research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of [5-n-butyl-10-(2,5-di­meth­­oxy­phen­yl)-2,3,7,8,13,12,17,18-octa­ethyl­porphyrin­ato]nickel(II)

aSchool of Chemistry, SFI Tetrapyrrole Laboratory, Trinity Biomedical Sciences Institute, 152-160 Pearse Street, Trinity College Dublin, The University of Dublin, Dublin 2, Ireland, and bCenter for Scientific and Applied Research, PNS College of Engineering and Technology, Melathediyoor, Tirunelveli 627 152, India
*Correspondence e-mail: sengem@tcd.ie

Edited by M. Weil, Vienna University of Technology, Austria (Received 27 September 2015; accepted 22 October 2015; online 31 October 2015)

The asymmetric unit of the title nickel(II) porphyrin, [Ni(C48H60N4O2)], contains one independent mol­ecule. The average Ni—N bond length is 1.917 (13) Å. The mol­ecules are arranged in a closely spaced lattice structure in which neighbouring porphyrins are oriented in inversion-related dimers. The nickel(II) porphyrin is characterized by a significant degree of a ruffled (B1u) conformation with small contributions from saddle (B2u) and wave (y) [Eg(y)], as determined using normal structural decomposition. Disorder in the 2,5-di­­meth­oxy­phenyl substituent was modelled over two positions with a 60% occupancy for the major moiety. One of the ethyl groups is also disordered over two positions and was modelled with the major moiety being present in 51.3% occupancy.

1. Chemical context

The structural chemistry of porphyrin metal complexes is one of the largest explored areas of coordination chemistry. There are many studies available on metal coordination (Scheidt, 2008[Scheidt, W. R. (2008). J. Porphyrins Phthalocyanines, 12, 979-992.]), aspects of macrocycle modification (Chmielewski & Latos-Grazynski, 2005[Chmielewski, P. J. & Latos-Grazynski, L. (2005). Coord. Chem. Rev. 249, 2510-2533.]), supra­molecular chemistry (Beletskaya et al., 2009[Beletskaya, I., Tyurin, V. S., Tsivadze, A. Y., Guilard, R. & Stern, C. (2009). Chem. Rev. 109, 1659-1713.]) and nonplanar systems (Senge, 2006[Senge, M. O. (2006). Chem. Commun. pp. 243-256.]). Highly substituted porphyrins (octa-, nano-, deca-, undeca- and dodeca­substitued porphyrins) are of specific inter­est due to the increased nonplanarity which results in the alteration of photophysical properties due to distortions within the macrocyclic ring. Non-planar porphyrins have significantly lower fluorescence yields, larger Stokes shifts and a shorter lifetime of the lowest excited state than planar ones (Röder et al., 2010[Röder, B., Büchner, M., Rückman, I. & Senge, M. O. (2010). Photochem. Photobiol. Sci. 9, 1152-1158.]). This has resulted in the synthesis and structure of numerous highly substituted porphyrins for biomimetic studies (Senge, 2006[Senge, M. O. (2006). Chem. Commun. pp. 243-256.]; Senge et al., 2015[Senge, M. O., MacGowan, S. A. & O'Brien, J. M. (2015). Chem. Commun. In the press. doi:10.1039/C5CC06254C.]).

[Scheme 1]

2. Structural commentary

The title compound contains one mol­ecule in the asymmetric unit. The β-ethyl groups are either orientated above or below the plane. Ethyl groups on pyrrole rings next to a substituted meso-position alternate, whereas ethyl residues neighbouring an unsubstituted meso-position are orientated in the same direction (Fig. 1[link]).

[Figure 1]
Figure 1
The mol­ecular structure of the title compound (only the major parts of the disordered substituents are shown). Displacement ellipsoids are drawn at the 50% probability level.

The average Ni—N distance is 1.917 (13) Å. The largest deviation occurs at the Ni—N2 bond [1.906 (2) Å], which lies between both substituted meso-positions. These lengths are comparable to those in other similar nickel porphyrins, such as [2,3,7,8,12,13,17,18-octa­ethyl-5-(tri­fluoro­meth­yl)porphyrinato]nickel(II), which has an average Ni—N bond length of 1.925 Å (Suzuki et al., 2014[Suzuki, M., Ishii, S., Hoshino, T. & Neya, S. (2014). Chem. Lett. 43, 1563-1565.]). The angles between the α carbons (Cα) and the meso carbon (Cm) can be used to determine structural differences between similar porphyrins and differences within the individual porphyin structure. The Cα—Cm(but­yl)—Cα angle of 119.12 (2)° is smaller than the Cα—Cm(H)—Cα angle, and the Cα—Cm(2,5-di­meth­oxy­phen­yl)—Cα angle at 123.2 (2)° is similar to both Cα—Cm(H)—Cα angles, 122.1 (3)° (C20) and 124.8 (3)° (C15). The 2,5-di­meth­oxy­phenyl group is tilted at an angle of 75.80 (7)° from the 24-atom least-squares plane of the porphyrin ring.

A conformational analysis was performed using the NSD (normal structural decomposition) method developed by Shelnutt and co-workers (Shelnutt et al., 1998[Shelnutt, J. A., Song, X. Z., Ma, J. G., Jia, S. L., Jentzen, W. & Medforth, C. J. (1998). Chem. Soc. Rev. 27, 31-42.]). The conformation is characterized by a significant degree of ruffled (B1u) with small contributions from saddle (B2u) and wave (y) [Eg(y)] (Fig. 2[link]). There are also minor contributions from wave (x), [Eg(x)] and domed (A2u), which is similar to both highly substituted and other Ni(II) porphyrins (Senge et al., 1992[Senge, M. O., Vicente, M. G. H., Parkin, S. R. & Smith, K. M. (1992). Z. Naturforsch. Teil B, 47, 1189-1202.], 2000[Senge, M. O., Kalisch, W. W. & Bischoff, I. (2000). Chem. Eur. J. 6, 2721-2738.]; Senge & Bischoff, 2001[Senge, M. O. & Bischoff, I. (2001). Eur. J. Org. Chem. 9, 1735-1751.]). Contributions are also evident in the A1g in-plane distortion with smaller contributions from the Eu(x). The tilt of the pyrrole rings against the 24-atom plane are N1 [24.85 (8)°], N2 [25.22 (8)°], N3 [15.79 (10)°] and N4 [17.58 (8)°], with the highest deviation from the mean plane associated with the pyrrole rings closest to the butyl group at C5. The maximum deviations from the least-squares plane are associated with the meso C atoms. C5 deviates from the least-squares plane by 0.880 (2) Å, whereas C10, C15 and C20 deviate from the plane at 0.551 (2), 0.512 (3) and 0.667 (2) Å, respectively. Table 1[link] shows the deviation of all atoms in the 24-atom ring.

Table 1
Deviations of atoms from the least-squares plane of the porphyrin ringa

Atom Deviation from the least-squares plane (Å)
C1 −0.381 (2)
C2 −0.222 (2)
C3 0.395 (2)
C4 0.512 (2)
C5 0.880 (2)
C6 0.385 (2)
C7 −0.014 (2)
C8 −0.598 (2)
C9 −0.456 (2)
C10 −0.551 (3)
C11 −0.222 (3)
C12 −0.004 (3)
C13 0.359 (3)
C14 0.352 (3)
C15 0.512 (3)
C16 0.249 (3)
C17 0.128 (3)
C18 −0.298 (3)
C19 −0.396 (3)
C20 −0.667 (2)
N1 0.019 (2)
N2 0.041 (2)
N3 0.024 (2)
N4 −0.046 (2)
Note: (a) Least-squares plane (x, y, z in crystal coordinates); 8.891 (2)x + 9.002 (3)y +8.507 (3)z = 10.726 (2)
[Figure 2]
Figure 2
Normal structural decomposition (NSD) analysis of the title compound.

3. Supra­molecular features

The unit cell of the title compound consists of two mol­ecules, each at a distance of 4.949 Å from the 24-atom mean plane of the other. The mol­ecules are arranged in a closely spaced lattice structure in which ethyl groups and butyl groups point towards each other to form a cage-like inversion-related dimer (Fig. 3[link]). Mol­ecules are orientated in a head-to-tail fashion with an Ni⋯Ni separation of 8.9207 (8) Å. Short contacts between the H atoms of the meth­oxy groups and the N atoms (C111—H⋯N3) are present in the packing structure at a distance of 2.671 (3) Å. Other short contacts were found between the n-butyl group (C51 > C54) with the phenyl meth­oxy unit, specifically between H54A⋯C104, at 2.851 (4) Å, the meth­oxy group (O1 > C111) with the ethyl group (C181 > C182) between O1⋯H18C at 2.552 (4) Å, the meth­oxy group (O2B > C108) with the ethyl group (C21 > C22) between O2B⋯H22A at 2.486 (3) Å and the ethyl group (C121 > C122) with the C15 atom, between C15⋯H12E at 2.833 (3) Å. However, there are no ππ inter­actions or hydrogen bonds evident in the crystal structure.

[Figure 3]
Figure 3
Crystal packing diagram of the title compound, showing the arrangement of inversion-related mol­ecules.

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.36, update November 2014; Groom & Allen, 2014[Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662-671.]) gave six hits for 5,10-disubstituted-2,3,7,8,12,13,17,18-octa­ethyl­porphyrins. Senge et al. (1992[Senge, M. O., Vicente, M. G. H., Parkin, S. R. & Smith, K. M. (1992). Z. Naturforsch. Teil B, 47, 1189-1202.]) reported the structure of [2,3,7,8,12,13,17,18-octa­ethyl-5,10-di(2-formyl­vin­yl)porph­yrin­ato]nickel(II), with an average Ni—N bond length of 1.900 Å and similar Ca—Cm(H)—Ca angles (122.85–123.58°) compared to the title compound. We also determined the structure of [5,10-di(n-but­yl)-2,3,7,8,12,13,17,18-octa­ethyl­porphyrinato]nickel(II) with and without deuterated chloro­form (Senge et al., 2000[Senge, M. O., Kalisch, W. W. & Bischoff, I. (2000). Chem. Eur. J. 6, 2721-2738.]). This compound exhibits an average Ni—N bond length of 1.900 Å and Ca—Cm—Ca angles similar to the title compound, 119.68–121.23° for substituted meso-positions and 122.58–122.65° for unsubstituted meso-positions. Related structures are those of 2,3,7,8,12,13,17,18-octa­ethyl-5,10-di­phenyl­porphyrin, (2,3,7,8,12,13,17,18-octa­ethyl-5,10-di­phenyl­porphyrinato)nickel(II) and (2,3,7,8,12,13,17,18-octa­ethyl-5,10-di­phenyl­porphyrinato)zinc(II) (Senge & Bischoff, 2001[Senge, M. O. & Bischoff, I. (2001). Eur. J. Org. Chem. 9, 1735-1751.]). The free base derivative shows larger Cα—Cm—Cα angles compared to the title compound. However, as expected, there is a noticeable difference in the angles involving substituted and unsubstituted meso-positions. The angles between substituted meso-positions are in the range 125–125.93°, and 126.90–127.48° for unsubstituted meso-positions. The Ni(II) derivative exhibits angles that are similar to the title compound, 122.12–122.35° for the substituted meso-positions and 123.42–123.78° for the unsubstituted meso-positions. The average Ni—N bond length of 1.923 Å is comparable to that of the title compound. The zinc derivative of this compound exhibits a larger average metal–nitro­gen bond length of 2.054 Å and wider Cα—Cm—Cα angles, 124.85–125.95° for the substituted meso-positions and 126.81–127.78° for unsubstituted meso-positions, as to be expected for zinc porphyrins.

Other highly substituted porphyrin structures include 5,15-disubstituted-2,3,7,8,12,13,17,18-octa­ethyl­porphyrins (Senge et al., 2000[Senge, M. O., Kalisch, W. W. & Bischoff, I. (2000). Chem. Eur. J. 6, 2721-2738.]; Kobayashi et al., 1998[Kobayashi, K., Koyanagi, M., Endo, K., Masuda, H. & Aoyama, Y. (1998). Chem. Eur. J. 4, 417-424.]; Jiang et al., 1996[Jiang, X., Nurco, D. J. & Smith, K. M. (1996). Chem. Commun. pp. 1759-1760.]; Zhu et al., 1992[Zhu, N.-J., Li, Y., Wu, G.-Z. & Liang, Z.-G. (1992). Acta Chim. Sin. 50, 249-256.]) and 5,10,15-tris­ubstituted-2,3,7,8,12,13,17,18-octa­ethyl­porphyrins (Kalisch & Senge, 1998[Kalisch, W. W. & Senge, M. O. (1998). Angew. Chem. Int. Ed. 37, 1107-1109.]; Senge et al., 2000[Senge, M. O., Kalisch, W. W. & Bischoff, I. (2000). Chem. Eur. J. 6, 2721-2738.]; Senge & Bischoff, 2001[Senge, M. O. & Bischoff, I. (2001). Eur. J. Org. Chem. 9, 1735-1751.]).

5. Synthesis and crystallization

The title compound was prepared as reported previously (Senge et al., 2000[Senge, M. O., Kalisch, W. W. & Bischoff, I. (2000). Chem. Eur. J. 6, 2721-2738.]). 1-Bromo-2,5-di­meth­oxy­benzene (1 g, 4.6 mmol) was dissolved in tetra­hydro­furan (5 ml) and cooled to 193 K. The solution was treated dropwise with a solution of lithium in cyclo­hexane (2 M, 2.12 ml, 4.8 mmol). The solution was heated to room temperature and over the course of 1 h added to a solution of (5-butyl-2,3,7,8,12,13,17,18-octa­ethyl­porphyrinato)nickel(II) (100 mg, 0.14 mmol) yielding purple crystals of the title compound (60 mg, 0.08 mmol, 50%). The compound was recrystallized from a solution of 1%vol MeOH in CH2Cl2 layered with hexane to yield single crystals suitable for X-ray diffraction.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The C-bound H atoms were placed in their expected calculated positions and refined using a standard riding model: C—H = 0.95–0.98 Å, with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for other H atoms. Disorder in the 2,5-di­meth­oxy­phenyl substituent was modelled over two positions with a 60% occupancy for the major moiety. The ethyl group at C12 was modelled over two positions with the major moiety being present in 51.3% occupancy. Restraints and constraints were used to model the disorder with SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) associated with the 2,5-di­meth­oxy­pheny group at C10 (EADP) and the ethyl group at C12 (SADI and EADP). The EADP command was also used to constrain the n-butyl chain at C5.

Table 2
Experimental details

Crystal data
Chemical formula [Ni(C48H60N4O2)]
Mr 783.71
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 100
a, b, c (Å) 11.9496 (6), 13.6692 (6), 14.3909 (7)
α, β, γ (°) 72.018 (2), 69.051 (2), 89.558 (2)
V3) 2074.03 (17)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.51
Crystal size (mm) 0.30 × 0.14 × 0.03
 
Data collection
Diffractometer Bruker SMART APEXII area detector
Absorption correction Multi-scan (SADABS; Bruker, 2014[Bruker. (2014). SAINT, APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.704, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 50235, 7609, 4733
Rint 0.103
(sin θ/λ)max−1) 0.603
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.088, 0.92
No. of reflections 7609
No. of parameters 525
No. of restraints 1
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.85, −0.73
Computer programs: APEX2 and SAINT (Bruker, 2014[Bruker. (2014). SAINT, APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

[5-Butyl-10-(2,5-dimethoxyphenyl)-2,3,7,8,13,12,17,18-octaethylporphyrinato]nickel(II) top
Crystal data top
[Ni(C48H60N4O2)]Z = 2
Mr = 783.71F(000) = 840
Triclinic, P1Dx = 1.255 Mg m3
a = 11.9496 (6) ÅMo Kα radiation, λ = 0.71073 Å
b = 13.6692 (6) ÅCell parameters from 5872 reflections
c = 14.3909 (7) Åθ = 2.3–29.9°
α = 72.018 (2)°µ = 0.51 mm1
β = 69.051 (2)°T = 100 K
γ = 89.558 (2)°Plate, orange
V = 2074.03 (17) Å30.30 × 0.14 × 0.03 mm
Data collection top
Bruker SMART APEXII area-detector
diffractometer
7609 independent reflections
Radiation source: sealed tube4733 reflections with I > 2σ(I)
Detector resolution: 8.258 pixels mm-1Rint = 0.103
φ and ω scansθmax = 25.4°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
h = 1414
Tmin = 0.704, Tmax = 0.745k = 1616
50235 measured reflectionsl = 1717
Refinement top
Refinement on F21 restraint
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.088 w = 1/[σ2(Fo2) + (0.0356P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.92(Δ/σ)max = 0.001
7609 reflectionsΔρmax = 0.85 e Å3
525 parametersΔρmin = 0.73 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.0992 (2)0.5331 (2)0.5481 (2)0.0174 (6)
C20.0103 (2)0.5576 (2)0.6339 (2)0.0195 (7)
C30.0058 (2)0.6612 (2)0.6015 (2)0.0184 (6)
C40.0856 (2)0.7003 (2)0.4905 (2)0.0181 (6)
C50.0947 (2)0.7989 (2)0.4198 (2)0.0179 (6)
C60.1288 (2)0.8118 (2)0.3124 (2)0.0174 (6)
C70.0798 (2)0.8822 (2)0.2422 (2)0.0202 (7)
C80.1231 (2)0.8625 (2)0.1491 (2)0.0202 (6)
C90.2073 (2)0.7866 (2)0.1581 (2)0.0180 (6)
C100.2973 (2)0.7647 (2)0.0761 (2)0.0190 (6)
C150.5064 (3)0.5136 (2)0.2482 (2)0.0331 (8)
H15A0.58380.49000.22920.040*
C160.4260 (3)0.4679 (2)0.3497 (2)0.0242 (7)
C170.4371 (3)0.3727 (2)0.4247 (2)0.0244 (7)
C180.3325 (3)0.3492 (2)0.5088 (2)0.0236 (7)
C190.2583 (2)0.4315 (2)0.4878 (2)0.0199 (7)
C200.1495 (2)0.4414 (2)0.5591 (2)0.0212 (7)
H20A0.10750.38250.61830.025*
C210.0577 (3)0.4800 (2)0.7411 (2)0.0246 (7)
H21A0.06220.41030.73450.029*
H21B0.14110.49750.76830.029*
C220.0016 (3)0.4773 (2)0.8199 (2)0.0398 (9)
H22A0.04460.42470.88770.060*
H22B0.00290.54520.82930.060*
H22C0.08430.46010.79330.060*
C310.0812 (2)0.7179 (2)0.6658 (2)0.0244 (7)
H31A0.03950.78530.65460.029*
H31B0.10720.67690.74150.029*
C320.1926 (3)0.7367 (2)0.6364 (2)0.0339 (8)
H32A0.24250.77970.67450.051*
H32B0.23950.67020.65540.051*
H32C0.16700.77230.56040.051*
C510.0729 (3)0.8926 (2)0.4562 (2)0.0223 (7)
H51A0.00960.88220.50990.027*
H51B0.07880.95450.39580.027*
C520.1645 (3)0.9111 (3)0.5029 (2)0.0373 (5)
H52A0.14270.96890.53140.045*
H52B0.15930.84830.56240.045*
C530.2931 (3)0.9363 (3)0.4241 (2)0.0373 (5)
H53A0.29610.99090.35910.045*
H53B0.32040.87390.40550.045*
C540.3782 (3)0.9728 (2)0.4664 (2)0.0373 (5)
H54A0.46090.98460.41450.056*
H54B0.37360.91990.53210.056*
H54C0.35521.03750.48000.056*
C710.0151 (3)0.9535 (2)0.2676 (2)0.0240 (7)
H71A0.05600.93370.34500.029*
H71B0.07640.94420.23850.029*
C720.0357 (3)1.0679 (2)0.2236 (2)0.0310 (8)
H72A0.03061.11040.23860.047*
H72B0.07921.08760.14730.047*
H72C0.09111.07900.25670.047*
C810.0710 (3)0.9022 (2)0.0649 (2)0.0228 (7)
H81A0.13680.92240.00540.027*
H81B0.03080.96440.07280.027*
C820.0201 (3)0.8191 (2)0.0730 (2)0.0321 (8)
H82A0.05810.84800.02190.048*
H82B0.08200.79550.14430.048*
H82C0.02150.76040.05810.048*
C1010.3076 (2)0.8260 (2)0.0339 (2)0.0203 (6)
C1020.3597 (3)0.9287 (2)0.0781 (2)0.0292 (8)
H10H0.38930.95890.03890.035*0.600 (2)
C1030.3687 (3)0.9873 (2)0.1786 (2)0.0337 (8)
H10J0.40771.05630.20940.040*0.400 (2)
C1040.3209 (3)0.9452 (2)0.2337 (2)0.0314 (8)
H10A0.32410.98640.30140.038*
C1050.2682 (3)0.8433 (2)0.1913 (2)0.0261 (7)
H10I0.23620.81450.23010.031*0.600 (2)
C1060.2626 (2)0.7834 (2)0.0915 (2)0.0198 (6)
H10K0.22790.71320.06260.024*0.400 (2)
C1710.5470 (3)0.3161 (2)0.4078 (2)0.0321 (8)
H17A0.57670.31300.33530.039*
H17B0.52410.24420.45720.039*
C1720.6490 (3)0.3668 (3)0.4241 (3)0.0507 (10)
H17C0.71790.32660.41210.076*
H17D0.62090.36870.49630.076*
H17E0.67350.43750.37430.076*
C1810.2990 (3)0.2619 (2)0.6112 (2)0.0335 (8)
H18A0.34290.20260.59880.040*
H18B0.21150.23910.63890.040*
C1820.3296 (3)0.2945 (3)0.6928 (2)0.0454 (9)
H18C0.30580.23630.75880.068*
H18D0.28590.35300.70550.068*
H18E0.41660.31520.66640.068*
N10.14074 (19)0.61957 (17)0.46025 (16)0.0173 (5)
N20.20042 (19)0.75011 (16)0.26233 (16)0.0176 (5)
N40.3174 (2)0.50394 (17)0.39042 (16)0.0205 (6)
Ni10.26092 (3)0.62863 (3)0.32541 (3)0.01819 (11)
N30.3797 (2)0.63970 (18)0.18985 (16)0.0218 (6)
C110.3849 (2)0.7011 (2)0.0904 (2)0.0213 (7)
C140.4830 (3)0.5910 (2)0.1720 (2)0.0305 (8)
C120.4970 (3)0.6906 (2)0.0100 (2)0.0318 (8)
C130.5564 (3)0.6234 (3)0.0618 (2)0.0368 (9)
C1310.6770 (3)0.5866 (3)0.0152 (3)0.0657 (9)
H13A0.69410.59620.05980.079*
H13B0.67270.51170.05220.079*
C1320.7794 (3)0.6439 (3)0.0232 (3)0.0657 (9)
H13C0.85500.61630.00660.099*
H13D0.76310.63460.09740.099*
H13E0.78640.71780.01580.099*
C1210.551 (3)0.7491 (18)0.1075 (8)0.029 (3)0.513 (5)
H12A0.63970.76420.13220.035*0.513 (5)
H12B0.51590.81500.12500.035*0.513 (5)
C1220.5158 (5)0.6715 (5)0.1579 (4)0.0304 (18)0.513 (5)
H12C0.54650.70320.23470.046*0.513 (5)
H12D0.42780.65650.13080.046*0.513 (5)
H12E0.55150.60700.13920.046*0.513 (5)
C12B0.542 (3)0.734 (2)0.1093 (9)0.029 (3)0.487 (5)
H12F0.47500.75130.13380.035*0.487 (5)
H12G0.58680.68330.14130.035*0.487 (5)
C12C0.6292 (7)0.8338 (6)0.1373 (6)0.065 (3)0.487 (5)
H12H0.65990.86950.21350.097*0.487 (5)
H12I0.69700.81390.11500.097*0.487 (5)
H12J0.58460.88000.10080.097*0.487 (5)
C1080.1604 (5)0.6449 (4)0.1065 (4)0.0352 (8)0.600 (2)
H10E0.12770.57220.06760.053*0.600 (2)
H10F0.22220.65050.17520.053*0.600 (2)
H10G0.09520.68550.11680.053*0.600 (2)
O2B0.2130 (3)0.6839 (2)0.0478 (2)0.0231 (8)0.600 (2)
O10.4351 (3)1.0869 (2)0.2248 (2)0.0353 (10)0.600 (2)
C1110.4968 (5)1.1267 (4)0.1724 (4)0.0352 (8)0.600 (2)
H11A0.54351.19350.21990.053*0.600 (2)
H11B0.55131.07780.15280.053*0.600 (2)
H11C0.43761.13620.10900.053*0.600 (2)
C1090.1601 (7)0.6923 (6)0.2017 (6)0.0352 (8)0.400 (2)
H10B0.12910.67520.25000.053*0.400 (2)
H10C0.09260.68920.13690.053*0.400 (2)
H10D0.21510.64260.18480.053*0.400 (2)
O1B0.2227 (4)0.7934 (4)0.2501 (4)0.0299 (13)0.400 (2)
O20.3879 (5)0.9755 (4)0.0216 (4)0.0324 (14)0.400 (2)
C1120.4089 (7)1.0859 (5)0.0569 (6)0.0352 (8)0.400 (2)
H11G0.41941.10850.00190.053*0.400 (2)
H11D0.33971.11520.07210.053*0.400 (2)
H11E0.48181.10960.12100.053*0.400 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0172 (16)0.0229 (17)0.0141 (15)0.0023 (13)0.0090 (13)0.0052 (13)
C20.0155 (16)0.0262 (18)0.0191 (16)0.0013 (13)0.0095 (13)0.0069 (14)
C30.0161 (16)0.0264 (18)0.0173 (15)0.0018 (13)0.0084 (13)0.0105 (14)
C40.0155 (16)0.0247 (17)0.0200 (15)0.0037 (13)0.0100 (13)0.0115 (14)
C50.0159 (16)0.0232 (17)0.0216 (16)0.0084 (13)0.0123 (13)0.0108 (14)
C60.0176 (16)0.0180 (16)0.0194 (15)0.0026 (13)0.0087 (13)0.0077 (13)
C70.0230 (17)0.0176 (16)0.0213 (16)0.0026 (13)0.0105 (13)0.0053 (13)
C80.0234 (17)0.0180 (16)0.0197 (16)0.0020 (13)0.0099 (13)0.0048 (13)
C90.0210 (17)0.0187 (16)0.0163 (15)0.0003 (13)0.0099 (13)0.0051 (13)
C100.0191 (16)0.0228 (17)0.0155 (15)0.0010 (13)0.0066 (13)0.0064 (13)
C150.0190 (18)0.046 (2)0.0280 (18)0.0165 (16)0.0056 (15)0.0084 (16)
C160.0197 (17)0.0296 (18)0.0250 (17)0.0087 (14)0.0092 (14)0.0104 (15)
C170.0259 (19)0.0285 (18)0.0262 (17)0.0118 (15)0.0145 (15)0.0137 (15)
C180.0321 (19)0.0220 (17)0.0227 (16)0.0084 (14)0.0154 (15)0.0097 (14)
C190.0205 (17)0.0218 (17)0.0201 (16)0.0043 (13)0.0097 (13)0.0080 (14)
C200.0223 (17)0.0208 (17)0.0201 (16)0.0007 (13)0.0099 (14)0.0038 (14)
C210.0243 (18)0.0261 (18)0.0210 (16)0.0006 (14)0.0042 (14)0.0096 (14)
C220.057 (2)0.036 (2)0.0231 (17)0.0043 (17)0.0159 (17)0.0035 (16)
C310.0260 (18)0.0300 (18)0.0172 (15)0.0028 (14)0.0050 (13)0.0115 (14)
C320.0216 (19)0.045 (2)0.0378 (19)0.0098 (16)0.0050 (15)0.0247 (17)
C510.0273 (18)0.0233 (17)0.0201 (15)0.0093 (14)0.0107 (14)0.0100 (14)
C520.0310 (12)0.0517 (13)0.0342 (11)0.0003 (10)0.0105 (9)0.0227 (10)
C530.0310 (12)0.0517 (13)0.0342 (11)0.0003 (10)0.0105 (9)0.0227 (10)
C540.0310 (12)0.0517 (13)0.0342 (11)0.0003 (10)0.0105 (9)0.0227 (10)
C710.0298 (18)0.0263 (18)0.0229 (16)0.0108 (14)0.0158 (14)0.0106 (14)
C720.043 (2)0.0262 (18)0.0310 (18)0.0123 (16)0.0204 (16)0.0114 (15)
C810.0293 (18)0.0226 (17)0.0199 (16)0.0084 (14)0.0125 (14)0.0081 (13)
C820.035 (2)0.036 (2)0.0286 (18)0.0038 (16)0.0209 (16)0.0049 (15)
C1010.0195 (17)0.0245 (17)0.0138 (14)0.0021 (13)0.0037 (13)0.0051 (13)
C1020.035 (2)0.0260 (19)0.0220 (17)0.0019 (15)0.0057 (15)0.0072 (15)
C1030.043 (2)0.0188 (18)0.0245 (18)0.0005 (16)0.0007 (16)0.0031 (15)
C1040.038 (2)0.030 (2)0.0154 (16)0.0108 (16)0.0044 (15)0.0005 (15)
C1050.0246 (18)0.036 (2)0.0190 (16)0.0078 (15)0.0069 (14)0.0128 (15)
C1060.0181 (16)0.0182 (17)0.0183 (15)0.0032 (13)0.0034 (13)0.0037 (14)
C1710.0308 (19)0.036 (2)0.0354 (19)0.0161 (16)0.0185 (16)0.0126 (16)
C1720.035 (2)0.062 (3)0.074 (3)0.0237 (19)0.035 (2)0.030 (2)
C1810.034 (2)0.0292 (19)0.0323 (18)0.0120 (16)0.0120 (16)0.0041 (16)
C1820.048 (2)0.055 (2)0.0253 (18)0.0047 (19)0.0176 (17)0.0016 (17)
N10.0172 (13)0.0219 (14)0.0162 (13)0.0057 (11)0.0086 (11)0.0079 (11)
N20.0180 (14)0.0208 (14)0.0157 (12)0.0034 (11)0.0078 (11)0.0065 (11)
N40.0182 (14)0.0279 (15)0.0177 (13)0.0083 (12)0.0080 (11)0.0094 (12)
Ni10.0172 (2)0.0236 (2)0.0153 (2)0.00671 (16)0.00691 (16)0.00747 (17)
N30.0179 (14)0.0298 (15)0.0152 (13)0.0077 (11)0.0043 (11)0.0064 (12)
C110.0201 (17)0.0271 (18)0.0149 (15)0.0027 (14)0.0055 (13)0.0057 (14)
C140.0197 (18)0.044 (2)0.0232 (17)0.0130 (16)0.0057 (14)0.0073 (16)
C120.0248 (19)0.045 (2)0.0199 (17)0.0051 (16)0.0029 (14)0.0090 (16)
C130.0248 (19)0.050 (2)0.0251 (18)0.0155 (17)0.0024 (15)0.0069 (17)
C1310.0299 (16)0.114 (3)0.0406 (15)0.0344 (17)0.0055 (14)0.0182 (16)
C1320.0299 (16)0.114 (3)0.0406 (15)0.0344 (17)0.0055 (14)0.0182 (16)
C1210.023 (3)0.039 (6)0.0205 (17)0.003 (4)0.0033 (16)0.011 (2)
C1220.023 (4)0.055 (4)0.023 (3)0.004 (3)0.009 (3)0.025 (3)
C12B0.023 (3)0.039 (6)0.0205 (17)0.003 (4)0.0033 (16)0.011 (2)
C12C0.033 (5)0.076 (7)0.047 (5)0.006 (5)0.005 (4)0.008 (5)
C1080.044 (2)0.0275 (19)0.0384 (19)0.0049 (16)0.0212 (17)0.0089 (16)
O2B0.026 (2)0.021 (2)0.0210 (18)0.0026 (15)0.0096 (15)0.0052 (16)
O10.046 (2)0.023 (2)0.027 (2)0.0070 (18)0.0141 (18)0.0054 (17)
C1110.044 (2)0.0275 (19)0.0384 (19)0.0049 (16)0.0212 (17)0.0089 (16)
C1090.044 (2)0.0275 (19)0.0384 (19)0.0049 (16)0.0212 (17)0.0089 (16)
O1B0.034 (3)0.035 (3)0.026 (3)0.008 (3)0.014 (2)0.013 (3)
O20.048 (4)0.021 (3)0.034 (3)0.004 (3)0.025 (3)0.007 (3)
C1120.044 (2)0.0275 (19)0.0384 (19)0.0049 (16)0.0212 (17)0.0089 (16)
Geometric parameters (Å, º) top
C1—N11.371 (3)C102—O21.305 (5)
C1—C201.376 (3)C102—C1031.386 (4)
C1—C21.441 (4)C102—H10H0.9500
C2—C31.353 (4)C103—C1041.377 (4)
C2—C211.508 (4)C103—O11.416 (4)
C3—C41.462 (3)C103—H10J0.9500
C3—C311.510 (3)C104—C1051.386 (4)
C4—N11.387 (3)C104—H10A0.9500
C4—C51.392 (3)C105—C1061.395 (4)
C5—C61.403 (3)C105—O1B1.472 (5)
C5—C511.514 (3)C105—H10I0.9500
C6—N21.374 (3)C106—O2B1.347 (4)
C6—C71.450 (3)C106—H10K0.9500
C7—C81.363 (3)C171—C1721.528 (4)
C7—C711.509 (4)C171—H17A0.9900
C8—C91.450 (4)C171—H17B0.9900
C8—C811.510 (3)C172—H17C0.9800
C9—C101.394 (3)C172—H17D0.9800
C9—N21.398 (3)C172—H17E0.9800
C10—C111.387 (4)C181—C1821.531 (4)
C10—C1011.506 (3)C181—H18A0.9900
C15—C161.374 (4)C181—H18B0.9900
C15—C141.378 (4)C182—H18C0.9800
C15—H15A0.9500C182—H18D0.9800
C16—N41.376 (3)C182—H18E0.9800
C16—C171.452 (4)N1—Ni11.925 (2)
C17—C181.348 (4)N2—Ni11.904 (2)
C17—C1711.501 (4)N4—Ni11.919 (2)
C18—C191.452 (4)Ni1—N31.919 (2)
C18—C1811.502 (4)N3—C141.378 (3)
C19—N41.375 (3)N3—C111.396 (3)
C19—C201.375 (4)C11—C121.465 (4)
C20—H20A0.9500C14—C131.434 (4)
C21—C221.528 (4)C12—C131.360 (4)
C21—H21A0.9900C12—C12B1.518 (11)
C21—H21B0.9900C12—C1211.519 (11)
C22—H22A0.9800C13—C1311.511 (4)
C22—H22B0.9800C131—C1321.515 (5)
C22—H22C0.9800C131—H13A0.9900
C31—C321.533 (4)C131—H13B0.9900
C31—H31A0.9900C132—H13C0.9800
C31—H31B0.9900C132—H13D0.9800
C32—H32A0.9800C132—H13E0.9800
C32—H32B0.9800C121—C1221.59 (2)
C32—H32C0.9800C121—H12A0.9900
C51—C521.532 (4)C121—H12B0.9900
C51—H51A0.9900C122—H12C0.9800
C51—H51B0.9900C122—H12D0.9800
C52—C531.513 (4)C122—H12E0.9800
C52—H52A0.9900C12B—C12C1.58 (3)
C52—H52B0.9900C12B—H12F0.9900
C53—C541.513 (4)C12B—H12G0.9900
C53—H53A0.9900C12C—H12H0.9800
C53—H53B0.9900C12C—H12I0.9800
C54—H54A0.9800C12C—H12J0.9800
C54—H54B0.9800C108—O2B1.434 (5)
C54—H54C0.9800C108—H10E0.9800
C71—C721.531 (4)C108—H10F0.9800
C71—H71A0.9900C108—H10G0.9800
C71—H71B0.9900O1—C1111.436 (5)
C72—H72A0.9800C111—H11A0.9800
C72—H72B0.9800C111—H11B0.9800
C72—H72C0.9800C111—H11C0.9800
C81—C821.528 (4)C109—O1B1.416 (8)
C81—H81A0.9900C109—H10B0.9800
C81—H81B0.9900C109—H10C0.9800
C82—H82A0.9800C109—H10D0.9800
C82—H82B0.9800O2—C1121.428 (8)
C82—H82C0.9800C112—H11G0.9800
C101—C1061.391 (4)C112—H11D0.9800
C101—C1021.394 (4)C112—H11E0.9800
N1—C1—C20124.9 (2)C103—C104—C105120.7 (3)
N1—C1—C2110.2 (2)C103—C104—H10A119.7
C20—C1—C2124.0 (2)C105—C104—H10A119.7
C3—C2—C1107.6 (2)C104—C105—C106119.5 (3)
C3—C2—C21127.9 (2)C104—C105—O1B122.4 (3)
C1—C2—C21124.5 (2)C106—C105—O1B118.0 (3)
C2—C3—C4106.4 (2)C104—C105—H10I120.2
C2—C3—C31124.5 (2)C106—C105—H10I120.2
C4—C3—C31128.4 (2)O2B—C106—C101118.3 (3)
N1—C4—C5123.2 (2)O2B—C106—C105121.4 (3)
N1—C4—C3109.5 (2)C101—C106—C105120.3 (3)
C5—C4—C3126.8 (2)C101—C106—H10K119.8
C4—C5—C6119.2 (2)C105—C106—H10K119.8
C4—C5—C51121.2 (2)C17—C171—C172113.2 (3)
C6—C5—C51119.5 (2)C17—C171—H17A108.9
N2—C6—C5124.7 (2)C172—C171—H17A108.9
N2—C6—C7110.1 (2)C17—C171—H17B108.9
C5—C6—C7124.7 (2)C172—C171—H17B108.9
C8—C7—C6107.0 (2)H17A—C171—H17B107.7
C8—C7—C71124.1 (2)C171—C172—H17C109.5
C6—C7—C71128.3 (2)C171—C172—H17D109.5
C7—C8—C9107.1 (2)H17C—C172—H17D109.5
C7—C8—C81122.6 (2)C171—C172—H17E109.5
C9—C8—C81129.5 (2)H17C—C172—H17E109.5
C10—C9—N2122.9 (2)H17D—C172—H17E109.5
C10—C9—C8127.1 (2)C18—C181—C182111.5 (2)
N2—C9—C8109.0 (2)C18—C181—H18A109.3
C11—C10—C9123.5 (2)C182—C181—H18A109.3
C11—C10—C101119.4 (2)C18—C181—H18B109.3
C9—C10—C101116.5 (2)C182—C181—H18B109.3
C16—C15—C14124.8 (3)H18A—C181—H18B108.0
C16—C15—H15A117.6C181—C182—H18C109.5
C14—C15—H15A117.6C181—C182—H18D109.5
C15—C16—N4122.9 (3)H18C—C182—H18D109.5
C15—C16—C17126.0 (3)C181—C182—H18E109.5
N4—C16—C17110.9 (2)H18C—C182—H18E109.5
C18—C17—C16106.4 (2)H18D—C182—H18E109.5
C18—C17—C171128.9 (3)C1—N1—C4106.1 (2)
C16—C17—C171124.7 (3)C1—N1—Ni1126.70 (17)
C17—C18—C19107.1 (2)C4—N1—Ni1127.03 (18)
C17—C18—C181128.3 (3)C6—N2—C9106.1 (2)
C19—C18—C181124.3 (3)C6—N2—Ni1127.01 (17)
N4—C19—C20124.3 (2)C9—N2—Ni1126.42 (17)
N4—C19—C18110.5 (2)C19—N4—C16105.1 (2)
C20—C19—C18124.8 (3)C19—N4—Ni1127.50 (18)
C19—C20—C1122.6 (3)C16—N4—Ni1127.42 (19)
C19—C20—H20A118.7N2—Ni1—N389.77 (9)
C1—C20—H20A118.7N2—Ni1—N4178.32 (10)
C2—C21—C22112.5 (2)N3—Ni1—N491.08 (9)
C2—C21—H21A109.1N2—Ni1—N189.26 (9)
C22—C21—H21A109.1N3—Ni1—N1179.03 (10)
C2—C21—H21B109.1N4—Ni1—N189.89 (9)
C22—C21—H21B109.1C14—N3—C11105.5 (2)
H21A—C21—H21B107.8C14—N3—Ni1125.71 (18)
C21—C22—H22A109.5C11—N3—Ni1128.65 (18)
C21—C22—H22B109.5C10—C11—N3122.7 (2)
H22A—C22—H22B109.5C10—C11—C12127.8 (2)
C21—C22—H22C109.5N3—C11—C12109.4 (2)
H22A—C22—H22C109.5N3—C14—C15124.4 (3)
H22B—C22—H22C109.5N3—C14—C13110.9 (2)
C3—C31—C32112.1 (2)C15—C14—C13124.3 (3)
C3—C31—H31A109.2C13—C12—C11106.6 (2)
C32—C31—H31A109.2C13—C12—C12B122.3 (13)
C3—C31—H31B109.2C11—C12—C12B130.9 (13)
C32—C31—H31B109.2C13—C12—C121123.2 (12)
H31A—C31—H31B107.9C11—C12—C121129.9 (12)
C31—C32—H32A109.5C12—C13—C14107.5 (3)
C31—C32—H32B109.5C12—C13—C131127.8 (3)
H32A—C32—H32B109.5C14—C13—C131124.7 (3)
C31—C32—H32C109.5C13—C131—C132112.7 (3)
H32A—C32—H32C109.5C13—C131—H13A109.1
H32B—C32—H32C109.5C132—C131—H13A109.1
C5—C51—C52111.5 (2)C13—C131—H13B109.1
C5—C51—H51A109.3C132—C131—H13B109.1
C52—C51—H51A109.3H13A—C131—H13B107.8
C5—C51—H51B109.3C131—C132—H13C109.5
C52—C51—H51B109.3C131—C132—H13D109.5
H51A—C51—H51B108.0H13C—C132—H13D109.5
C53—C52—C51113.4 (2)C131—C132—H13E109.5
C53—C52—H52A108.9H13C—C132—H13E109.5
C51—C52—H52A108.9H13D—C132—H13E109.5
C53—C52—H52B108.9C12—C121—C122103.4 (13)
C51—C52—H52B108.9C12—C121—H12A111.1
H52A—C52—H52B107.7C122—C121—H12A111.1
C52—C53—C54112.2 (2)C12—C121—H12B111.1
C52—C53—H53A109.2C122—C121—H12B111.1
C54—C53—H53A109.2H12A—C121—H12B109.0
C52—C53—H53B109.2C121—C122—H12C109.5
C54—C53—H53B109.2C121—C122—H12D109.5
H53A—C53—H53B107.9H12C—C122—H12D109.5
C53—C54—H54A109.5C121—C122—H12E109.5
C53—C54—H54B109.5H12C—C122—H12E109.5
H54A—C54—H54B109.5H12D—C122—H12E109.5
C53—C54—H54C109.5C12—C12B—C12C103.4 (14)
H54A—C54—H54C109.5C12—C12B—H12F111.1
H54B—C54—H54C109.5C12C—C12B—H12F111.1
C7—C71—C72113.4 (2)C12—C12B—H12G111.1
C7—C71—H71A108.9C12C—C12B—H12G111.1
C72—C71—H71A108.9H12F—C12B—H12G109.0
C7—C71—H71B108.9C12B—C12C—H12H109.5
C72—C71—H71B108.9C12B—C12C—H12I109.5
H71A—C71—H71B107.7H12H—C12C—H12I109.5
C71—C72—H72A109.5C12B—C12C—H12J109.5
C71—C72—H72B109.5H12H—C12C—H12J109.5
H72A—C72—H72B109.5H12I—C12C—H12J109.5
C71—C72—H72C109.5O2B—C108—H10E109.5
H72A—C72—H72C109.5O2B—C108—H10F109.5
H72B—C72—H72C109.5H10E—C108—H10F109.5
C8—C81—C82110.6 (2)O2B—C108—H10G109.5
C8—C81—H81A109.5H10E—C108—H10G109.5
C82—C81—H81A109.5H10F—C108—H10G109.5
C8—C81—H81B109.5C106—O2B—C108116.6 (3)
C82—C81—H81B109.5C103—O1—C111122.1 (3)
H81A—C81—H81B108.1O1—C111—H11A109.5
C81—C82—H82A109.5O1—C111—H11B109.5
C81—C82—H82B109.5H11A—C111—H11B109.5
H82A—C82—H82B109.5O1—C111—H11C109.5
C81—C82—H82C109.5H11A—C111—H11C109.5
H82A—C82—H82C109.5H11B—C111—H11C109.5
H82B—C82—H82C109.5O1B—C109—H10B109.5
C106—C101—C102119.0 (2)O1B—C109—H10C109.5
C106—C101—C10121.4 (2)H10B—C109—H10C109.5
C102—C101—C10119.5 (2)O1B—C109—H10D109.5
O2—C102—C103118.1 (3)H10B—C109—H10D109.5
O2—C102—C101120.7 (3)H10C—C109—H10D109.5
C103—C102—C101120.7 (3)C109—O1B—C105121.1 (5)
C103—C102—H10H119.6C102—O2—C112120.0 (5)
C101—C102—H10H119.6O2—C112—H11G109.5
C104—C103—C102119.7 (3)O2—C112—H11D109.5
C104—C103—O1121.7 (3)H11G—C112—H11D109.5
C102—C103—O1118.5 (3)O2—C112—H11E109.5
C104—C103—H10J120.2H11G—C112—H11E109.5
C102—C103—H10J120.2H11D—C112—H11E109.5
N1—C1—C2—C35.8 (3)C103—C104—C105—O1B176.3 (3)
C20—C1—C2—C3163.7 (2)C102—C101—C106—O2B179.7 (3)
N1—C1—C2—C21177.6 (2)C10—C101—C106—O2B2.4 (4)
C20—C1—C2—C2112.9 (4)C102—C101—C106—C1050.9 (4)
C1—C2—C3—C45.1 (3)C10—C101—C106—C105177.0 (2)
C21—C2—C3—C4178.5 (2)C104—C105—C106—O2B179.5 (3)
C1—C2—C3—C31176.3 (2)C104—C105—C106—C1011.1 (4)
C21—C2—C3—C317.2 (4)O1B—C105—C106—C101178.2 (3)
C2—C3—C4—N12.9 (3)C18—C17—C171—C172101.9 (4)
C31—C3—C4—N1173.7 (2)C16—C17—C171—C17276.9 (4)
C2—C3—C4—C5168.7 (3)C17—C18—C181—C18291.2 (4)
C31—C3—C4—C52.1 (4)C19—C18—C181—C18282.0 (3)
N1—C4—C5—C619.6 (4)C20—C1—N1—C4165.5 (2)
C3—C4—C5—C6151.0 (3)C2—C1—N1—C43.8 (3)
N1—C4—C5—C51158.2 (2)C20—C1—N1—Ni110.1 (4)
C3—C4—C5—C5131.2 (4)C2—C1—N1—Ni1179.41 (17)
C4—C5—C6—N228.5 (4)C5—C4—N1—C1172.6 (2)
C51—C5—C6—N2149.4 (3)C3—C4—N1—C10.6 (3)
C4—C5—C6—C7142.2 (3)C5—C4—N1—Ni111.8 (4)
C51—C5—C6—C739.9 (4)C3—C4—N1—Ni1176.21 (17)
N2—C6—C7—C80.2 (3)C5—C6—N2—C9177.4 (3)
C5—C6—C7—C8172.1 (3)C7—C6—N2—C95.5 (3)
N2—C6—C7—C71171.3 (3)C5—C6—N2—Ni14.7 (4)
C5—C6—C7—C710.5 (5)C7—C6—N2—Ni1167.12 (18)
C6—C7—C8—C95.0 (3)C10—C9—N2—C6161.0 (3)
C71—C7—C8—C9177.0 (3)C8—C9—N2—C68.6 (3)
C6—C7—C8—C81165.7 (2)C10—C9—N2—Ni126.3 (4)
C71—C7—C8—C816.3 (4)C8—C9—N2—Ni1164.09 (18)
C7—C8—C9—C10160.4 (3)C20—C19—N4—C16174.7 (3)
C81—C8—C9—C1029.7 (5)C18—C19—N4—C160.8 (3)
C7—C8—C9—N28.6 (3)C20—C19—N4—Ni15.1 (4)
C81—C8—C9—N2161.2 (3)C18—C19—N4—Ni1179.01 (17)
N2—C9—C10—C113.1 (4)C15—C16—N4—C19173.0 (3)
C8—C9—C10—C11170.8 (3)C17—C16—N4—C192.1 (3)
N2—C9—C10—C101168.2 (2)C15—C16—N4—Ni17.2 (4)
C8—C9—C10—C1010.6 (4)C17—C16—N4—Ni1177.76 (18)
C14—C15—C16—N48.4 (5)C9—C10—C11—N310.8 (4)
C14—C15—C16—C17165.9 (3)C101—C10—C11—N3178.1 (2)
C15—C16—C17—C18172.3 (3)C9—C10—C11—C12165.6 (3)
N4—C16—C17—C182.6 (3)C101—C10—C11—C125.6 (5)
C15—C16—C17—C1718.7 (5)C14—N3—C11—C10178.2 (3)
N4—C16—C17—C171176.4 (3)Ni1—N3—C11—C101.5 (4)
C16—C17—C18—C192.0 (3)C14—N3—C11—C121.3 (3)
C171—C17—C18—C19177.0 (3)Ni1—N3—C11—C12175.4 (2)
C16—C17—C18—C181176.1 (3)C11—N3—C14—C15171.7 (3)
C171—C17—C18—C1812.8 (5)Ni1—N3—C14—C1511.4 (4)
C17—C18—C19—N40.8 (3)C11—N3—C14—C131.8 (3)
C181—C18—C19—N4175.3 (2)Ni1—N3—C14—C13175.0 (2)
C17—C18—C19—C20173.1 (3)C16—C15—C14—N36.2 (5)
C181—C18—C19—C201.4 (4)C16—C15—C14—C13166.5 (3)
N4—C19—C20—C112.1 (4)C10—C11—C12—C13177.0 (3)
C18—C19—C20—C1160.9 (3)N3—C11—C12—C130.3 (4)
N1—C1—C20—C199.5 (4)C10—C11—C12—C12B8.4 (14)
C2—C1—C20—C19158.4 (3)N3—C11—C12—C12B174.9 (14)
C3—C2—C21—C2281.0 (3)C10—C11—C12—C1213.9 (13)
C1—C2—C21—C2294.9 (3)N3—C11—C12—C121172.8 (13)
C2—C3—C31—C3296.7 (3)C11—C12—C13—C140.8 (4)
C4—C3—C31—C3272.6 (4)C12B—C12—C13—C14174.3 (12)
C4—C5—C51—C5262.3 (3)C121—C12—C13—C14174.5 (11)
C6—C5—C51—C52115.5 (3)C11—C12—C13—C131179.7 (3)
C5—C51—C52—C5363.6 (3)C12B—C12—C13—C1315.2 (13)
C51—C52—C53—C54169.7 (3)C121—C12—C13—C1316.0 (12)
C8—C7—C71—C7282.5 (3)N3—C14—C13—C121.7 (4)
C6—C7—C71—C72107.4 (3)C15—C14—C13—C12171.9 (3)
C7—C8—C81—C8296.7 (3)N3—C14—C13—C131178.8 (3)
C9—C8—C81—C8271.7 (4)C15—C14—C13—C1317.7 (6)
C11—C10—C101—C10685.9 (3)C12—C13—C131—C13299.5 (4)
C9—C10—C101—C106102.3 (3)C14—C13—C131—C13281.1 (4)
C11—C10—C101—C10296.2 (3)C13—C12—C121—C12287.6 (17)
C9—C10—C101—C10275.6 (3)C11—C12—C121—C122100.3 (15)
C106—C101—C102—O2170.7 (4)C13—C12—C12B—C12C88.5 (17)
C10—C101—C102—O27.3 (5)C11—C12—C12B—C12C97.7 (18)
C106—C101—C102—C1031.1 (4)C101—C106—O2B—C108175.9 (3)
C10—C101—C102—C103179.1 (3)C105—C106—O2B—C1083.5 (5)
O2—C102—C103—C104169.1 (4)C104—C103—O1—C111172.8 (4)
C101—C102—C103—C1042.9 (5)C102—C103—O1—C1112.5 (5)
C101—C102—C103—O1172.5 (3)C104—C105—O1B—C109174.5 (5)
C102—C103—C104—C1052.7 (5)C106—C105—O1B—C1098.5 (7)
O1—C103—C104—C105172.6 (3)C103—C102—O2—C1129.6 (7)
C103—C104—C105—C1060.7 (4)C101—C102—O2—C112162.4 (5)
Deviations of atoms from the least-squares plane of the porphyrin ringa top
AtomDeviation from the least-squares plane (Å)
C1-0.381 (2)
C2-0.222 (2)
C30.395 (2)
C40.512 (2)
C50.880 (2)
C60.385 (2)
C7-0.014 (2)
C8-0.598 (2)
C9-0.456 (2)
C10-0.551 (3)
C11-0.222 (3)
C12-0.004 (3)
C130.359 (3)
C140.352 (3)
C150.512 (3)
C160.249 (3)
C170.128 (3)
C18-0.298 (3)
C19-0.396 (3)
C20-0.667 (2)
N10.019 (2)
N20.041 (2)
N30.024 (2)
N4-0.046 (2)
Note: (a) Least-squares plane (x, y, z in crystal coordinates); 8.891 (2)x + 9.002 (3)y + 8.507 (3)z = 10.726 (2)
 

Acknowledgements

This work was supported by a grant from the Science Foundation Ireland (SFI IvP 13/IA/1894).

References

First citationBeletskaya, I., Tyurin, V. S., Tsivadze, A. Y., Guilard, R. & Stern, C. (2009). Chem. Rev. 109, 1659–1713.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker. (2014). SAINT, APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChmielewski, P. J. & Latos-Grazynski, L. (2005). Coord. Chem. Rev. 249, 2510–2533.  Web of Science CrossRef CAS Google Scholar
First citationGroom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.  Web of Science CSD CrossRef CAS Google Scholar
First citationJiang, X., Nurco, D. J. & Smith, K. M. (1996). Chem. Commun. pp. 1759–1760.  CrossRef Google Scholar
First citationKalisch, W. W. & Senge, M. O. (1998). Angew. Chem. Int. Ed. 37, 1107–1109.  CrossRef CAS Google Scholar
First citationKobayashi, K., Koyanagi, M., Endo, K., Masuda, H. & Aoyama, Y. (1998). Chem. Eur. J. 4, 417–424.  CrossRef CAS Google Scholar
First citationRöder, B., Büchner, M., Rückman, I. & Senge, M. O. (2010). Photochem. Photobiol. Sci. 9, 1152–1158.  PubMed Google Scholar
First citationScheidt, W. R. (2008). J. Porphyrins Phthalocyanines, 12, 979–992.  CrossRef CAS Google Scholar
First citationSenge, M. O. (2006). Chem. Commun. pp. 243–256.  Web of Science CrossRef Google Scholar
First citationSenge, M. O. & Bischoff, I. (2001). Eur. J. Org. Chem. 9, 1735–1751.  CrossRef Google Scholar
First citationSenge, M. O., Kalisch, W. W. & Bischoff, I. (2000). Chem. Eur. J. 6, 2721–2738.  CrossRef PubMed CAS Google Scholar
First citationSenge, M. O., MacGowan, S. A. & O'Brien, J. M. (2015). Chem. Commun. In the press. doi:10.1039/C5CC06254C.  Google Scholar
First citationSenge, M. O., Vicente, M. G. H., Parkin, S. R. & Smith, K. M. (1992). Z. Naturforsch. Teil B, 47, 1189–1202.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShelnutt, J. A., Song, X. Z., Ma, J. G., Jia, S. L., Jentzen, W. & Medforth, C. J. (1998). Chem. Soc. Rev. 27, 31–42.  CAS Google Scholar
First citationSuzuki, M., Ishii, S., Hoshino, T. & Neya, S. (2014). Chem. Lett. 43, 1563–1565.  CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhu, N.-J., Li, Y., Wu, G.-Z. & Liang, Z.-G. (1992). Acta Chim. Sin. 50, 249–256.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds