research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of hexa­kis­(urea-κO)chromium(III) dichromate bromide monohydrate from synchrotron X-ray data

aPohang Accelerator Laboratory, POSTECH, Pohang 37673, Republic of Korea, bDepartment of Chemistry, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan, and cDepartment of Chemistry, Andong National University, Andong 36729, Republic of Korea
*Correspondence e-mail: jhchoi@anu.ac.kr

Edited by M. Weil, Vienna University of Technology, Austria (Received 1 October 2015; accepted 12 October 2015; online 17 October 2015)

The title bromide salt, [Cr{CO(NH2)2}6](Cr2O7)Br·H2O, is isotypic to the corresponding chloride salt. Within the complex cation, the CrIII atom is coordinated by six O atoms of six urea ligands, displaying a slightly distorted octa­hedral coordination environment. The Cr—O bond lengths involving the urea ligands are in the range 1.9534 (13)–1.9776 (12) Å. The Cr2O72− anion has a nearly staggered conformation, with a bridging angle of 130.26 (10)°. The individual components are arranged in rows extending parallel to [100]. The Br anion links the complex cation, as well as the solvent water mol­ecule, through N—H⋯Br and O—H⋯Br hydrogen-bonding inter­actions. The supra­molecular architecture also includes N—H⋯O and O—H⋯O hydrogen bonding between urea N—H and water O—H donor groups and the O atoms of the Cr2O72− anion as acceptor atoms, leading to a three-dimensional network structure.

1. Chemical context

Counter-ionic species in coordination compounds play important roles in chemistry, pharmacy, mol­ecular assembly, biology and catalysis, as well as contributing significantly to environmental pollution; however, their binding characteristics have not received much recognition (Martínez-Máñez & Sancenón, 2003[Martínez-Máñez, R. & Sancenón, F. (2003). Chem. Rev. 103, 4419-4476.]; Fabbrizzi & Poggi, 2013[Fabbrizzi, L. & Poggi, A. (2013). Chem. Soc. Rev. 42, 1681-1699.]). The study of the anion or cation effect in octa­hedral metal complexes may be expected to yield a great variety of new structures and properties of both chemical and biological significance. Chromium is usually found in trivalent and hexa­valent oxidation states in soil, ground water and seawater (Cespon-Romero et al., 1996[Cespón-Romero, R. M., Yebra-Biurrun, M. C. & Bermejo-Barrera, M. P. (1996). Anal. Chim. Acta, 327, 37-45.]). CrIII is an essential element in mammals for maintaining efficient glucose, lipid and protein metabolism. On the other hand, CrVI is toxic and recognized as a carcinogen to humans and wildlife. The dichromate ion is environmentally important due to its high toxicity (Yusof & Malek, 2009[Yusof, A. M. & Malek, N. A. N. N. (2009). J. Hazard. Mater. 162, 1019-1024.]) and its use in many industrial processes (Goyal et al., 2003[Goyal, N., Jain, S. C. & Banerjee, U. C. (2003). Adv. Environ. Res. 7, 311-319.]). Recently, the ionic reactions between hexa­ureachromium(III) and inorganic oxoanions (such as Cr2O72− or CrO42−) in aqueous solution have been investigated. It was found that [Cr(urea)6]3+ is suitable to target these oxoanions (Bala et al., 2013[Bala, R., Kashyap, M., Kaur, A. & Golobic, A. (2013). J. Mol. Struct. 1031, 246-253.]). Previously, the crystal structure of [Cr(urea)6](Cr2O7)Cl·H2O has been reported (Bondar et al., 1984[Bondar, V. I., Rozman, S. P., Potekhin, K. A., Rau, V. G. & Struchkov, Yu. T. (1984). Dokl. Akad. Nauk SSSR, 279, 373-376.]). This complex crystallizes in the monoclinic space group P2/n with four formula units in a cell of dimensions a = 13.782 (2), b = 10.393 (1), c = 17.794 (3) Å and β = 94. 86 (2)°. Within our broader study of CrIII complexes as industrial materials (Choi & Lee, 2009[Choi, J.-H. & Lee, S. H. (2009). J. Mol. Struct. 932, 84-89.]; Choi & Moon, 2014[Choi, J.-H. & Moon, D. (2014). J. Mol. Struct. 1059, 325-331.]; Moon & Choi, 2015[Moon, D. & Choi, J.-H. (2015). Spectrochim. Acta Part A, 138, 774-779.]), we report herein the preparation and crystal structure of [Cr(urea)6](Cr2O7)Br·H2O, (I)[link].

[Scheme 1]

2. Structural commentary

In order to check if compound (I)[link] is isotypic to [Cr(urea)6](Cr2O7)Cl·H2O investigated previously (Bondar et al., 1984[Bondar, V. I., Rozman, S. P., Potekhin, K. A., Rau, V. G. & Struchkov, Yu. T. (1984). Dokl. Akad. Nauk SSSR, 279, 373-376.]), a single-crystal X-ray structure determination was performed on the basis of synchrotron data. Compound (I)[link] consists of the isolated complex cation [Cr(urea)6]3+, together with Cr2O72− and Br counter-ions and a solvent water mol­ecule. Comparison of the space-group type, metrics and the arrangement of the mol­ecular components reveal (I)[link] to be isotypic to the corresponding chloride salt. An ellipsoid plot of the mol­ecular components of compound (I)[link] is depicted in Fig. 1[link].

[Figure 1]
Figure 1
The mol­ecular structures of the components in compound (I)[link], showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

The CrIII ion is coordinated by six urea ligands through oxygen atoms with CrA—OA bond lengths ranging from 1.9534 (13) to 1.9776 (12) Å, and with OA—CrA—OA bond angles in the range 85.10 (5)–92.95 (5)°. The CrA—OA bond lengths involving the urea ligand are in good agreement with the value of 1.9630 (17) Å for [Cr(urea)6](BF4)3 (Górska et al., 2014[Górska, N., Mikuli, E. & Kótai, L. (2014). Eur. Chem. Bull. 3, 474-481.]). They are also comparable with the corresponding lengths determined for trans-[Cr(nic-O)2(cyclam)]ClO4 (cyclam = 1,4,8,11-tetra­aza­cyclo­tetra­decane; nic-O = O-coordinating nicotinate; Choi, 2009[Choi, J.-H. (2009). Inorg. Chim. Acta, 362, 4231-4236.]), cis-[Cr(ox)(cyclam)]ClO4 (ox = oxalate; Choi et al., 2004a[Choi, J.-H., Oh, I.-G., Suzuki, T. & Kaizaki, S. (2004a). J. Mol. Struct. 694, 39-44.]), cis-[Cr(acac)(cyclam)](ClO4)2·0.5H2O (acac = acetyl­acetonate; Subhan et al., 2011[Subhan, M. A., Choi, J. H. & Ng, S. W. (2011). Z. Anorg. Allg. Chem. 637, 2193-2197.]), cis-[Cr(ONO)2(cyclam)]NO2 (Choi et al., 2004b[Choi, J.-H., Oh, I.-G., Lim, W.-T. & Park, K.-M. (2004b). Acta Cryst. C60, m238-m240.]) or cis-[Cr(edda)(acac)] (edda = ethyl­enedi­amine-N,N'-di­acetate; Choi et al., 2012[Choi, J.-H., Niketić, S. R., Djordjević, I., Clegg, W. & Harrington, R. W. (2012). J. Mol. Model. 18, 2135-2146.]). The trans O1A—Cr1A—O4A, O3A—Cr1A—O6A and O2A—Cr1A—O5A bond angles are 176.27 (5)°, 173.94 (5)°, and 175.89 (5)°, respectively. The bond lengths within the urea ligand are in the ranges of 1.263 (2)–1.276 (2) and 1.316 (2)–1.328 (2) Å for C=O and C—N bonds, respectively. The C=O bonds are slightly longer than that in free non-coordinating urea (Guth et al., 1980[Guth, H., Heger, G., Klein, S., Treutmann, W. & Scheringer, C. (1980). Z. Kristallogr. 153, 237-254.]). The isolated Cr2O72− and Br anions remain outside the coordination sphere of the cation.

It is of inter­est to compare the conformation of Cr2O72− with that found in other ionic crystals. In the structure of compound (I)[link] it is in a nearly staggered conformation, whereas in K2Cr2O7, the tetra­hedral CrO4 groups are in an almost eclipsed conformation (Brandon & Brown, 1968[Brandon, J. K. & Brown, I. D. (1968). Can. J. Chem. 46, 933-941.]). As expected, the two bridging CrB—OB bonds of 1.7643 (18) and 1.8011 (17) Å are longer than the terminal CrB—OB bonds that are in the range of 1.6014 (16)–1.6299 (14) Å. The Cr1B—O7B—Cr2B bridging angle in the complex anion is 130.26 (10)°. The OB—CrB—OB bond angles in the two tetra­hedral CrO4 groups are between 105.21 (8) and 110.98 (10)°, indicating slight angular distortions.

It is confirmed that the [Cr(urea)6]3+ moiety in compound (I)[link] may be used as a potential receptor for Cr2O72− anions due to its high positive charge and the large number of hydrogen-bond donor groups of its six urea ligands.

3. Supra­molecular features

The individual mol­ecular or ionic components of (I)[link] are arranged in rows extending parallel to [100]. The packing in the crystal structure of (I)[link] involves not only hydrogen bonds of the type N—H⋯O between urea amino donor groups and the O acceptor atoms of carbonyl groups, the water mol­ecule, or the Cr2O72− anion, but also N—H⋯Br hydrogen bonding between the urea amino groups and the Br anion (Table 1[link]). O—H⋯Br inter­actions involving the water mol­ecule are also observed. All these inter­actions are responsible for the formation of an intricate three-dimensional hydrogen-bonded network in (I)[link] (Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1A—H1A1⋯O2Bi 0.87 2.42 3.051 (3) 129
N1A—H1A2⋯Br1Cii 0.87 2.60 3.4031 (18) 155
N2A—H2A1⋯O6A 0.87 2.20 2.890 (2) 136
N2A—H2A1⋯O1W 0.87 2.58 3.230 (3) 132
N2A—H2A2⋯Br1Cii 0.87 2.73 3.5121 (17) 150
N3A—H3A1⋯O3A 0.87 2.23 2.866 (2) 130
N3A—H3A2⋯O5Biii 0.87 2.21 2.972 (2) 147
N4A—H4A1⋯Br1C 0.87 2.55 3.4070 (18) 171
N4A—H4A2⋯O5Biii 0.87 2.11 2.900 (2) 151
N5A—H5A1⋯O6Bi 0.87 2.52 3.174 (2) 133
N5A—H5A2⋯O3Biv 0.87 2.33 3.108 (2) 150
N6A—H6A1⋯O4A 0.87 2.17 2.914 (2) 143
N6A—H6A2⋯O1Biv 0.87 2.15 2.920 (2) 147
N7A—H7A1⋯O2A 0.87 2.12 2.865 (2) 143
N7A—H7A2⋯O4Bv 0.87 2.24 3.092 (2) 168
N8A—H8A1⋯O7B 0.87 2.03 2.883 (2) 166
N8A—H8A2⋯O5Bv 0.87 2.04 2.875 (2) 162
N9A—H9A1⋯O1A 0.87 2.22 2.954 (2) 141
N9A—H9A2⋯O6Biv 0.87 2.21 2.997 (2) 150
N10A—H10A⋯O1B 0.87 2.29 3.028 (2) 142
N10A—H10B⋯O4Biv 0.87 2.39 3.184 (2) 151
N11A—H11A⋯O1W 0.87 2.04 2.892 (3) 167
N11A—H11B⋯Br1Cvi 0.87 2.57 3.4031 (18) 162
N12A—H12A⋯O5A 0.87 2.27 2.982 (2) 140
N12A—H12A⋯O2B 0.87 2.54 3.051 (2) 118
N12A—H12B⋯Br1Cvi 0.87 2.85 3.6242 (18) 149
O1W—H1O1⋯Br1C 0.85 (1) 2.51 (1) 3.332 (2) 163 (3)
O1W—H2O1⋯O5Bvii 0.84 (1) 2.57 (2) 3.315 (3) 149 (3)
Symmetry codes: (i) x, y-1, z; (ii) -x+1, -y, -z+1; (iii) [-x+{\script{3\over 2}}, y-1, -z+{\script{3\over 2}}]; (iv) -x+1, -y+1, -z+2; (v) [-x+{\script{3\over 2}}, y, -z+{\script{3\over 2}}]; (vi) -x+1, -y+1, -z+1; (vii) [x-{\script{1\over 2}}, -y+1, z-{\script{1\over 2}}].
[Figure 2]
Figure 2
The crystal packing of compound (I)[link], viewed perpendicular to the ac plane. Dashed lines represent hydrogen-bonding inter­actions of the types N—H⋯O (blue), N—H⋯Br (pink), O—H⋯O (red) and O—H⋯Br (black).

4. Synthesis and crystallization

All chemicals were reagent-grade materials and used without further purification. Chromium(III) tribromide hexa­hydrate was obtained from Aldrich Chemical Co. and used as supplied. [Cr(urea)6]Br3·3H2O was used as the starting material and was prepared according to literature procedures (Brauer, 1965[Brauer, G. (1965). In Handbook of Preparative Inorganic Chemistry, Vol. 2. New York: Academic Press.]), except that chromium(III) tribromide hexa­hydrate was used in place of chromium(III) trichloride hexa­hydrate (Flint & Palacio, 1979[Flint, C. D. & Palacio, D. J. D. (1979). J. Chem. Soc. Faraday II, 75, 1159-1167.]). A 0.5 g sample of [Cr(urea)6]Br3·3H2O was dissolved in 20 mL of water. Potassium dichromate (0.22 g), dissolved in 10 mL of water, was added to this solution. The mixture was refluxed at 353 K for 10 min and then cooled to room temperature. Green crystals of (I)[link] suitable for X-ray structure analysis formed overnight. These were collected by filtration, washed with 2-propanol, and air dried. Yield: 65%. Elemental analysis calculated for [Cr{CO(NH2)2}6](Cr2O7)Br·H2O: C, 9.92; H, 3.61; N, 23.14%; found: C, 10.32; H, 3.08; N, 23.38%.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. H atoms bound to nitro­gen were placed at calculated positions and treated as riding on their parent atoms, with N—H = 0.87 Å and Uiso(H) = 1.2Ueq(N). H atoms of the solvent water mol­ecule were found from difference maps and refined with Uiso(H) = 1.2Ueq(O) and restrained to O—H = 0.84 (1) and H⋯H = 1.36 (2) Å.

Table 2
Experimental details

Crystal data
Chemical formula [Cr(CH4N2O)6](Cr2O7)Br·H2O
Mr 726.30
Crystal system, space group Monoclinic, P2/n
Temperature (K) 243
a, b, c (Å) 13.774 (3), 10.474 (2), 18.123 (4)
β (°) 94.37 (3)
V3) 2607.0 (9)
Z 4
Radiation type Synchrotron, λ = 0.620 Å
μ (mm−1) 1.97
Crystal size (mm) 0.17 × 0.08 × 0.04
 
Data collection
Diffractometer ADSC Q210 CCD area detector
Absorption correction Empirical (using intensity measurements) (HKL3000sm SCALEPACK; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.])
Tmin, Tmax 0.727, 0.920
No. of measured, independent and observed [I > 2σ(I)] reflections 27665, 7308, 5831
Rint 0.036
(sin θ/λ)max−1) 0.694
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.091, 1.04
No. of reflections 7308
No. of parameters 331
No. of restraints 3
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 1.02, −1.25
Computer programs: PAL ADSC Quantum-210 ADX (Arvai & Nielsen, 1983[Arvai, A. J. & Nielsen, C. (1983). ADSC Quantum-210 ADX. Area Detector System Corporation, Poway, CA, USA.]), HKL3000sm (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Putz & Brandenburg, 2007[Putz, H. & Brandenburg, K. (2007). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: PAL ADSC Quantum-210 ADX (Arvai & Nielsen, 1983); cell refinement: HKL3000sm (Otwinowski & Minor, 1997); data reduction: HKL3000sm (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: DIAMOND (Putz & Brandenburg, 2007); software used to prepare material for publication: publCIF (Westrip, 2010).

Hexakis(urea-κO)chromium(III) dichromate bromide monohydrate top
Crystal data top
[Cr(CH4N2O)6](Cr2O7)Br·H2OF(000) = 1460
Mr = 726.30Dx = 1.850 Mg m3
Monoclinic, P2/nSynchrotron radiation, λ = 0.620 Å
a = 13.774 (3) ÅCell parameters from 102484 reflections
b = 10.474 (2) Åθ = 0.4–33.6°
c = 18.123 (4) ŵ = 1.97 mm1
β = 94.37 (3)°T = 243 K
V = 2607.0 (9) Å3Block, green
Z = 40.17 × 0.08 × 0.04 mm
Data collection top
ADSC Q210 CCD area-detector
diffractometer
5831 reflections with I > 2σ(I)
Radiation source: PLSII 2D bending magnetRint = 0.036
ω scansθmax = 25.5°, θmin = 1.6°
Absorption correction: empirical (using intensity measurements)
(HKL3000sm SCALEPACK; Otwinowski & Minor, 1997)
h = 1919
Tmin = 0.727, Tmax = 0.920k = 1414
27665 measured reflectionsl = 2525
7308 independent reflections
Refinement top
Refinement on F23 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.031H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.091 w = 1/[σ2(Fo2) + (0.0607P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
7308 reflectionsΔρmax = 1.02 e Å3
331 parametersΔρmin = 1.25 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cr1A0.48784 (2)0.24358 (2)0.73428 (2)0.01814 (7)
O1A0.40481 (9)0.09045 (11)0.72718 (6)0.0269 (3)
N1A0.33471 (14)0.09246 (16)0.69010 (10)0.0418 (4)
H1A10.32860.11310.73600.050*
H1A20.31400.14410.65470.050*
N2A0.38377 (13)0.04656 (16)0.60403 (9)0.0365 (4)
H2A10.41030.11850.59250.044*
H2A20.36270.00620.56940.044*
C1A0.37546 (13)0.01753 (16)0.67403 (9)0.0251 (3)
O2A0.58364 (9)0.16617 (11)0.67175 (6)0.0247 (2)
N3A0.61554 (13)0.03008 (15)0.72164 (9)0.0363 (4)
H3A10.57740.01670.75690.044*
H3A20.64640.10230.71940.044*
N4A0.68354 (14)0.03653 (17)0.61675 (10)0.0432 (4)
H4A10.69040.09390.58280.052*
H4A20.71400.03600.61510.052*
C2A0.62668 (13)0.05977 (16)0.67111 (9)0.0247 (3)
O3A0.55288 (9)0.15949 (11)0.82167 (6)0.0242 (2)
N5A0.58535 (13)0.11285 (15)0.94126 (8)0.0351 (4)
H5A10.57430.03260.93160.042*
H5A20.60180.13700.98640.042*
N6A0.59470 (13)0.31974 (15)0.90232 (9)0.0352 (4)
H6A10.58990.37620.86700.042*
H6A20.61110.34340.94760.042*
C3A0.57714 (12)0.19830 (17)0.88725 (9)0.0228 (3)
O4A0.56802 (9)0.39845 (11)0.74788 (6)0.0244 (2)
N7A0.66023 (14)0.41622 (16)0.64918 (10)0.0432 (5)
H7A10.65460.33510.63950.052*
H7A20.69370.46490.62170.052*
N8A0.62761 (13)0.58826 (15)0.72028 (9)0.0366 (4)
H8A10.60040.62130.75760.044*
H8A20.66130.63630.69250.044*
C4A0.61789 (12)0.46555 (16)0.70582 (9)0.0228 (3)
O5A0.39560 (9)0.33272 (11)0.79418 (6)0.0268 (3)
N9A0.34380 (13)0.17981 (16)0.87118 (9)0.0365 (4)
H9A10.35580.11950.84010.044*
H9A20.32030.16090.91300.044*
N10A0.34220 (13)0.39063 (16)0.90220 (9)0.0394 (4)
H10A0.35310.47020.89190.047*
H10B0.31870.37060.94390.047*
C5A0.36129 (12)0.30050 (18)0.85473 (9)0.0249 (3)
O6A0.42481 (9)0.31007 (11)0.64197 (6)0.0267 (3)
N11A0.38747 (13)0.44107 (17)0.54758 (9)0.0410 (4)
H11A0.40000.38020.51710.049*
H11B0.36860.51550.53060.049*
N12A0.37717 (14)0.51221 (16)0.66616 (9)0.0407 (4)
H12A0.38280.49850.71360.049*
H12B0.35840.58660.64910.049*
C6A0.39707 (13)0.42046 (16)0.62008 (9)0.0263 (3)
Cr1B0.43809 (2)0.74013 (3)0.86870 (2)0.02751 (8)
Cr2B0.67274 (2)0.73371 (2)0.89720 (2)0.02405 (7)
O1B0.42792 (12)0.65095 (15)0.93969 (8)0.0452 (4)
O2B0.36945 (13)0.6882 (2)0.79973 (9)0.0586 (5)
O3B0.41248 (13)0.88526 (15)0.88712 (10)0.0553 (4)
O4B0.69792 (12)0.59234 (12)0.92738 (9)0.0425 (3)
O5B0.75382 (11)0.78025 (13)0.84199 (8)0.0350 (3)
O6B0.66869 (12)0.83207 (14)0.96458 (8)0.0446 (4)
O7B0.56137 (12)0.73256 (16)0.84224 (9)0.0475 (4)
Br1C0.68438 (2)0.24957 (2)0.47474 (2)0.03324 (7)
O1W0.44307 (16)0.2183 (3)0.46645 (14)0.0752 (7)
H1O10.5018 (9)0.236 (3)0.460 (2)0.090*
H2O10.414 (2)0.224 (3)0.4242 (10)0.090*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cr1A0.02397 (14)0.01721 (12)0.01352 (12)0.00045 (9)0.00324 (9)0.00064 (8)
O1A0.0347 (7)0.0256 (6)0.0205 (6)0.0087 (5)0.0029 (5)0.0020 (4)
N1A0.0600 (12)0.0324 (9)0.0328 (9)0.0201 (8)0.0028 (8)0.0024 (7)
N2A0.0584 (11)0.0293 (8)0.0217 (7)0.0092 (7)0.0016 (7)0.0050 (6)
C1A0.0267 (8)0.0252 (8)0.0233 (8)0.0013 (6)0.0011 (6)0.0021 (6)
O2A0.0324 (6)0.0207 (5)0.0219 (5)0.0047 (5)0.0082 (5)0.0012 (4)
N3A0.0517 (10)0.0254 (7)0.0334 (8)0.0121 (7)0.0141 (7)0.0084 (6)
N4A0.0590 (11)0.0328 (8)0.0412 (10)0.0212 (8)0.0266 (8)0.0096 (7)
C2A0.0294 (9)0.0221 (7)0.0225 (8)0.0029 (6)0.0015 (6)0.0001 (6)
O3A0.0340 (7)0.0222 (5)0.0160 (5)0.0008 (5)0.0004 (4)0.0003 (4)
N5A0.0553 (11)0.0303 (8)0.0189 (7)0.0038 (7)0.0019 (7)0.0039 (6)
N6A0.0535 (10)0.0297 (8)0.0211 (7)0.0090 (7)0.0058 (7)0.0008 (6)
C3A0.0228 (8)0.0271 (8)0.0185 (7)0.0025 (6)0.0020 (6)0.0002 (6)
O4A0.0318 (6)0.0227 (6)0.0195 (5)0.0069 (5)0.0071 (5)0.0003 (4)
N7A0.0638 (12)0.0300 (8)0.0403 (10)0.0118 (8)0.0336 (9)0.0061 (7)
N8A0.0521 (10)0.0250 (7)0.0352 (8)0.0146 (7)0.0194 (8)0.0063 (6)
C4A0.0260 (8)0.0240 (7)0.0186 (7)0.0051 (6)0.0024 (6)0.0000 (6)
O5A0.0320 (7)0.0264 (6)0.0234 (6)0.0031 (5)0.0108 (5)0.0025 (5)
N9A0.0468 (10)0.0337 (8)0.0312 (8)0.0092 (7)0.0179 (7)0.0007 (7)
N10A0.0522 (11)0.0358 (9)0.0330 (9)0.0025 (8)0.0224 (8)0.0046 (7)
C5A0.0200 (8)0.0314 (9)0.0239 (8)0.0003 (6)0.0060 (6)0.0002 (6)
O6A0.0372 (7)0.0231 (6)0.0192 (5)0.0041 (5)0.0018 (5)0.0018 (4)
N11A0.0637 (12)0.0345 (9)0.0242 (8)0.0140 (8)0.0005 (8)0.0082 (7)
N12A0.0614 (12)0.0286 (8)0.0307 (9)0.0152 (8)0.0061 (8)0.0029 (6)
C6A0.0281 (9)0.0253 (8)0.0248 (8)0.0009 (7)0.0026 (7)0.0024 (6)
Cr1B0.03041 (16)0.03174 (16)0.02060 (14)0.00408 (11)0.00341 (11)0.00030 (10)
Cr2B0.03046 (15)0.02096 (13)0.02202 (14)0.00009 (10)0.01038 (11)0.00170 (10)
O1B0.0603 (10)0.0450 (9)0.0315 (7)0.0022 (7)0.0112 (7)0.0076 (6)
O2B0.0538 (11)0.0844 (13)0.0358 (9)0.0078 (10)0.0086 (7)0.0112 (9)
O3B0.0664 (12)0.0354 (8)0.0655 (11)0.0140 (8)0.0136 (9)0.0039 (8)
O4B0.0544 (9)0.0253 (7)0.0493 (9)0.0019 (6)0.0139 (7)0.0074 (6)
O5B0.0439 (8)0.0273 (6)0.0364 (7)0.0072 (6)0.0200 (6)0.0046 (5)
O6B0.0658 (10)0.0378 (8)0.0321 (7)0.0006 (7)0.0166 (7)0.0119 (6)
O7B0.0365 (9)0.0763 (12)0.0306 (8)0.0079 (7)0.0076 (6)0.0056 (7)
Br1C0.04246 (12)0.02884 (10)0.02779 (11)0.00280 (7)0.00149 (8)0.00060 (6)
O1W0.0493 (12)0.0971 (16)0.0789 (16)0.0032 (12)0.0040 (11)0.0419 (14)
Geometric parameters (Å, º) top
Cr1A—O6A1.9534 (13)N7A—H7A10.8700
Cr1A—O4A1.9672 (12)N7A—H7A20.8700
Cr1A—O3A1.9674 (12)N8A—C4A1.316 (2)
Cr1A—O5A1.9683 (12)N8A—H8A10.8700
Cr1A—O1A1.9685 (12)N8A—H8A20.8700
Cr1A—O2A1.9776 (12)O5A—C5A1.273 (2)
O1A—C1A1.271 (2)N9A—C5A1.325 (3)
N1A—C1A1.324 (2)N9A—H9A10.8700
N1A—H1A10.8700N9A—H9A20.8700
N1A—H1A20.8700N10A—C5A1.317 (2)
N2A—C1A1.318 (2)N10A—H10A0.8700
N2A—H2A10.8700N10A—H10B0.8700
N2A—H2A20.8700O6A—C6A1.272 (2)
O2A—C2A1.263 (2)N11A—C6A1.328 (2)
N3A—C2A1.330 (2)N11A—H11A0.8700
N3A—H3A10.8700N11A—H11B0.8700
N3A—H3A20.8700N12A—C6A1.316 (2)
N4A—C2A1.327 (2)N12A—H12A0.8700
N4A—H4A10.8700N12A—H12B0.8700
N4A—H4A20.8700Cr1B—O3B1.6014 (16)
O3A—C3A1.2763 (19)Cr1B—O2B1.6036 (17)
N5A—C3A1.325 (2)Cr1B—O1B1.6045 (15)
N5A—H5A10.8700Cr1B—O7B1.8011 (17)
N5A—H5A20.8700Cr2B—O6B1.6018 (14)
N6A—C3A1.319 (2)Cr2B—O4B1.6071 (14)
N6A—H6A10.8700Cr2B—O5B1.6299 (14)
N6A—H6A20.8700Cr2B—O7B1.7643 (18)
O4A—C4A1.2753 (19)O1W—H1O10.847 (10)
N7A—C4A1.324 (2)O1W—H2O10.840 (10)
O6A—Cr1A—O4A91.26 (5)C4A—O4A—Cr1A134.62 (11)
O6A—Cr1A—O3A173.94 (5)C4A—N7A—H7A1120.0
O4A—Cr1A—O3A92.95 (5)C4A—N7A—H7A2120.0
O6A—Cr1A—O5A92.28 (5)H7A1—N7A—H7A2120.0
O4A—Cr1A—O5A85.39 (5)C4A—N8A—H8A1120.0
O3A—Cr1A—O5A92.40 (5)C4A—N8A—H8A2120.0
O6A—Cr1A—O1A90.94 (5)H8A1—N8A—H8A2120.0
O4A—Cr1A—O1A176.27 (5)O4A—C4A—N8A118.05 (15)
O3A—Cr1A—O1A85.10 (5)O4A—C4A—N7A122.52 (15)
O5A—Cr1A—O1A91.51 (5)N8A—C4A—N7A119.42 (16)
O6A—Cr1A—O2A85.86 (5)C5A—O5A—Cr1A130.34 (11)
O4A—Cr1A—O2A90.98 (5)C5A—N9A—H9A1120.0
O3A—Cr1A—O2A89.71 (5)C5A—N9A—H9A2120.0
O5A—Cr1A—O2A175.89 (5)H9A1—N9A—H9A2120.0
O1A—Cr1A—O2A92.18 (5)C5A—N10A—H10A120.0
C1A—O1A—Cr1A133.54 (11)C5A—N10A—H10B120.0
C1A—N1A—H1A1120.0H10A—N10A—H10B120.0
C1A—N1A—H1A2120.0O5A—C5A—N10A118.60 (17)
H1A1—N1A—H1A2120.0O5A—C5A—N9A122.19 (16)
C1A—N2A—H2A1120.0N10A—C5A—N9A119.21 (16)
C1A—N2A—H2A2120.0C6A—O6A—Cr1A134.00 (11)
H2A1—N2A—H2A2120.0C6A—N11A—H11A120.0
O1A—C1A—N2A123.02 (16)C6A—N11A—H11B120.0
O1A—C1A—N1A118.16 (16)H11A—N11A—H11B120.0
N2A—C1A—N1A118.82 (16)C6A—N12A—H12A120.0
C2A—O2A—Cr1A134.53 (11)C6A—N12A—H12B120.0
C2A—N3A—H3A1120.0H12A—N12A—H12B120.0
C2A—N3A—H3A2120.0O6A—C6A—N12A122.57 (16)
H3A1—N3A—H3A2120.0O6A—C6A—N11A117.47 (16)
C2A—N4A—H4A1120.0N12A—C6A—N11A119.95 (17)
C2A—N4A—H4A2120.0O3B—Cr1B—O2B110.98 (10)
H4A1—N4A—H4A2120.0O3B—Cr1B—O1B110.57 (9)
O2A—C2A—N4A118.21 (16)O2B—Cr1B—O1B110.20 (10)
O2A—C2A—N3A122.64 (16)O3B—Cr1B—O7B108.93 (8)
N4A—C2A—N3A119.13 (16)O2B—Cr1B—O7B106.82 (9)
C3A—O3A—Cr1A132.68 (11)O1B—Cr1B—O7B109.24 (9)
C3A—N5A—H5A1120.0O6B—Cr2B—O4B110.63 (8)
C3A—N5A—H5A2120.0O6B—Cr2B—O5B109.93 (8)
H5A1—N5A—H5A2120.0O4B—Cr2B—O5B110.14 (8)
C3A—N6A—H6A1120.0O6B—Cr2B—O7B110.82 (8)
C3A—N6A—H6A2120.0O4B—Cr2B—O7B109.98 (8)
H6A1—N6A—H6A2120.0O5B—Cr2B—O7B105.21 (8)
O3A—C3A—N6A122.05 (15)Cr2B—O7B—Cr1B130.26 (10)
O3A—C3A—N5A118.32 (16)H1O1—O1W—H2O1104 (2)
N6A—C3A—N5A119.63 (15)
Cr1A—O1A—C1A—N2A12.6 (3)Cr1A—O5A—C5A—N9A33.6 (2)
Cr1A—O1A—C1A—N1A167.40 (14)Cr1A—O6A—C6A—N12A23.3 (3)
Cr1A—O2A—C2A—N4A175.80 (14)Cr1A—O6A—C6A—N11A157.35 (14)
Cr1A—O2A—C2A—N3A2.8 (3)O6B—Cr2B—O7B—Cr1B39.64 (15)
Cr1A—O3A—C3A—N6A26.1 (2)O4B—Cr2B—O7B—Cr1B83.00 (13)
Cr1A—O3A—C3A—N5A154.40 (13)O5B—Cr2B—O7B—Cr1B158.42 (12)
Cr1A—O4A—C4A—N8A150.59 (14)O3B—Cr1B—O7B—Cr2B78.99 (14)
Cr1A—O4A—C4A—N7A29.9 (3)O2B—Cr1B—O7B—Cr2B161.07 (13)
Cr1A—O5A—C5A—N10A146.75 (14)O1B—Cr1B—O7B—Cr2B41.89 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1A—H1A1···O2Bi0.872.423.051 (3)129
N1A—H1A2···Br1Cii0.872.603.4031 (18)155
N2A—H2A1···O6A0.872.202.890 (2)136
N2A—H2A1···O1W0.872.583.230 (3)132
N2A—H2A2···Br1Cii0.872.733.5121 (17)150
N3A—H3A1···O3A0.872.232.866 (2)130
N3A—H3A2···O5Biii0.872.212.972 (2)147
N4A—H4A1···Br1C0.872.553.4070 (18)171
N4A—H4A2···O5Biii0.872.112.900 (2)151
N5A—H5A1···O6Bi0.872.523.174 (2)133
N5A—H5A2···O3Biv0.872.333.108 (2)150
N6A—H6A1···O4A0.872.172.914 (2)143
N6A—H6A2···O1Biv0.872.152.920 (2)147
N7A—H7A1···O2A0.872.122.865 (2)143
N7A—H7A2···O4Bv0.872.243.092 (2)168
N8A—H8A1···O7B0.872.032.883 (2)166
N8A—H8A2···O5Bv0.872.042.875 (2)162
N9A—H9A1···O1A0.872.222.954 (2)141
N9A—H9A2···O6Biv0.872.212.997 (2)150
N10A—H10A···O1B0.872.293.028 (2)142
N10A—H10B···O4Biv0.872.393.184 (2)151
N11A—H11A···O1W0.872.042.892 (3)167
N11A—H11B···Br1Cvi0.872.573.4031 (18)162
N12A—H12A···O5A0.872.272.982 (2)140
N12A—H12A···O2B0.872.543.051 (2)118
N12A—H12B···Br1Cvi0.872.853.6242 (18)149
O1W—H1O1···Br1C0.85 (1)2.51 (1)3.332 (2)163 (3)
O1W—H2O1···O5Bvii0.84 (1)2.57 (2)3.315 (3)149 (3)
Symmetry codes: (i) x, y1, z; (ii) x+1, y, z+1; (iii) x+3/2, y1, z+3/2; (iv) x+1, y+1, z+2; (v) x+3/2, y, z+3/2; (vi) x+1, y+1, z+1; (vii) x1/2, y+1, z1/2.
 

Acknowledgements

This work was supported by a grant from 2015 Research Funds of Andong National University. The X-ray crystallography experiment at the PLS-II BL2D-SMC beamline was supported in part by MSIP and POSTECH.

References

First citationArvai, A. J. & Nielsen, C. (1983). ADSC Quantum-210 ADX. Area Detector System Corporation, Poway, CA, USA.  Google Scholar
First citationBala, R., Kashyap, M., Kaur, A. & Golobic, A. (2013). J. Mol. Struct. 1031, 246–253.  Web of Science CSD CrossRef CAS Google Scholar
First citationBondar, V. I., Rozman, S. P., Potekhin, K. A., Rau, V. G. & Struchkov, Yu. T. (1984). Dokl. Akad. Nauk SSSR, 279, 373–376.  CAS Google Scholar
First citationBrandon, J. K. & Brown, I. D. (1968). Can. J. Chem. 46, 933–941.  CrossRef CAS Google Scholar
First citationBrauer, G. (1965). In Handbook of Preparative Inorganic Chemistry, Vol. 2. New York: Academic Press.  Google Scholar
First citationCespón-Romero, R. M., Yebra-Biurrun, M. C. & Bermejo-Barrera, M. P. (1996). Anal. Chim. Acta, 327, 37–45.  Google Scholar
First citationChoi, J.-H. (2009). Inorg. Chim. Acta, 362, 4231–4236.  Web of Science CSD CrossRef CAS Google Scholar
First citationChoi, J.-H. & Lee, S. H. (2009). J. Mol. Struct. 932, 84–89.  Web of Science CSD CrossRef CAS Google Scholar
First citationChoi, J.-H. & Moon, D. (2014). J. Mol. Struct. 1059, 325–331.  Web of Science CSD CrossRef CAS Google Scholar
First citationChoi, J.-H., Niketić, S. R., Djordjević, I., Clegg, W. & Harrington, R. W. (2012). J. Mol. Model. 18, 2135–2146.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationChoi, J.-H., Oh, I.-G., Lim, W.-T. & Park, K.-M. (2004b). Acta Cryst. C60, m238–m240.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationChoi, J.-H., Oh, I.-G., Suzuki, T. & Kaizaki, S. (2004a). J. Mol. Struct. 694, 39–44.  Web of Science CSD CrossRef CAS Google Scholar
First citationFabbrizzi, L. & Poggi, A. (2013). Chem. Soc. Rev. 42, 1681–1699.  Web of Science CrossRef CAS PubMed Google Scholar
First citationFlint, C. D. & Palacio, D. J. D. (1979). J. Chem. Soc. Faraday II, 75, 1159–1167.  CrossRef CAS Web of Science Google Scholar
First citationGórska, N., Mikuli, E. & Kótai, L. (2014). Eur. Chem. Bull. 3, 474–481.  Google Scholar
First citationGoyal, N., Jain, S. C. & Banerjee, U. C. (2003). Adv. Environ. Res. 7, 311–319.  Web of Science CrossRef CAS Google Scholar
First citationGuth, H., Heger, G., Klein, S., Treutmann, W. & Scheringer, C. (1980). Z. Kristallogr. 153, 237–254.  CrossRef CAS Web of Science Google Scholar
First citationMartínez-Máñez, R. & Sancenón, F. (2003). Chem. Rev. 103, 4419–4476.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMoon, D. & Choi, J.-H. (2015). Spectrochim. Acta Part A, 138, 774–779.  Web of Science CSD CrossRef CAS Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPutz, H. & Brandenburg, K. (2007). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSubhan, M. A., Choi, J. H. & Ng, S. W. (2011). Z. Anorg. Allg. Chem. 637, 2193–2197.  Web of Science CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYusof, A. M. & Malek, N. A. N. N. (2009). J. Hazard. Mater. 162, 1019–1024.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds