a three-dimensional network structure.

1. Chemical context

Polyoxidometalates (POM) are attractive mol­ecular building blocks used in the formation of multidimensional organic–inorganic hybrid networks during self-organization processes (Pope & Müller, 2001[Pope, M. T. & Müller, A. (2001). In Polyoxometalate Chemistry: from Topology via Self-assembly to Applications. Dordrecht: Kluwer Academic Publishers.]; Müller et al., 1998[Müller, A., Peters, F., Pope, M. T. & Gatteschi, D. (1998). Chem. Rev. 98, 239-272.]; Long et al., 2007[Long, D.-L., Burkholder, E. & Cronin, L. (2007). Chem. Soc. Rev. 36, 105-121.]). POMs play an important role in the design of new classes of functionalized materials not only because of their topological versatility and high dimensional architectures, but also due to their rich diversity of remarkable properties. Several related compounds with Anderson-type polyoxidometalate anions and organic cations, such as (C4H12N2)5[Al(OH)6Mo6O18]2(SO4)2·16H2O (Yang et al., 2009[Yang, X.-D., Chen, Y.-G., Mirzaei, M., Salimi, A. R. & Yao, F. (2009). Inorg. Chem. Commun. 12, 195-197.]), (C4H10NO)3[Cr(OH)6Mo6O18]·4H2O (Yang et al., 2011[Yang, Y.-Y., Song, Y., Liu, L.-Y. & Qu, X.-S. (2011). Acta Cryst. E67, m776.]), (C6H10N3O2)2Na(H2O)2[Al(OH)6Mo6O18]·6H2O (Thabet et al., 2012[Thabet, S., Ayed, B. & Haddad, A. (2012). Mater. Res. Bull. 47, 3791-3796.]) and other compounds with an FeIII central ion (Marcoux et al., 2003[Marcoux, P. R., Hasenknopf, B., Vaissermann, J. & Gouzerh, P. (2003). Eur. J. Inorg. Chem. pp. 2406-2412.]; Allain et al., 2008[Allain, C., Favette, S., Chamoreau, L.-M., Vaissermann, J., Ruhlmann, L. & Hasenknopf, B. (2008). Eur. J. Inorg. Chem. 2008, 3433-3441.]; Dessapt et al., 2011[Dessapt, R., Gabard, M., Bujoli-Doeuff, M., Deniard, P. & Jobic, S. (2011). Inorg. Chem. 50, 8790-8796.]) have been reported. In β-type Anderson polyoxidoanions, which are characterized by a planar arrangement of the metal atoms, each MoVI atom has two terminal oxygen atoms, two bridging O atoms and two bridging OH functions which make it highly reactive and easily coordinated by varieties of transition metal atoms in the anion.

[Scheme 1]

Here we report synthesis and structure of the new organic–inorganic hybrid compound (C4H10NO)5[FeIII(OH)6Mo6O18](SO4)·3.5H2O, (I)[link].

2. Structural commentary

The asymmetric unit of compound (I)[link] is made up of one Anderson β-type polyoxidoanion, [Fe(OH)6Mo6O18]3−, abbreviated in the following as {FeMo6}, five morpholinium cations (C4H10NO)+, one sulfate anion and four non-coordinating water mol­ecules (Fig. 1[link]). Three of the morpholinium cations are disordered over two sets of sites and one water mol­ecule (O1W) shows half-occupancy. The {FeMo6} anion is formed by six edge-sharing [MoO6] octa­hedra, which are arranged hexa­gonally around the central [Fe(OH)6] octa­hedron with bond lengths and angles that are within the expected ranges for this type of POM anion (Cao et al., 2007[Cao, R. G., Liu, S. X., Xie, L. H., Pan, Y. B., Cao, J. F., Ren, Y. H. & Xu, L. (2007). Inorg. Chem. 46, 3541-3547.]). The six hydroxyl groups of the Anderson-type polyoxoanion are involved as donor groups in hydrogen-bond formation with O atoms of the sulfate anions and the non-coordinating water mol­ecules.

[Figure 1]
Figure 1
The mol­ecular components in the structure of compound (I)[link]. Displacement ellipsoids are drawn at the 45% probability level. Hydrogen bonds are denoted by cyan dashed lines. Minor parts of the disordered cations are shown with dashed bonds.

3. Supra­molecular features

In the crystal structure of compound (I)[link], hydrogen-bonding inter­actions between morpholinium cations, polyoxidoanions, sulfate anions and non-coordinating water mol­ecules are of the types O—H⋯O and N—H⋯O (Table 1[link]) and connect the discrete units into a three-dimensional supra­molecular network. Hydrogen bonding is the dominating inter­molecular inter­action involved in the construction of this architecture and gives sufficient stabilization of its crystal structure. Figs. 2[link] and 3[link] shows the crystal packing with hydrogen-bonding inter­actions.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1WA⋯O9 0.84 1.94 2.781 (11) 178
O1W—H1WB⋯O10i 0.85 1.99 2.831 (11) 173
O2W—H2WA⋯O4Wii 0.85 1.80 2.619 (4) 161
O2W—H2WB⋯O2Sii 0.85 2.05 2.876 (4) 164
O2W—H2WB⋯O4Sii 0.85 2.48 3.129 (5) 133
O3W—H3WA⋯O1Sii 0.85 1.99 2.790 (5) 155
O3W—H3WB⋯O3 0.85 1.92 2.753 (4) 167
O4W—H4WA⋯O17iii 0.85 1.88 2.714 (4) 165
O4W—H4WB⋯O6 0.85 1.94 2.761 (4) 161
O1H—H1H⋯O4Sii 1.00 1.69 2.673 (4) 165
O2H—H2H⋯O2W 1.00 1.78 2.743 (4) 162
O3H—H3H⋯O3Sii 1.00 1.61 2.602 (4) 174
O4H—H4H⋯O2S 1.00 2.13 2.911 (4) 133
O5H—H5H⋯O1S 1.00 1.69 2.672 (4) 165
O6H—H6H⋯O2S 1.00 1.83 2.691 (4) 142
N4A—H4AA⋯O4Wii 0.91 2.34 3.102 (5) 141
N4A—H4AB⋯O5 0.91 1.86 2.760 (4) 169
N4B—H4BA⋯O4 0.91 2.00 2.761 (4) 140
N4B—H4BA⋯O1Aiv 0.91 2.26 2.840 (4) 121
N4B—H4BB⋯O15v 0.91 1.97 2.869 (4) 171
N4C—H4CA⋯O1Evi 0.91 1.97 2.817 (7) 155
N41C—H41A⋯O11Evi 0.91 1.92 2.54 (5) 124
N4E—H4EA⋯O1 0.91 1.91 2.780 (6) 160
N41E—H41D⋯O1 0.91 1.52 2.35 (3) 150
N4D—H4DA⋯O1S 0.91 1.99 2.866 (8) 162
N4D—H4DB⋯O2 0.91 2.00 2.846 (9) 155
N41D—H41E⋯O2 0.91 1.62 2.520 (19) 169
Symmetry codes: (i) -x, -y+2, -z+2; (ii) x+1, y, z; (iii) -x, -y+2, -z+1; (iv) -x+1, -y+1, -z+1; (v) -x, -y+1, -z+1; (vi) x-1, y-1, z.
[Figure 2]
Figure 2
The crystal packing of compound (I)[link] in a projection along [100], shown in the polyhedral mode for the POM anion. Orange and green octa­hedra are [FeO6] and [MoO6], respectively. Hydrogen bonds are shown as cyan dashed lines. Minor components of disorder for the morpholinium cations are omitted for clarity.
[Figure 3]
Figure 3
The crystal packing of compound (I)[link] in a projection along [001].

4. Synthesis and crystallization

The title compound was synthesized by the following procedure: 0.320 g (0.8 mmol) of iron(III) sulfate was dissolved in 10 ml of double-distilled water. To this solution 4 ml (5 mmol) of morpholine and 0.309 g (1.5 mmol) of Na2MoO4 were added during constant stirring. By the addition of 30%wt sulfuric acid, the pH was adjusted to 2.5. The resultant solution was filtered and the filtrate kept at room temperature. After few weeks, light-brown crystals were obtained.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Three of the five crystallographically independent morpholinium cations are disordered, for which all atoms are distributed between two positions. The refined site occupation factor ratios are as follows: 0.857 (6):0.143 (6), 0.703 (9):0.297 (9) and 0.857 (6):0.143 (6) for O1C–C6C/O11C–C61C, O1D–C6D/O11D–C61D and O1E–C6E/O11E–C61E, respectively. All non-hydrogen atoms were refined anisotropically, except for the minor parts of the disordered morpholinium cations. The positions of the H atoms were initially located in difference Fourier maps. All H atoms were fixed at ideal positions, with Uiso(H) = 1.2Ueq of the parent atom (1.5Ueq for water H atoms). In the final refinement cycles, H atoms of the O1W water mol­ecule were allowed to ride on the parent O atom (AFIX 3 in SHELXL2014; Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), H atoms of the other water mol­ecules were fixed with the AFIX 6 instruction. For the minor component of disorder for morpholinium cation (O11C > C61C) the SAME instruction was used. Pairs of morpho­lin­ium cations (labelled C and E) were initially refined with individual occupation factor variables which turned out to refine to the same value (taking into account standard uncertainties). As a result of the fact that disordered parts of these two cations are connected by hydrogen-bonding inter­actions, disorder was restrained with a common occupation factor variable in the final refinement. One of the O atom of a water mol­ecule (O1W) is characterized by a significantly elongated displacement parameter. The occupation factor of this mol­ecule was arbitrarily fixed at 50%.

Table 2
Experimental details

Crystal data
Chemical formula (C4H10NO)5[Fe(OH)6Mo6O18](SO4)·3.5H2O
Mr 1621.30
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 100
a, b, c (Å) 8.900 (3), 13.143 (4), 20.778 (6)
α, β, γ (°) 84.92 (3), 85.37 (3), 83.70 (3)
V3) 2400.1 (13)
Z 2
Radiation type Mo Kα
μ (mm−1) 1.97
Crystal size (mm) 0.27 × 0.20 × 0.12
 
Data collection
Diffractometer Rigaku Oxford Diffraction Xcalibur Atlas
Absorption correction Analytical (CrysAlis PRO; Rigaku Oxford Diffraction, 2015[Rigaku Oxford Diffraction (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.708, 0.819
No. of measured, independent and observed [I > 2σ(I)] reflections 37127, 11708, 9288
Rint 0.038
(sin θ/λ)max−1) 0.695
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.112, 1.02
No. of reflections 11708
No. of parameters 714
No. of restraints 12
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.98, −1.29
Computer programs: CrysAlis PRO (Rigaku Oxford Diffraction, 2015[Rigaku Oxford Diffraction (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg, 1997[Brandenburg, K. (1997). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Rigaku Oxford Diffraction, 2015); cell refinement: CrysAlis PRO (Rigaku Oxford Diffraction, 2015); data reduction: CrysAlis PRO (Rigaku Oxford Diffraction, 2015); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg, 1997); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Pentamorpholinium hexahydrogen hexamolybdoferrate(III) sulfate 3.5-hydrate top
Crystal data top
(C4H10NO)5[Fe(OH)6Mo6O18](SO4)·3.5H2OZ = 2
Mr = 1621.30F(000) = 1608
Triclinic, P1Dx = 2.243 Mg m3
a = 8.900 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 13.143 (4) ÅCell parameters from 15587 reflections
c = 20.778 (6) Åθ = 2.4–29.3°
α = 84.92 (3)°µ = 1.97 mm1
β = 85.37 (3)°T = 100 K
γ = 83.70 (3)°Block, light brown
V = 2400.1 (13) Å30.27 × 0.20 × 0.12 mm
Data collection top
Rigaku Oxford Diffraction Xcalibur Atlas
diffractometer
11708 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source9288 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
Detector resolution: 10.6249 pixels mm-1θmax = 29.6°, θmin = 2.4°
ω scansh = 1211
Absorption correction: analytical
(CrysAlisPro; Rigaku Oxford Diffraction, 2015)
k = 1817
Tmin = 0.708, Tmax = 0.819l = 2828
37127 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.112 w = 1/[σ2(Fo2) + (0.0601P)2 + 2.7906P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
11708 reflectionsΔρmax = 1.98 e Å3
714 parametersΔρmin = 1.29 e Å3
12 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Mo10.07030 (4)0.98765 (2)0.70745 (2)0.01685 (8)
Mo20.08559 (5)0.86149 (3)0.85537 (2)0.02715 (10)
Mo30.16217 (4)0.60317 (3)0.86796 (2)0.02082 (9)
Mo40.22287 (4)0.47443 (2)0.73545 (2)0.01670 (8)
Mo50.23106 (4)0.60189 (2)0.58822 (2)0.01558 (8)
Mo60.15245 (3)0.85979 (2)0.57545 (2)0.01468 (8)
O10.1659 (3)0.9593 (2)0.78943 (12)0.0246 (6)
O20.0207 (3)0.7260 (2)0.87992 (13)0.0268 (7)
O30.2976 (3)0.5184 (2)0.81276 (12)0.0185 (5)
O40.1380 (3)0.5093 (2)0.65144 (12)0.0192 (6)
O50.2965 (3)0.7388 (2)0.56585 (12)0.0180 (5)
O60.0066 (3)0.9393 (2)0.62919 (12)0.0169 (5)
O70.1890 (3)1.0768 (2)0.67652 (13)0.0245 (6)
O80.0969 (3)1.0558 (2)0.73014 (13)0.0274 (7)
O90.2118 (5)0.8721 (3)0.91123 (14)0.0443 (9)
O1W0.2590 (12)0.9809 (15)1.0154 (8)0.184 (9)0.5
H1WA0.24620.94920.98320.276*0.5
H1WB0.20941.00471.04820.276*0.5
O100.0799 (4)0.9283 (3)0.88176 (15)0.0438 (9)
O110.2876 (4)0.6120 (2)0.92487 (14)0.0346 (8)
O120.0389 (4)0.5191 (2)0.90187 (14)0.0314 (7)
O130.0944 (3)0.3921 (2)0.76519 (14)0.0299 (7)
O140.3796 (3)0.3960 (2)0.71415 (14)0.0274 (6)
O150.1131 (3)0.5942 (2)0.52742 (13)0.0230 (6)
O160.3973 (3)0.5344 (2)0.56528 (13)0.0226 (6)
O170.2801 (3)0.9456 (2)0.54611 (12)0.0206 (6)
O180.0397 (3)0.8525 (2)0.51406 (12)0.0215 (6)
Fe10.16272 (5)0.73185 (4)0.72223 (2)0.01210 (11)
O1H0.2536 (3)0.7399 (2)0.80532 (12)0.0185 (6)
H1H0.36450.74720.80420.022*
O2H0.2464 (3)0.85564 (19)0.67550 (11)0.0147 (5)
H2H0.35640.86330.67770.018*
O3H0.3128 (3)0.62367 (19)0.68738 (12)0.0147 (5)
H3H0.42270.63140.68980.018*
O4H0.0625 (3)0.7268 (2)0.63805 (11)0.0151 (5)
H4H0.04860.71980.64020.018*
O5H0.0654 (3)0.6135 (2)0.76894 (12)0.0161 (5)
H5H0.04640.61250.76730.019*
O6H0.0001 (3)0.8368 (2)0.75643 (12)0.0166 (5)
H6H0.10790.82320.75530.020*
S10.33015 (11)0.68657 (8)0.74350 (5)0.0269 (2)
O1S0.2351 (3)0.6113 (2)0.78520 (15)0.0332 (7)
O2S0.2325 (3)0.7606 (2)0.70866 (15)0.0349 (8)
O3S0.3991 (3)0.6318 (2)0.69703 (15)0.0312 (7)
O4S0.4464 (3)0.7430 (3)0.78508 (17)0.0405 (8)
O1A0.7444 (3)0.6640 (2)0.44577 (13)0.0257 (6)
C2A0.7298 (5)0.6408 (4)0.5141 (2)0.0291 (10)
H2AA0.82120.59690.52780.035*
H2AB0.64100.60180.52550.035*
C3A0.7109 (5)0.7361 (4)0.5492 (2)0.0342 (11)
H3AA0.80290.77260.54070.041*
H3AB0.69620.71820.59640.041*
N4A0.5764 (4)0.8037 (3)0.52633 (17)0.0291 (8)
H4AA0.57110.86490.54420.035*
H4AB0.49070.77380.54010.035*
C5A0.5837 (5)0.8224 (3)0.4542 (2)0.0289 (9)
H5AA0.66760.86420.43910.035*
H5AB0.48770.86010.44040.035*
C6A0.6097 (5)0.7196 (4)0.4258 (2)0.0295 (10)
H6AA0.52310.67960.43970.035*
H6AB0.61560.73020.37790.035*
O1B0.3116 (3)0.2911 (2)0.65919 (15)0.0287 (7)
C2B0.2048 (4)0.2376 (3)0.6169 (2)0.0257 (9)
H2BA0.23340.25350.57180.031*
H2BB0.20590.16270.62760.031*
C3B0.0465 (4)0.2670 (3)0.6222 (2)0.0222 (8)
H3BA0.01510.24840.66670.027*
H3BB0.02630.22960.59180.027*
N4B0.0472 (4)0.3801 (2)0.60629 (15)0.0206 (7)
H4BA0.04540.39940.61240.025*
H4BB0.06530.39570.56390.025*
C5B0.1655 (4)0.4378 (3)0.6478 (2)0.0246 (9)
H5BA0.17080.51210.63400.030*
H5BB0.13950.42800.69350.030*
C6B0.3155 (5)0.3992 (3)0.6417 (2)0.0311 (10)
H6BA0.39380.43610.67010.037*
H6BB0.34390.41380.59650.037*
O1C0.0475 (5)0.1916 (5)0.8976 (2)0.0507 (14)0.857 (6)
C2C0.0299 (8)0.1850 (5)0.8422 (3)0.0418 (16)0.857 (6)
H2CA0.07840.12030.84650.050*0.857 (6)
H2CB0.04370.18320.80380.050*0.857 (6)
C3C0.1492 (6)0.2742 (7)0.8318 (3)0.0405 (16)0.857 (6)
H3CA0.10040.33860.82220.049*0.857 (6)
H3CB0.20650.26430.79430.049*0.857 (6)
N4C0.2543 (6)0.2821 (5)0.8907 (3)0.030 (3)0.857 (6)
H4CA0.31160.22840.89510.036*0.857 (6)
H4CB0.31780.34110.88640.036*0.857 (6)
C5C0.1696 (7)0.2820 (6)0.9505 (3)0.0441 (17)0.857 (6)
H5CA0.11880.34550.94930.053*0.857 (6)
H5CB0.24060.27880.98960.053*0.857 (6)
C6C0.0539 (8)0.1896 (7)0.9524 (3)0.058 (2)0.857 (6)
H6CA0.00280.18770.99170.070*0.857 (6)
H6CB0.10610.12640.95510.070*0.857 (6)
O11C0.043 (3)0.271 (2)0.9549 (11)0.057 (8)*0.143 (6)
C21C0.063 (3)0.234 (3)0.9067 (18)0.061 (19)*0.143 (6)
H21A0.15210.19600.92710.074*0.143 (6)
H21B0.09880.29210.87820.074*0.143 (6)
C31C0.007 (5)0.163 (3)0.867 (2)0.10 (3)*0.143 (6)
H31A0.06820.13590.83360.122*0.143 (6)
H31B0.04280.10460.89530.122*0.143 (6)
N41C0.137 (4)0.223 (3)0.8359 (14)0.053 (12)*0.143 (6)
H41A0.18780.18010.81580.064*0.143 (6)
H41B0.10140.27010.80530.064*0.143 (6)
C51C0.245 (3)0.278 (4)0.884 (2)0.07 (4)*0.143 (6)
H51A0.30030.22720.91190.087*0.143 (6)
H51B0.31940.32590.86090.087*0.143 (6)
C61C0.158 (3)0.3357 (19)0.9249 (12)0.020 (6)*0.143 (6)
H61A0.11180.39130.89750.024*0.143 (6)
H61B0.22820.36780.95850.024*0.143 (6)
O1E0.5358 (5)1.1453 (3)0.8694 (2)0.0366 (10)0.857 (6)
C2E0.4163 (7)1.1963 (5)0.8317 (3)0.0443 (16)0.857 (6)
H2EA0.42001.27160.82970.053*0.857 (6)
H2EB0.31681.18070.85280.053*0.857 (6)
C3E0.4328 (8)1.1618 (4)0.7643 (3)0.0389 (15)0.857 (6)
H3EA0.52701.18400.74140.047*0.857 (6)
H3EB0.34611.19350.73990.047*0.857 (6)
N4E0.4379 (5)1.0468 (4)0.7675 (2)0.0304 (11)0.857 (6)
H4EA0.34541.02770.78250.037*0.857 (6)
H4EB0.45861.02560.72680.037*0.857 (6)
C5E0.5540 (8)0.9958 (5)0.8100 (3)0.0457 (17)0.857 (6)
H5EA0.65651.00850.79090.055*0.857 (6)
H5EB0.54760.92080.81460.055*0.857 (6)
C6E0.5269 (9)1.0381 (5)0.8748 (3)0.0510 (19)0.857 (6)
H6EA0.42541.02350.89410.061*0.857 (6)
H6EB0.60331.00400.90390.061*0.857 (6)
O11E0.610 (3)1.148 (2)0.8423 (15)0.048 (7)*0.143 (6)
C21E0.528 (4)1.200 (3)0.7879 (18)0.044 (9)*0.143 (6)
H21C0.58061.17870.74660.053*0.143 (6)
H21D0.52731.27490.78830.053*0.143 (6)
C31E0.363 (4)1.170 (3)0.7931 (18)0.029 (7)*0.143 (6)
H31C0.30991.19060.83440.035*0.143 (6)
H31D0.30711.20630.75700.035*0.143 (6)
N41E0.371 (3)1.058 (2)0.7901 (13)0.026 (6)*0.143 (6)
H41C0.41081.04060.75040.032*0.143 (6)
H41D0.27571.03760.79610.032*0.143 (6)
C51E0.470 (3)1.002 (2)0.8430 (13)0.016 (6)*0.143 (6)
H51C0.41921.01220.88640.019*0.143 (6)
H51D0.48350.92700.83760.019*0.143 (6)
C61E0.617 (4)1.041 (3)0.8376 (18)0.038 (8)*0.143 (6)
H61C0.67841.00580.87210.046*0.143 (6)
H61D0.67001.02510.79540.046*0.143 (6)
O1D0.4396 (8)0.7161 (5)1.0345 (3)0.0377 (15)0.703 (9)
C2D0.3989 (9)0.7971 (5)0.9881 (3)0.039 (2)0.703 (9)
H2DA0.30040.81850.99770.047*0.703 (9)
H2DB0.47610.85700.99140.047*0.703 (9)
C3D0.3873 (8)0.7643 (6)0.9214 (3)0.0361 (19)0.703 (9)
H3DA0.35370.82050.89060.043*0.703 (9)
H3DB0.48820.74950.91010.043*0.703 (9)
N4D0.2762 (9)0.6697 (6)0.9156 (3)0.0303 (15)0.703 (9)
H4DA0.28220.64480.87650.036*0.703 (9)
H4DB0.18050.68690.91750.036*0.703 (9)
C5D0.3069 (11)0.5889 (6)0.9678 (4)0.041 (2)0.703 (9)
H5DA0.22190.53360.96740.049*0.703 (9)
H5DB0.40020.55870.96000.049*0.703 (9)
C6D0.3255 (10)0.6321 (6)1.0326 (3)0.046 (2)0.703 (9)
H6DA0.35220.57761.06630.056*0.703 (9)
H6DB0.22810.65491.04250.056*0.703 (9)
O11D0.4846 (16)0.7037 (12)1.0209 (7)0.027 (4)*0.297 (9)
C21D0.4828 (19)0.7728 (13)0.9674 (8)0.032 (4)*0.297 (9)
H21E0.53450.84000.97890.038*0.297 (9)
H21F0.53820.74830.93330.038*0.297 (9)
C31D0.3180 (18)0.7855 (11)0.9415 (7)0.025 (3)*0.297 (9)
H31E0.31770.83570.90300.030*0.297 (9)
H31F0.26380.81220.97510.030*0.297 (9)
N41D0.241 (2)0.6885 (15)0.9241 (9)0.027 (5)*0.297 (9)
H41E0.14240.69550.91150.032*0.297 (9)
H41F0.28530.66640.89060.032*0.297 (9)
C51D0.252 (2)0.6104 (15)0.9834 (9)0.033 (4)*0.297 (9)
H51E0.20390.54220.97200.040*0.297 (9)
H51F0.19780.63221.01880.040*0.297 (9)
C61D0.4176 (16)0.6035 (11)1.0057 (7)0.025 (4)*0.297 (9)
H61E0.47110.57900.97100.030*0.297 (9)
H61F0.42590.55431.04440.030*0.297 (9)
O2W0.5313 (3)0.9178 (3)0.67269 (17)0.0394 (8)
H2WA0.58130.95000.64250.059*
H2WB0.58850.86840.68970.059*
O3W0.5901 (4)0.4619 (3)0.8460 (2)0.0525 (11)
H3WA0.63980.49790.81760.079*
H3WB0.49670.47020.83860.079*
O4W0.2744 (3)0.9785 (3)0.57958 (14)0.0327 (7)
H4WA0.25951.00420.54080.049*
H4WB0.19420.97910.59930.049*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mo10.02266 (17)0.01483 (17)0.01282 (15)0.00194 (12)0.00431 (12)0.00177 (12)
Mo20.0502 (2)0.01917 (19)0.01084 (16)0.00373 (16)0.00339 (15)0.00225 (14)
Mo30.03058 (19)0.01924 (18)0.01175 (15)0.00277 (14)0.00552 (13)0.00067 (13)
Mo40.02022 (17)0.01442 (17)0.01648 (16)0.00286 (12)0.00614 (12)0.00127 (13)
Mo50.01895 (16)0.01605 (17)0.01302 (15)0.00288 (12)0.00493 (12)0.00354 (12)
Mo60.01686 (16)0.01677 (17)0.01099 (14)0.00214 (12)0.00403 (11)0.00110 (12)
O10.0416 (17)0.0191 (15)0.0147 (13)0.0020 (12)0.0111 (11)0.0027 (11)
O20.0430 (18)0.0202 (15)0.0137 (13)0.0069 (13)0.0033 (12)0.0001 (11)
O30.0209 (13)0.0187 (14)0.0166 (12)0.0005 (10)0.0082 (10)0.0019 (11)
O40.0245 (14)0.0193 (14)0.0157 (12)0.0051 (11)0.0072 (10)0.0030 (11)
O50.0194 (13)0.0176 (14)0.0170 (12)0.0020 (10)0.0006 (10)0.0037 (11)
O60.0175 (13)0.0188 (14)0.0140 (12)0.0016 (10)0.0040 (10)0.0014 (10)
O70.0348 (16)0.0180 (15)0.0213 (14)0.0024 (12)0.0085 (12)0.0005 (12)
O80.0317 (16)0.0245 (16)0.0231 (14)0.0089 (12)0.0011 (12)0.0028 (12)
O90.088 (3)0.0299 (19)0.0172 (15)0.0044 (18)0.0195 (16)0.0034 (13)
O1W0.047 (6)0.34 (2)0.204 (15)0.034 (10)0.009 (8)0.222 (16)
O100.073 (3)0.0252 (18)0.0257 (16)0.0091 (16)0.0178 (16)0.0002 (14)
O110.056 (2)0.0290 (17)0.0201 (14)0.0045 (15)0.0213 (14)0.0012 (13)
O120.0392 (18)0.0264 (17)0.0249 (15)0.0032 (13)0.0026 (13)0.0052 (13)
O130.0352 (17)0.0300 (17)0.0277 (15)0.0146 (13)0.0124 (13)0.0038 (13)
O140.0336 (16)0.0221 (16)0.0258 (15)0.0034 (12)0.0055 (12)0.0035 (12)
O150.0272 (15)0.0242 (15)0.0198 (13)0.0051 (12)0.0099 (11)0.0040 (12)
O160.0241 (14)0.0223 (15)0.0219 (14)0.0012 (11)0.0027 (11)0.0060 (12)
O170.0211 (14)0.0205 (15)0.0195 (13)0.0003 (11)0.0007 (10)0.0001 (11)
O180.0253 (15)0.0234 (15)0.0163 (13)0.0007 (11)0.0062 (11)0.0028 (11)
Fe10.0122 (2)0.0141 (3)0.0106 (2)0.00148 (19)0.00381 (18)0.0014 (2)
O1H0.0199 (13)0.0204 (14)0.0167 (12)0.0009 (11)0.0091 (10)0.0042 (11)
O2H0.0148 (12)0.0162 (13)0.0139 (12)0.0024 (10)0.0046 (9)0.0015 (10)
O3H0.0130 (12)0.0162 (13)0.0154 (12)0.0002 (9)0.0038 (9)0.0041 (10)
O4H0.0139 (12)0.0194 (14)0.0129 (12)0.0034 (10)0.0058 (9)0.0005 (10)
O5H0.0134 (12)0.0171 (14)0.0183 (12)0.0038 (10)0.0063 (10)0.0027 (11)
O6H0.0148 (12)0.0197 (14)0.0145 (12)0.0024 (10)0.0025 (9)0.0003 (11)
S10.0144 (5)0.0299 (6)0.0369 (6)0.0038 (4)0.0080 (4)0.0019 (5)
O1S0.0202 (15)0.0391 (19)0.0395 (18)0.0083 (13)0.0063 (13)0.0112 (15)
O2S0.0244 (15)0.0367 (19)0.0445 (19)0.0103 (13)0.0176 (13)0.0150 (15)
O3S0.0184 (14)0.0361 (18)0.0401 (18)0.0065 (12)0.0052 (12)0.0003 (14)
O4S0.0203 (16)0.046 (2)0.060 (2)0.0082 (14)0.0074 (15)0.0161 (17)
O1A0.0239 (15)0.0290 (16)0.0239 (14)0.0007 (12)0.0022 (11)0.0054 (12)
C2A0.026 (2)0.035 (3)0.026 (2)0.0006 (18)0.0054 (17)0.0016 (19)
C3A0.029 (2)0.052 (3)0.025 (2)0.011 (2)0.0061 (17)0.007 (2)
N4A0.0265 (19)0.031 (2)0.0321 (19)0.0077 (15)0.0075 (15)0.0162 (16)
C5A0.026 (2)0.025 (2)0.034 (2)0.0018 (17)0.0024 (17)0.0009 (19)
C6A0.030 (2)0.038 (3)0.022 (2)0.0001 (19)0.0096 (17)0.0072 (19)
O1B0.0245 (15)0.0247 (16)0.0373 (17)0.0046 (12)0.0005 (12)0.0047 (13)
C2B0.023 (2)0.023 (2)0.031 (2)0.0014 (16)0.0095 (17)0.0026 (18)
C3B0.023 (2)0.019 (2)0.025 (2)0.0010 (15)0.0053 (15)0.0004 (16)
N4B0.0208 (16)0.0244 (18)0.0179 (15)0.0031 (13)0.0077 (12)0.0024 (14)
C5B0.026 (2)0.022 (2)0.026 (2)0.0014 (16)0.0028 (16)0.0049 (17)
C6B0.025 (2)0.022 (2)0.047 (3)0.0005 (17)0.0061 (19)0.007 (2)
O1C0.036 (2)0.072 (4)0.040 (3)0.013 (2)0.008 (2)0.002 (3)
C2C0.054 (4)0.035 (3)0.031 (3)0.011 (3)0.011 (3)0.005 (3)
C3C0.032 (3)0.056 (5)0.026 (3)0.004 (3)0.006 (2)0.015 (3)
N4C0.025 (3)0.036 (4)0.029 (3)0.0039 (18)0.0011 (18)0.005 (2)
C5C0.037 (3)0.064 (5)0.036 (3)0.009 (3)0.001 (2)0.034 (3)
C6C0.055 (4)0.089 (6)0.029 (3)0.010 (4)0.016 (3)0.007 (3)
O1E0.048 (3)0.030 (2)0.034 (2)0.0058 (18)0.019 (2)0.0044 (17)
C2E0.049 (4)0.033 (3)0.054 (4)0.001 (3)0.021 (3)0.009 (3)
C3E0.050 (4)0.035 (3)0.036 (3)0.021 (3)0.025 (3)0.011 (3)
N4E0.025 (2)0.039 (3)0.030 (2)0.009 (2)0.007 (2)0.006 (2)
C5E0.050 (4)0.033 (3)0.058 (4)0.002 (3)0.031 (3)0.008 (3)
C6E0.085 (5)0.034 (4)0.038 (3)0.018 (3)0.030 (3)0.010 (3)
O1D0.041 (4)0.044 (3)0.022 (3)0.012 (3)0.002 (3)0.006 (2)
C2D0.048 (5)0.030 (4)0.036 (4)0.007 (3)0.001 (3)0.002 (3)
C3D0.034 (4)0.043 (4)0.026 (3)0.009 (3)0.002 (3)0.010 (3)
N4D0.035 (4)0.037 (4)0.019 (3)0.008 (3)0.001 (3)0.005 (3)
C5D0.063 (6)0.024 (4)0.033 (4)0.003 (4)0.002 (4)0.001 (3)
C6D0.059 (5)0.044 (5)0.029 (4)0.017 (4)0.001 (3)0.008 (3)
O2W0.0255 (16)0.044 (2)0.049 (2)0.0111 (14)0.0154 (14)0.0164 (17)
O3W0.0206 (16)0.064 (3)0.068 (3)0.0085 (17)0.0126 (16)0.032 (2)
O4W0.0242 (15)0.048 (2)0.0244 (15)0.0006 (14)0.0078 (12)0.0055 (15)
Geometric parameters (Å, º) top
Mo1—O11.954 (3)N4C—H4CA0.9100
Mo1—O61.944 (3)N4C—H4CB0.9100
Mo1—O71.712 (3)N4C—C5C1.503 (8)
Mo1—O81.705 (3)C5C—H5CA0.9900
Mo1—O2H2.312 (3)C5C—H5CB0.9900
Mo1—O6H2.273 (3)C5C—C6C1.503 (10)
Mo2—O11.942 (3)C6C—H6CA0.9900
Mo2—O21.944 (3)C6C—H6CB0.9900
Mo2—O91.703 (3)O11C—C21C1.404 (14)
Mo2—O101.706 (3)O11C—C61C1.403 (12)
Mo2—O1H2.322 (3)C21C—H21A0.9900
Mo2—O6H2.309 (3)C21C—H21B0.9900
Mo3—O21.957 (3)C21C—C31C1.511 (13)
Mo3—O31.928 (3)C31C—H31A0.9900
Mo3—O111.710 (3)C31C—H31B0.9900
Mo3—O121.710 (3)C31C—N41C1.484 (13)
Mo3—O1H2.307 (3)N41C—H41A0.9100
Mo3—O5H2.281 (3)N41C—H41B0.9100
Mo4—O31.944 (3)N41C—C51C1.500 (13)
Mo4—O41.955 (3)C51C—H51A0.9900
Mo4—O131.703 (3)C51C—H51B0.9900
Mo4—O141.694 (3)C51C—C61C1.501 (14)
Mo4—O3H2.314 (3)C61C—H61A0.9900
Mo4—O5H2.302 (3)C61C—H61B0.9900
Mo5—O41.912 (3)O1E—C2E1.442 (7)
Mo5—O51.957 (3)O1E—C6E1.413 (7)
Mo5—O151.723 (3)C2E—H2EA0.9900
Mo5—O161.696 (3)C2E—H2EB0.9900
Mo5—O3H2.291 (3)C2E—C3E1.500 (9)
Mo5—O4H2.351 (3)C3E—H3EA0.9900
Mo6—O51.944 (3)C3E—H3EB0.9900
Mo6—O61.923 (3)C3E—N4E1.504 (7)
Mo6—O171.727 (3)N4E—H4EA0.9100
Mo6—O181.701 (3)N4E—H4EB0.9100
Mo6—O2H2.297 (2)N4E—C5E1.480 (7)
Mo6—O4H2.264 (3)C5E—H5EA0.9900
O1W—H1WA0.8397C5E—H5EB0.9900
O1W—H1WB0.8468C5E—C6E1.493 (10)
Fe1—O1H1.981 (3)C6E—H6EA0.9900
Fe1—O2H2.003 (3)C6E—H6EB0.9900
Fe1—O3H1.985 (3)O11E—C21E1.47 (4)
Fe1—O4H2.036 (3)O11E—C61E1.41 (5)
Fe1—O5H2.001 (3)C21E—H21C0.9900
Fe1—O6H2.018 (3)C21E—H21D0.9900
O1H—H1H1.0000C21E—C31E1.55 (5)
O2H—H2H1.0000C31E—H31C0.9900
O3H—H3H1.0000C31E—H31D0.9900
O4H—H4H1.0000C31E—N41E1.48 (4)
O5H—H5H1.0000N41E—H41C0.9100
O6H—H6H1.0000N41E—H41D0.9100
S1—O1S1.493 (3)N41E—C51E1.55 (4)
S1—O2S1.478 (3)C51E—H51C0.9900
S1—O3S1.464 (3)C51E—H51D0.9900
S1—O4S1.473 (4)C51E—C61E1.45 (4)
O1A—C2A1.423 (5)C61E—H61C0.9900
O1A—C6A1.406 (5)C61E—H61D0.9900
C2A—H2AA0.9900O1D—C2D1.430 (9)
C2A—H2AB0.9900O1D—C6D1.417 (9)
C2A—C3A1.492 (7)C2D—H2DA0.9900
C3A—H3AA0.9900C2D—H2DB0.9900
C3A—H3AB0.9900C2D—C3D1.479 (10)
C3A—N4A1.494 (6)C3D—H3DA0.9900
N4A—H4AA0.9100C3D—H3DB0.9900
N4A—H4AB0.9100C3D—N4D1.508 (10)
N4A—C5A1.494 (5)N4D—H4DA0.9100
C5A—H5AA0.9900N4D—H4DB0.9100
C5A—H5AB0.9900N4D—C5D1.480 (10)
C5A—C6A1.510 (6)C5D—H5DA0.9900
C6A—H6AA0.9900C5D—H5DB0.9900
C6A—H6AB0.9900C5D—C6D1.496 (11)
O1B—C2B1.413 (5)C6D—H6DA0.9900
O1B—C6B1.432 (5)C6D—H6DB0.9900
C2B—H2BA0.9900O11D—C21D1.37 (2)
C2B—H2BB0.9900O11D—C61D1.44 (2)
C2B—C3B1.516 (5)C21D—H21E0.9900
C3B—H3BA0.9900C21D—H21F0.9900
C3B—H3BB0.9900C21D—C31D1.54 (2)
C3B—N4B1.494 (5)C31D—H31E0.9900
N4B—H4BA0.9100C31D—H31F0.9900
N4B—H4BB0.9100C31D—N41D1.44 (2)
N4B—C5B1.491 (5)N41D—H41E0.9100
C5B—H5BA0.9900N41D—H41F0.9100
C5B—H5BB0.9900N41D—C51D1.54 (3)
C5B—C6B1.497 (6)C51D—H51E0.9900
C6B—H6BA0.9900C51D—H51F0.9900
C6B—H6BB0.9900C51D—C61D1.52 (2)
O1C—C2C1.403 (9)C61D—H61E0.9900
O1C—C6C1.395 (8)C61D—H61F0.9900
C2C—H2CA0.9900O2W—H2WA0.8486
C2C—H2CB0.9900O2W—H2WB0.8488
C2C—C3C1.505 (9)O3W—H3WA0.8504
C3C—H3CA0.9900O3W—H3WB0.8517
C3C—H3CB0.9900O4W—H4WA0.8512
C3C—N4C1.484 (8)O4W—H4WB0.8530
O1—Mo1—O2H82.96 (11)C5B—N4B—H4BB109.5
O1—Mo1—O6H71.17 (11)N4B—C5B—H5BA109.9
O6—Mo1—O1149.82 (11)N4B—C5B—H5BB109.9
O6—Mo1—O2H71.81 (10)N4B—C5B—C6B109.1 (3)
O6—Mo1—O6H84.95 (10)H5BA—C5B—H5BB108.3
O7—Mo1—O194.58 (13)C6B—C5B—H5BA109.9
O7—Mo1—O6101.90 (12)C6B—C5B—H5BB109.9
O7—Mo1—O2H90.82 (12)O1B—C6B—C5B111.8 (3)
O7—Mo1—O6H158.02 (11)O1B—C6B—H6BA109.3
O8—Mo1—O1102.23 (13)O1B—C6B—H6BB109.3
O8—Mo1—O697.36 (13)C5B—C6B—H6BA109.3
O8—Mo1—O7105.90 (14)C5B—C6B—H6BB109.3
O8—Mo1—O2H161.86 (13)H6BA—C6B—H6BB107.9
O8—Mo1—O6H93.71 (12)C6C—O1C—C2C109.8 (5)
O6H—Mo1—O2H71.30 (9)O1C—C2C—H2CA109.2
O1—Mo2—O2149.50 (12)O1C—C2C—H2CB109.2
O1—Mo2—O1H85.23 (11)O1C—C2C—C3C112.0 (5)
O1—Mo2—O6H70.54 (11)H2CA—C2C—H2CB107.9
O2—Mo2—O1H71.10 (11)C3C—C2C—H2CA109.2
O2—Mo2—O6H83.48 (11)C3C—C2C—H2CB109.2
O9—Mo2—O196.60 (15)C2C—C3C—H3CA109.7
O9—Mo2—O2102.52 (15)C2C—C3C—H3CB109.7
O9—Mo2—O10105.99 (18)H3CA—C3C—H3CB108.2
O9—Mo2—O1H90.80 (14)N4C—C3C—C2C109.7 (5)
O9—Mo2—O6H158.22 (14)N4C—C3C—H3CA109.7
O10—Mo2—O1101.56 (14)N4C—C3C—H3CB109.7
O10—Mo2—O295.77 (15)C3C—N4C—H4CA109.3
O10—Mo2—O1H160.83 (15)C3C—N4C—H4CB109.3
O10—Mo2—O6H94.04 (15)C3C—N4C—C5C111.5 (5)
O6H—Mo2—O1H71.13 (9)H4CA—N4C—H4CB108.0
O2—Mo3—O1H71.25 (11)C5C—N4C—H4CA109.3
O2—Mo3—O5H83.28 (11)C5C—N4C—H4CB109.3
O3—Mo3—O2150.44 (11)N4C—C5C—H5CA110.1
O3—Mo3—O1H85.43 (11)N4C—C5C—H5CB110.1
O3—Mo3—O5H71.97 (10)H5CA—C5C—H5CB108.4
O11—Mo3—O2101.54 (14)C6C—C5C—N4C108.1 (5)
O11—Mo3—O396.56 (14)C6C—C5C—H5CA110.1
O11—Mo3—O1H90.81 (13)C6C—C5C—H5CB110.1
O11—Mo3—O5H159.23 (13)O1C—C6C—C5C111.3 (6)
O12—Mo3—O294.92 (14)O1C—C6C—H6CA109.4
O12—Mo3—O3102.24 (13)O1C—C6C—H6CB109.4
O12—Mo3—O11106.25 (15)C5C—C6C—H6CA109.4
O12—Mo3—O1H160.13 (12)C5C—C6C—H6CB109.4
O12—Mo3—O5H93.31 (13)H6CA—C6C—H6CB108.0
O5H—Mo3—O1H71.43 (9)C61C—O11C—C21C108.7 (15)
O3—Mo4—O4149.43 (11)O11C—C21C—H21A109.7
O3—Mo4—O3H83.18 (10)O11C—C21C—H21B109.7
O3—Mo4—O5H71.25 (10)O11C—C21C—C31C109.8 (16)
O4—Mo4—O3H70.39 (10)H21A—C21C—H21B108.2
O4—Mo4—O5H85.41 (11)C31C—C21C—H21A109.7
O13—Mo4—O3103.68 (13)C31C—C21C—H21B109.7
O13—Mo4—O496.24 (13)C21C—C31C—H31A110.1
O13—Mo4—O3H158.31 (12)C21C—C31C—H31B110.1
O13—Mo4—O5H91.61 (13)H31A—C31C—H31B108.4
O14—Mo4—O396.60 (13)N41C—C31C—C21C108.1 (15)
O14—Mo4—O4100.88 (13)N41C—C31C—H31A110.1
O14—Mo4—O13103.89 (15)N41C—C31C—H31B110.1
O14—Mo4—O3H95.57 (12)C31C—N41C—H41A109.2
O14—Mo4—O5H162.40 (12)C31C—N41C—H41B109.2
O5H—Mo4—O3H70.87 (9)C31C—N41C—C51C112.1 (16)
O4—Mo5—O5147.96 (11)H41A—N41C—H41B107.9
O4—Mo5—O3H71.61 (10)C51C—N41C—H41A109.2
O4—Mo5—O4H83.53 (11)C51C—N41C—H41B109.2
O5—Mo5—O3H83.23 (10)N41C—C51C—H51A109.7
O5—Mo5—O4H69.51 (10)N41C—C51C—H51B109.8
O15—Mo5—O497.32 (12)N41C—C51C—C61C109.6 (15)
O15—Mo5—O5100.87 (12)H51A—C51C—H51B108.2
O15—Mo5—O3H161.18 (11)C61C—C51C—H51A109.7
O15—Mo5—O4H92.81 (12)C61C—C51C—H51B109.8
O16—Mo5—O4103.40 (13)O11C—C61C—C51C111.3 (16)
O16—Mo5—O596.86 (12)O11C—C61C—H61A109.4
O16—Mo5—O15105.52 (14)O11C—C61C—H61B109.4
O16—Mo5—O3H92.07 (12)C51C—C61C—H61A109.4
O16—Mo5—O4H159.17 (12)C51C—C61C—H61B109.4
O3H—Mo5—O4H71.24 (9)H61A—C61C—H61B108.0
O5—Mo6—O2H83.57 (10)C6E—O1E—C2E109.8 (5)
O5—Mo6—O4H71.69 (10)O1E—C2E—H2EA109.5
O6—Mo6—O5149.28 (10)O1E—C2E—H2EB109.5
O6—Mo6—O2H72.51 (10)O1E—C2E—C3E110.5 (5)
O6—Mo6—O4H82.58 (11)H2EA—C2E—H2EB108.1
O17—Mo6—O594.63 (12)C3E—C2E—H2EA109.5
O17—Mo6—O6103.69 (12)C3E—C2E—H2EB109.5
O17—Mo6—O2H88.87 (11)C2E—C3E—H3EA109.8
O17—Mo6—O4H157.37 (11)C2E—C3E—H3EB109.8
O18—Mo6—O5101.37 (12)C2E—C3E—N4E109.5 (5)
O18—Mo6—O697.17 (12)H3EA—C3E—H3EB108.2
O18—Mo6—O17105.74 (13)N4E—C3E—H3EA109.8
O18—Mo6—O2H163.99 (11)N4E—C3E—H3EB109.8
O18—Mo6—O4H94.82 (12)C3E—N4E—H4EA109.2
O4H—Mo6—O2H72.08 (9)C3E—N4E—H4EB109.2
Mo2—O1—Mo1119.53 (15)H4EA—N4E—H4EB107.9
Mo2—O2—Mo3120.08 (15)C5E—N4E—C3E111.9 (4)
Mo3—O3—Mo4118.91 (13)C5E—N4E—H4EA109.2
Mo5—O4—Mo4120.31 (14)C5E—N4E—H4EB109.2
Mo6—O5—Mo5119.87 (13)N4E—C5E—H5EA110.0
Mo6—O6—Mo1118.99 (13)N4E—C5E—H5EB110.0
H1WA—O1W—H1WB140.1N4E—C5E—C6E108.7 (5)
O1H—Fe1—O2H96.79 (11)H5EA—C5E—H5EB108.3
O1H—Fe1—O3H97.53 (11)C6E—C5E—H5EA110.0
O1H—Fe1—O4H177.91 (10)C6E—C5E—H5EB110.0
O1H—Fe1—O5H84.54 (11)O1E—C6E—C5E110.9 (5)
O1H—Fe1—O6H84.69 (11)O1E—C6E—H6EA109.5
O2H—Fe1—O4H83.25 (10)O1E—C6E—H6EB109.5
O2H—Fe1—O6H83.30 (11)C5E—C6E—H6EA109.5
O3H—Fe1—O2H99.02 (11)C5E—C6E—H6EB109.5
O3H—Fe1—O4H84.52 (11)H6EA—C6E—H6EB108.0
O3H—Fe1—O5H84.35 (11)C61E—O11E—C21E108 (3)
O3H—Fe1—O6H176.55 (10)O11E—C21E—H21C109.6
O5H—Fe1—O2H176.15 (10)O11E—C21E—H21D109.6
O5H—Fe1—O4H95.29 (11)O11E—C21E—C31E110 (3)
O5H—Fe1—O6H93.25 (11)H21C—C21E—H21D108.1
O6H—Fe1—O4H93.25 (11)C31E—C21E—H21C109.6
Mo2—O1H—H1H118.2C31E—C21E—H21D109.6
Mo3—O1H—Mo293.80 (10)C21E—C31E—H31C110.2
Mo3—O1H—H1H118.2C21E—C31E—H31D110.2
Fe1—O1H—Mo2102.45 (11)H31C—C31E—H31D108.5
Fe1—O1H—Mo3101.86 (11)N41E—C31E—C21E107 (3)
Fe1—O1H—H1H118.2N41E—C31E—H31C110.2
Mo1—O2H—H2H118.5N41E—C31E—H31D110.2
Mo6—O2H—Mo192.61 (9)C31E—N41E—H41C109.6
Mo6—O2H—H2H118.5C31E—N41E—H41D109.6
Fe1—O2H—Mo1102.24 (10)C31E—N41E—C51E110 (2)
Fe1—O2H—Mo6102.24 (11)H41C—N41E—H41D108.1
Fe1—O2H—H2H118.5C51E—N41E—H41C109.6
Mo4—O3H—H3H117.7C51E—N41E—H41D109.6
Mo5—O3H—Mo493.52 (10)N41E—C51E—H51C109.7
Mo5—O3H—H3H117.7N41E—C51E—H51D109.7
Fe1—O3H—Mo4102.43 (10)H51C—C51E—H51D108.2
Fe1—O3H—Mo5103.95 (11)C61E—C51E—N41E110 (2)
Fe1—O3H—H3H117.7C61E—C51E—H51C109.7
Mo5—O4H—H4H118.6C61E—C51E—H51D109.7
Mo6—O4H—Mo594.02 (9)O11E—C61E—C51E114 (3)
Mo6—O4H—H4H118.6O11E—C61E—H61C108.7
Fe1—O4H—Mo5100.27 (10)O11E—C61E—H61D108.7
Fe1—O4H—Mo6102.34 (11)C51E—C61E—H61C108.7
Fe1—O4H—H4H118.6C51E—C61E—H61D108.7
Mo3—O5H—Mo493.37 (9)H61C—C61E—H61D107.6
Mo3—O5H—H5H118.3C6D—O1D—C2D109.7 (6)
Mo4—O5H—H5H118.3O1D—C2D—H2DA109.4
Fe1—O5H—Mo3102.11 (11)O1D—C2D—H2DB109.4
Fe1—O5H—Mo4102.35 (11)O1D—C2D—C3D111.3 (6)
Fe1—O5H—H5H118.3H2DA—C2D—H2DB108.0
Mo1—O6H—Mo294.54 (10)C3D—C2D—H2DA109.4
Mo1—O6H—H6H117.9C3D—C2D—H2DB109.4
Mo2—O6H—H6H117.9C2D—C3D—H3DA109.5
Fe1—O6H—Mo1103.15 (11)C2D—C3D—H3DB109.5
Fe1—O6H—Mo2101.72 (11)C2D—C3D—N4D110.8 (6)
Fe1—O6H—H6H117.9H3DA—C3D—H3DB108.1
O2S—S1—O1S108.74 (16)N4D—C3D—H3DA109.5
O3S—S1—O1S109.32 (19)N4D—C3D—H3DB109.5
O3S—S1—O2S109.95 (19)C3D—N4D—H4DA109.3
O3S—S1—O4S111.28 (18)C3D—N4D—H4DB109.3
O4S—S1—O1S108.9 (2)H4DA—N4D—H4DB108.0
O4S—S1—O2S108.6 (2)C5D—N4D—C3D111.6 (6)
C6A—O1A—C2A109.2 (3)C5D—N4D—H4DA109.3
O1A—C2A—H2AA109.4C5D—N4D—H4DB109.3
O1A—C2A—H2AB109.4N4D—C5D—H5DA109.5
O1A—C2A—C3A111.3 (4)N4D—C5D—H5DB109.5
H2AA—C2A—H2AB108.0N4D—C5D—C6D110.8 (7)
C3A—C2A—H2AA109.4H5DA—C5D—H5DB108.1
C3A—C2A—H2AB109.4C6D—C5D—H5DA109.5
C2A—C3A—H3AA109.9C6D—C5D—H5DB109.5
C2A—C3A—H3AB109.9O1D—C6D—C5D111.9 (6)
C2A—C3A—N4A109.1 (3)O1D—C6D—H6DA109.2
H3AA—C3A—H3AB108.3O1D—C6D—H6DB109.2
N4A—C3A—H3AA109.9C5D—C6D—H6DA109.2
N4A—C3A—H3AB109.9C5D—C6D—H6DB109.2
C3A—N4A—H4AA109.2H6DA—C6D—H6DB107.9
C3A—N4A—H4AB109.2C21D—O11D—C61D111.7 (13)
C3A—N4A—C5A112.1 (3)O11D—C21D—H21E109.6
H4AA—N4A—H4AB107.9O11D—C21D—H21F109.6
C5A—N4A—H4AA109.2O11D—C21D—C31D110.1 (13)
C5A—N4A—H4AB109.2H21E—C21D—H21F108.2
N4A—C5A—H5AA110.1C31D—C21D—H21E109.6
N4A—C5A—H5AB110.1C31D—C21D—H21F109.6
N4A—C5A—C6A108.1 (3)C21D—C31D—H31E109.6
H5AA—C5A—H5AB108.4C21D—C31D—H31F109.6
C6A—C5A—H5AA110.1H31E—C31D—H31F108.1
C6A—C5A—H5AB110.1N41D—C31D—C21D110.4 (14)
O1A—C6A—C5A111.0 (3)N41D—C31D—H31E109.6
O1A—C6A—H6AA109.4N41D—C31D—H31F109.6
O1A—C6A—H6AB109.4C31D—N41D—H41E110.0
C5A—C6A—H6AA109.4C31D—N41D—H41F110.0
C5A—C6A—H6AB109.4C31D—N41D—C51D108.4 (16)
H6AA—C6A—H6AB108.0H41E—N41D—H41F108.4
C2B—O1B—C6B109.5 (3)C51D—N41D—H41E110.0
O1B—C2B—H2BA109.4C51D—N41D—H41F110.0
O1B—C2B—H2BB109.4N41D—C51D—H51E109.8
O1B—C2B—C3B111.1 (3)N41D—C51D—H51F109.8
H2BA—C2B—H2BB108.0H51E—C51D—H51F108.3
C3B—C2B—H2BA109.4C61D—C51D—N41D109.2 (15)
C3B—C2B—H2BB109.4C61D—C51D—H51E109.8
C2B—C3B—H3BA110.0C61D—C51D—H51F109.8
C2B—C3B—H3BB110.0O11D—C61D—C51D108.5 (13)
H3BA—C3B—H3BB108.3O11D—C61D—H61E110.0
N4B—C3B—C2B108.7 (3)O11D—C61D—H61F110.0
N4B—C3B—H3BA110.0C51D—C61D—H61E110.0
N4B—C3B—H3BB110.0C51D—C61D—H61F110.0
C3B—N4B—H4BA109.5H61E—C61D—H61F108.4
C3B—N4B—H4BB109.5H2WA—O2W—H2WB109.7
H4BA—N4B—H4BB108.0H3WA—O3W—H3WB109.3
C5B—N4B—C3B110.9 (3)H4WA—O4W—H4WB109.1
C5B—N4B—H4BA109.5
O1A—C2A—C3A—N4A56.9 (4)O1E—C2E—C3E—N4E55.3 (7)
C2A—O1A—C6A—C5A64.4 (4)C2E—O1E—C6E—C5E64.1 (7)
C2A—C3A—N4A—C5A52.4 (5)C2E—C3E—N4E—C5E52.5 (7)
C3A—N4A—C5A—C6A52.8 (5)C3E—N4E—C5E—C6E53.9 (7)
N4A—C5A—C6A—O1A58.7 (4)N4E—C5E—C6E—O1E59.7 (7)
C6A—O1A—C2A—C3A63.6 (4)C6E—O1E—C2E—C3E61.8 (7)
O1B—C2B—C3B—N4B58.7 (4)O11E—C21E—C31E—N41E61 (4)
C2B—O1B—C6B—C5B61.6 (5)C21E—O11E—C61E—C51E63 (4)
C2B—C3B—N4B—C5B54.7 (4)C21E—C31E—N41E—C51E55 (3)
C3B—N4B—C5B—C6B54.4 (4)C31E—N41E—C51E—C61E53 (3)
N4B—C5B—C6B—O1B57.5 (5)N41E—C51E—C61E—O11E57 (4)
C6B—O1B—C2B—C3B61.9 (4)C61E—O11E—C21E—C31E63 (4)
O1C—C2C—C3C—N4C55.1 (7)O1D—C2D—C3D—N4D56.2 (9)
C2C—O1C—C6C—C5C64.2 (8)C2D—O1D—C6D—C5D61.6 (9)
C2C—C3C—N4C—C5C51.1 (8)C2D—C3D—N4D—C5D49.8 (10)
C3C—N4C—C5C—C6C52.9 (8)C3D—N4D—C5D—C6D48.9 (10)
N4C—C5C—C6C—O1C59.4 (8)N4D—C5D—C6D—O1D55.4 (10)
C6C—O1C—C2C—C3C61.6 (8)C6D—O1D—C2D—C3D62.2 (8)
O11C—C21C—C31C—N41C61 (3)O11D—C21D—C31D—N41D59.6 (19)
C21C—O11C—C61C—C51C65 (3)C21D—O11D—C61D—C51D63.0 (17)
C21C—C31C—N41C—C51C52 (3)C21D—C31D—N41D—C51D55.8 (18)
C31C—N41C—C51C—C61C50 (4)C31D—N41D—C51D—C61D57.0 (19)
N41C—C51C—C61C—O11C55 (3)N41D—C51D—C61D—O11D58.6 (18)
C61C—O11C—C21C—C31C67 (3)C61D—O11D—C21D—C31D62.2 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O90.841.942.781 (11)178
O1W—H1WB···O10i0.851.992.831 (11)173
O2W—H2WA···O4Wii0.851.802.619 (4)161
O2W—H2WB···O2Sii0.852.052.876 (4)164
O2W—H2WB···O4Sii0.852.483.129 (5)133
O3W—H3WA···O1Sii0.851.992.790 (5)155
O3W—H3WB···O30.851.922.753 (4)167
O4W—H4WA···O17iii0.851.882.714 (4)165
O4W—H4WB···O60.851.942.761 (4)161
O1H—H1H···O4Sii1.001.692.673 (4)165
O2H—H2H···O2W1.001.782.743 (4)162
O3H—H3H···O3Sii1.001.612.602 (4)174
O4H—H4H···O2S1.002.132.911 (4)133
O5H—H5H···O1S1.001.692.672 (4)165
O6H—H6H···O2S1.001.832.691 (4)142
N4A—H4AA···O4Wii0.912.343.102 (5)141
N4A—H4AB···O50.911.862.760 (4)169
N4B—H4BA···O40.912.002.761 (4)140
N4B—H4BA···O1Aiv0.912.262.840 (4)121
N4B—H4BB···O15v0.911.972.869 (4)171
N4C—H4CA···O1Evi0.911.972.817 (7)155
N41C—H41A···O11Evi0.911.922.54 (5)124
N4E—H4EA···O10.911.912.780 (6)160
N41E—H41D···O10.911.522.35 (3)150
N4D—H4DA···O1S0.911.992.866 (8)162
N4D—H4DB···O20.912.002.846 (9)155
N41D—H41E···O20.911.622.520 (19)169
Symmetry codes: (i) x, y+2, z+2; (ii) x+1, y, z; (iii) x, y+2, z+1; (iv) x+1, y+1, z+1; (v) x, y+1, z+1; (vi) x1, y1, z.
 

Acknowledgements

This research was supported by an ILT&SR PAS grant for young scientists and PhD students funded by the Ministry of Science and Higher Education of Poland.

References

First citationAllain, C., Favette, S., Chamoreau, L.-M., Vaissermann, J., Ruhlmann, L. & Hasenknopf, B. (2008). Eur. J. Inorg. Chem. 2008, 3433–3441.  Web of Science CSD CrossRef Google Scholar
First citationBrandenburg, K. (1997). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationCao, R. G., Liu, S. X., Xie, L. H., Pan, Y. B., Cao, J. F., Ren, Y. H. & Xu, L. (2007). Inorg. Chem. 46, 3541–3547.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationDessapt, R., Gabard, M., Bujoli-Doeuff, M., Deniard, P. & Jobic, S. (2011). Inorg. Chem. 50, 8790–8796.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationLong, D.-L., Burkholder, E. & Cronin, L. (2007). Chem. Soc. Rev. 36, 105–121.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMarcoux, P. R., Hasenknopf, B., Vaissermann, J. & Gouzerh, P. (2003). Eur. J. Inorg. Chem. pp. 2406–2412.  Web of Science CSD CrossRef Google Scholar
First citationMüller, A., Peters, F., Pope, M. T. & Gatteschi, D. (1998). Chem. Rev. 98, 239–272.  Web of Science CrossRef PubMed Google Scholar
First citationPope, M. T. & Müller, A. (2001). In Polyoxometalate Chemistry: from Topology via Self-assembly to Applications. Dordrecht: Kluwer Academic Publishers.  Google Scholar
First citationRigaku Oxford Diffraction (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationThabet, S., Ayed, B. & Haddad, A. (2012). Mater. Res. Bull. 47, 3791–3796.  Web of Science CSD CrossRef CAS Google Scholar
First citationYang, X.-D., Chen, Y.-G., Mirzaei, M., Salimi, A. R. & Yao, F. (2009). Inorg. Chem. Commun. 12, 195–197.  Web of Science CSD CrossRef CAS Google Scholar
First citationYang, Y.-Y., Song, Y., Liu, L.-Y. & Qu, X.-S. (2011). Acta Cryst. E67, m776.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds