research communications
κ2O,O′)chromate(III) tetrahydrate
of tris[4-(dimethylamino)pyridinium] tris(oxalato-aDepartment of Inorganic Chemistry, University of Yaounde 1, POB 812 Yaounde, Cameroon, bUnité de Catalyse et de Chimie du Solide, UMR 8181, Ecole Nationale Supérieure de Chimie de Lille, Université Lille1, 59650 Villeneuve d'Ascq Cedex, France, cHigher Teacher Training College, Chemistry Department, University of Yaounde 1, POB 47, Yaounde, Cameroon, and dUFR de Physique, Université Lille1, 59650 Villeneuve d'Ascq Cedex, France
*Correspondence e-mail: jnenwa@yahoo.fr
In the title hybrid salt, (C7H11N2)3[Cr(C2O4)3]·4H2O, the central CrIII ion of the complex anion (point group symmetry 2) is coordinated by six O atoms from three chelating oxalate(2−) ligands in a slightly distorted octahedral coordination sphere. The Cr—O bond lengths vary from 1.9577 (11) to 1.9804 (11) Å, while the chelate O—Cr—O angles range from 82.11 (6) to 93.41 (5)°. The 4-(dimethylamino)pyridinium cations (one situated in a general position and one on a twofold rotation axis) are protonated at the pyridine N atoms. In the crystal, N—H⋯O and O—H⋯O hydrogen bonds link the cations and anions into a three-dimensional network. π–π interactions between the pyridine rings of adjacent cations provide additional stabilization of the crystal packing, with the closest centroid-to-centroid distances being 3.541 (1) and 3.575 (1) Å.
Keywords: crystal structure; 4-(dimethylamino)pyridine; tris(oxalato)chromate(III); hybrid salt; hydrogen bonding; π–π interactions.
CCDC reference: 1400490
1. Chemical context
The coordination chemistry of oxalate (C2O42−) continues to receive considerable attention because of the ability of this ion to act as a remarkably flexible ligand system in complexations with a wide range of metal ions (Martin et al., 2007). Over the last decade, Bélombé and coworkers (Bélombé et al., 2003) prepared a novel barium-oxalatochromate(III), {Ba6(H2O)17[Cr(ox)3]4}·7H2O, and demonstrated the use of this complex as a suitable precursor for the synthesis of multi-functional crystalline materials (Bélombé et al., 2009a,b; Mbiangué et al., 2012). Moreover, this complex has received much attention in the field of materials science for its use as a convenient route for the preparation of technologically important metallic composite oxides (Neo et al., 2006). As part of our ongoing research program, we have now combined this versatile barium-oxalatochromate(III) complex with 4-(dimethylamino)pyridinium oxalate to isolate the organic–inorganic hybrid salt, (C7H11N2)3[Cr(C2O4)3]·4H2O.
2. Structural commentary
The molecular components of the title compound are shown in Fig. 1. The contains one and a half 4-(dimethylamino)pyridinium cations, one half of the tris(oxalato)chromate(III) complex anion and two lattice water molecules. The entities are completed by application of twofold rotation symmetry. The central CrIII ion of the complex anion is coordinated by six O atoms from three chelating oxalato(2−) ligands in a slightly distorted (2 + 2 + 2) octahedral coordination sphere. The chelate O—Cr—O angles range from 82.11 (6) to 93.41 (5)°. The Cr—O bond lengths vary from 1.9577 (11) to 1.9804 (11) Å and are similar to those found in the guanidinium tris(oxalato)chromate(III) salt (Golič & Bulc, 1988). Bond lengths and angles in the organic cations, [C7H11N2]+, are in agreement with those found in salts with the same cationic entity (Nenwa et al., 2010; Ghouili et al., 2010; Benslimane et al., 2012; Ben Nasr et al., 2015).
3. Supramolecular features
In the title compound, the crystal packing is stabilized by a network of intermolecular N—H⋯O and O—H⋯O hydrogen bonds linking the coordination octahedra, 4-(dimethylamino)pyridinium cations and lattice water molecules (Table 1, Fig. 2). In addition, π–π stacking interactions [centroid-to-centroid distances of 3.541 (1) and 3.575 (1) Å] between the pyridine rings contribute to the stabilization of the three-dimensional network (Fig. 3).
4. Synthesis and crystallization
The title compound was obtained by reaction of an aqueous solution of the freshly prepared barium-oxalatochromate(III) salt {Ba6(H2O)17[Cr(C2O4)3]4}·7H2O (1 mmol, 2.536 g), with an aqueous solution of 4-(dimethylamino)pyridine (12 mmol, 1.464 g) and oxalic acid (6 mmol, 0.756 g). The mixture was stirred at 333 K for about 30 minutes and then cooled to room temperature and filtered. The title compound crystallized by slow evaporation of the solvent at room temperature in form of light-violet crystals with dimensions up to 3 mm within a few weeks.
5. Refinement
Crystal data, data collection and structure . H atoms bonded to C atoms were positioned geometrically and allowed to ride on their parent atoms with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C) for aromatic and 0.96 Å and Uiso(H) = 1.5Ueq(C) for methyl H atoms. H atoms of water molecules as well as those bonded to N atoms were located from a difference Fourier map. Water H atoms were refined with soft restraints on O—H and H⋯H distances [O—H = 0.82 (1) Å and H⋯H = 1.30 (2) Å] and Uiso(H) = 1.5Ueq(O) whereas H atoms bonded to N atoms were refined freely.
details are summarized in Table 2
|
Supporting information
CCDC reference: 1400490
https://doi.org/10.1107/S2056989015020113/wm5230sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989015020113/wm5230Isup2.hkl
Data collection: SAINT (Bruker, 2014); cell
APEX2 (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009), publCIF (Westrip, 2010) and PLATON (Spek, 2009).(C7H11N2)3[Cr(C3O4)3]·4H2O | F(000) = 1588 |
Mr = 757.66 | Dx = 1.445 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
a = 19.1141 (5) Å | Cell parameters from 9987 reflections |
b = 16.7537 (4) Å | θ = 2.4–27.8° |
c = 11.0053 (2) Å | µ = 0.41 mm−1 |
β = 98.803 (1)° | T = 296 K |
V = 3482.73 (14) Å3 | Prism, violet |
Z = 4 | 0.58 × 0.21 × 0.14 mm |
Bruker APEXII CCD diffractometer | 3757 reflections with I > 2σ(I) |
Radiation source: sealed X-ray tube | Rint = 0.038 |
φ and ω scans | θmax = 30.5°, θmin = 2.6° |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | h = −27→27 |
Tmin = 0.708, Tmax = 0.746 | k = −23→23 |
56955 measured reflections | l = −15→15 |
5322 independent reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.038 | Hydrogen site location: mixed |
wR(F2) = 0.120 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.03 | w = 1/[σ2(Fo2) + (0.056P)2 + 1.554P] where P = (Fo2 + 2Fc2)/3 |
5322 reflections | (Δ/σ)max = 0.001 |
249 parameters | Δρmax = 0.23 e Å−3 |
6 restraints | Δρmin = −0.42 e Å−3 |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Cr1 | 0.5000 | 0.25122 (2) | 0.2500 | 0.04246 (11) | |
O2 | 0.44865 (6) | 0.33279 (7) | 0.32829 (9) | 0.0502 (3) | |
O1 | 0.41659 (6) | 0.25871 (7) | 0.12056 (10) | 0.0521 (3) | |
O5 | 0.45866 (6) | 0.16208 (7) | 0.33354 (10) | 0.0522 (3) | |
O7W | 0.82663 (8) | 0.36686 (8) | 0.49953 (15) | 0.0698 (4) | |
O6 | 0.45686 (8) | 0.02935 (8) | 0.34038 (13) | 0.0695 (4) | |
O3 | 0.35256 (8) | 0.40942 (8) | 0.29279 (12) | 0.0714 (4) | |
N2 | 0.28924 (8) | 0.40160 (8) | 0.65828 (12) | 0.0507 (3) | |
O8W | 0.87475 (9) | 0.52183 (8) | 0.53015 (16) | 0.0762 (4) | |
N1 | 0.33363 (7) | 0.16521 (9) | 0.60672 (13) | 0.0499 (3) | |
O4 | 0.31735 (7) | 0.32756 (9) | 0.06984 (14) | 0.0767 (4) | |
N3 | 0.5000 | 0.87873 (15) | 0.2500 | 0.0615 (5) | |
C6 | 0.30440 (7) | 0.32468 (9) | 0.64377 (12) | 0.0405 (3) | |
N4 | 0.5000 | 0.63400 (15) | 0.2500 | 0.0730 (7) | |
C1 | 0.39125 (9) | 0.35760 (9) | 0.26335 (14) | 0.0475 (3) | |
C7 | 0.34073 (8) | 0.29953 (10) | 0.54716 (12) | 0.0442 (3) | |
H7 | 0.3556 | 0.3370 | 0.4943 | 0.053* | |
C2 | 0.37147 (9) | 0.31285 (10) | 0.13931 (15) | 0.0496 (4) | |
C5 | 0.28590 (9) | 0.26379 (10) | 0.72219 (14) | 0.0483 (4) | |
H5 | 0.2636 | 0.2770 | 0.7888 | 0.058* | |
C3 | 0.47543 (8) | 0.09271 (10) | 0.30033 (14) | 0.0486 (4) | |
C4 | 0.30043 (9) | 0.18699 (11) | 0.70089 (14) | 0.0521 (4) | |
H4 | 0.2872 | 0.1478 | 0.7527 | 0.063* | |
C12 | 0.5000 | 0.71391 (15) | 0.2500 | 0.0505 (5) | |
C8 | 0.35377 (8) | 0.22127 (10) | 0.53192 (14) | 0.0476 (3) | |
H8 | 0.3773 | 0.2057 | 0.4679 | 0.057* | |
C10 | 0.30788 (12) | 0.46256 (11) | 0.57456 (17) | 0.0626 (5) | |
H10A | 0.3583 | 0.4633 | 0.5769 | 0.094* | |
H10B | 0.2924 | 0.5138 | 0.5991 | 0.094* | |
H10C | 0.2853 | 0.4508 | 0.4925 | 0.094* | |
C13 | 0.47586 (10) | 0.75888 (12) | 0.34435 (16) | 0.0563 (4) | |
H13 | 0.4593 | 0.7330 | 0.4091 | 0.068* | |
C14 | 0.47685 (9) | 0.83913 (12) | 0.34033 (17) | 0.0608 (4) | |
H14 | 0.4608 | 0.8678 | 0.4030 | 0.073* | |
C9 | 0.25007 (13) | 0.42746 (13) | 0.75514 (19) | 0.0741 (6) | |
H9A | 0.2037 | 0.4041 | 0.7419 | 0.111* | |
H9B | 0.2460 | 0.4846 | 0.7537 | 0.111* | |
H9C | 0.2748 | 0.4108 | 0.8336 | 0.111* | |
C11 | 0.47408 (17) | 0.58935 (16) | 0.3474 (3) | 0.1074 (10) | |
H11A | 0.5028 | 0.6012 | 0.4247 | 0.161* | |
H11B | 0.4764 | 0.5332 | 0.3310 | 0.161* | |
H11C | 0.4259 | 0.6041 | 0.3509 | 0.161* | |
H3 | 0.5000 | 0.934 (2) | 0.2500 | 0.091 (11)* | |
H7WA | 0.7843 (7) | 0.3544 (19) | 0.481 (3) | 0.136* | |
H8WA | 0.8595 (16) | 0.4767 (9) | 0.528 (3) | 0.136* | |
H8WB | 0.8988 (14) | 0.5268 (17) | 0.475 (2) | 0.136* | |
H7WB | 0.8432 (14) | 0.3280 (13) | 0.540 (3) | 0.136* | |
H1 | 0.3406 (11) | 0.1122 (13) | 0.5955 (18) | 0.068 (6)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cr1 | 0.04232 (19) | 0.0513 (2) | 0.03681 (16) | 0.000 | 0.01578 (13) | 0.000 |
O2 | 0.0557 (6) | 0.0565 (7) | 0.0411 (5) | 0.0033 (5) | 0.0164 (5) | −0.0054 (4) |
O1 | 0.0505 (6) | 0.0617 (7) | 0.0445 (6) | −0.0005 (5) | 0.0087 (5) | −0.0094 (5) |
O5 | 0.0572 (7) | 0.0538 (6) | 0.0530 (6) | −0.0008 (5) | 0.0318 (5) | −0.0011 (5) |
O7W | 0.0775 (9) | 0.0497 (7) | 0.0849 (10) | −0.0032 (7) | 0.0211 (8) | −0.0005 (7) |
O6 | 0.0851 (9) | 0.0556 (7) | 0.0795 (9) | −0.0022 (7) | 0.0499 (8) | 0.0054 (6) |
O3 | 0.0916 (10) | 0.0639 (8) | 0.0653 (8) | 0.0297 (7) | 0.0330 (7) | 0.0100 (6) |
N2 | 0.0646 (8) | 0.0478 (7) | 0.0431 (6) | −0.0014 (6) | 0.0191 (6) | −0.0055 (5) |
O8W | 0.0914 (11) | 0.0531 (8) | 0.0954 (11) | −0.0067 (7) | 0.0501 (9) | −0.0132 (7) |
N1 | 0.0509 (7) | 0.0481 (8) | 0.0498 (7) | 0.0025 (6) | 0.0041 (6) | −0.0044 (6) |
O4 | 0.0598 (8) | 0.0853 (10) | 0.0794 (9) | 0.0068 (7) | −0.0076 (7) | 0.0037 (8) |
N3 | 0.0568 (12) | 0.0558 (13) | 0.0701 (14) | 0.000 | 0.0036 (10) | 0.000 |
C6 | 0.0399 (7) | 0.0492 (8) | 0.0323 (6) | −0.0036 (6) | 0.0057 (5) | −0.0039 (5) |
N4 | 0.0845 (17) | 0.0570 (13) | 0.0703 (14) | 0.000 | −0.0111 (12) | 0.000 |
C1 | 0.0565 (9) | 0.0447 (8) | 0.0467 (8) | 0.0018 (7) | 0.0250 (7) | 0.0078 (6) |
C7 | 0.0462 (8) | 0.0530 (8) | 0.0351 (6) | −0.0040 (6) | 0.0123 (6) | −0.0008 (6) |
C2 | 0.0469 (8) | 0.0526 (9) | 0.0512 (8) | −0.0051 (7) | 0.0132 (7) | 0.0065 (7) |
C5 | 0.0542 (9) | 0.0568 (9) | 0.0363 (7) | −0.0040 (7) | 0.0150 (6) | −0.0003 (6) |
C3 | 0.0462 (8) | 0.0569 (9) | 0.0469 (8) | −0.0014 (7) | 0.0205 (6) | 0.0010 (7) |
C4 | 0.0598 (10) | 0.0540 (9) | 0.0431 (8) | −0.0056 (7) | 0.0098 (7) | 0.0052 (7) |
C12 | 0.0461 (12) | 0.0573 (14) | 0.0448 (11) | 0.000 | −0.0033 (9) | 0.000 |
C8 | 0.0435 (8) | 0.0603 (9) | 0.0401 (7) | 0.0017 (7) | 0.0097 (6) | −0.0075 (6) |
C10 | 0.0877 (14) | 0.0462 (9) | 0.0567 (10) | −0.0061 (9) | 0.0197 (9) | −0.0016 (7) |
C13 | 0.0509 (9) | 0.0763 (13) | 0.0430 (8) | −0.0002 (8) | 0.0113 (7) | 0.0062 (7) |
C14 | 0.0546 (10) | 0.0712 (12) | 0.0572 (10) | 0.0095 (9) | 0.0107 (8) | −0.0094 (8) |
C9 | 0.1006 (16) | 0.0638 (12) | 0.0665 (11) | 0.0046 (11) | 0.0406 (11) | −0.0154 (9) |
C11 | 0.127 (2) | 0.0759 (16) | 0.108 (2) | −0.0233 (15) | −0.0179 (17) | 0.0327 (14) |
Cr1—O2i | 1.9577 (11) | C6—C5 | 1.416 (2) |
Cr1—O2 | 1.9577 (11) | N4—C12 | 1.339 (3) |
Cr1—O1i | 1.9728 (12) | N4—C11 | 1.455 (3) |
Cr1—O1 | 1.9728 (12) | N4—C11i | 1.455 (3) |
Cr1—O5i | 1.9804 (11) | C1—C2 | 1.553 (2) |
Cr1—O5 | 1.9804 (11) | C7—H7 | 0.9300 |
O2—C1 | 1.2834 (19) | C7—C8 | 1.350 (2) |
O1—C2 | 1.290 (2) | C5—H5 | 0.9300 |
O5—C3 | 1.274 (2) | C5—C4 | 1.344 (2) |
O7W—H7WA | 0.830 (10) | C3—C3i | 1.558 (3) |
O7W—H7WB | 0.822 (10) | C4—H4 | 0.9300 |
O6—C3 | 1.223 (2) | C12—C13i | 1.416 (2) |
O3—C1 | 1.2162 (19) | C12—C13 | 1.416 (2) |
N2—C6 | 1.336 (2) | C8—H8 | 0.9300 |
N2—C10 | 1.456 (2) | C10—H10A | 0.9600 |
N2—C9 | 1.459 (2) | C10—H10B | 0.9600 |
O8W—H8WA | 0.810 (10) | C10—H10C | 0.9600 |
O8W—H8WB | 0.818 (10) | C13—H13 | 0.9300 |
N1—C4 | 1.346 (2) | C13—C14 | 1.345 (3) |
N1—C8 | 1.343 (2) | C14—H14 | 0.9300 |
N1—H1 | 0.91 (2) | C9—H9A | 0.9600 |
O4—C2 | 1.214 (2) | C9—H9B | 0.9600 |
N3—C14i | 1.326 (2) | C9—H9C | 0.9600 |
N3—C14 | 1.326 (2) | C11—H11A | 0.9600 |
N3—H3 | 0.92 (4) | C11—H11B | 0.9600 |
C6—C7 | 1.4200 (19) | C11—H11C | 0.9600 |
O2i—Cr1—O2 | 91.45 (7) | O4—C2—O1 | 124.63 (17) |
O2—Cr1—O1 | 82.48 (5) | O4—C2—C1 | 121.68 (16) |
O2—Cr1—O1i | 92.41 (5) | C6—C5—H5 | 119.8 |
O2i—Cr1—O1 | 92.41 (5) | C4—C5—C6 | 120.39 (15) |
O2i—Cr1—O1i | 82.47 (5) | C4—C5—H5 | 119.8 |
O2—Cr1—O5i | 173.35 (5) | O5—C3—C3i | 114.17 (8) |
O2—Cr1—O5 | 93.41 (5) | O6—C3—O5 | 126.08 (14) |
O2i—Cr1—O5 | 173.35 (5) | O6—C3—C3i | 119.75 (9) |
O2i—Cr1—O5i | 93.41 (5) | N1—C4—H4 | 119.1 |
O1—Cr1—O1i | 172.70 (7) | C5—C4—N1 | 121.88 (15) |
O1—Cr1—O5i | 92.78 (5) | C5—C4—H4 | 119.1 |
O1i—Cr1—O5 | 92.79 (5) | N4—C12—C13 | 122.15 (11) |
O1—Cr1—O5 | 92.72 (5) | N4—C12—C13i | 122.15 (11) |
O1i—Cr1—O5i | 92.72 (5) | C13—C12—C13i | 115.7 (2) |
O5i—Cr1—O5 | 82.11 (6) | N1—C8—C7 | 121.82 (14) |
C1—O2—Cr1 | 115.12 (10) | N1—C8—H8 | 119.1 |
C2—O1—Cr1 | 114.55 (10) | C7—C8—H8 | 119.1 |
C3—O5—Cr1 | 114.77 (9) | N2—C10—H10A | 109.5 |
H7WA—O7W—H7WB | 102 (2) | N2—C10—H10B | 109.5 |
C6—N2—C10 | 121.50 (13) | N2—C10—H10C | 109.5 |
C6—N2—C9 | 121.25 (15) | H10A—C10—H10B | 109.5 |
C10—N2—C9 | 117.18 (15) | H10A—C10—H10C | 109.5 |
H8WA—O8W—H8WB | 108 (2) | H10B—C10—H10C | 109.5 |
C4—N1—H1 | 117.7 (13) | C12—C13—H13 | 120.0 |
C8—N1—C4 | 119.70 (15) | C14—C13—C12 | 119.98 (17) |
C8—N1—H1 | 122.5 (13) | C14—C13—H13 | 120.0 |
C14—N3—C14i | 120.0 (3) | N3—C14—C13 | 122.18 (19) |
C14i—N3—H3 | 120.02 (13) | N3—C14—H14 | 118.9 |
C14—N3—H3 | 120.01 (13) | C13—C14—H14 | 118.9 |
N2—C6—C7 | 121.05 (14) | N2—C9—H9A | 109.5 |
N2—C6—C5 | 122.92 (13) | N2—C9—H9B | 109.5 |
C5—C6—C7 | 116.04 (14) | N2—C9—H9C | 109.5 |
C12—N4—C11i | 120.94 (15) | H9A—C9—H9B | 109.5 |
C12—N4—C11 | 120.93 (15) | H9A—C9—H9C | 109.5 |
C11i—N4—C11 | 118.1 (3) | H9B—C9—H9C | 109.5 |
O2—C1—C2 | 113.93 (13) | N4—C11—H11A | 109.5 |
O3—C1—O2 | 125.85 (16) | N4—C11—H11B | 109.5 |
O3—C1—C2 | 120.19 (15) | N4—C11—H11C | 109.5 |
C6—C7—H7 | 119.9 | H11A—C11—H11B | 109.5 |
C8—C7—C6 | 120.14 (14) | H11A—C11—H11C | 109.5 |
C8—C7—H7 | 119.9 | H11B—C11—H11C | 109.5 |
O1—C2—C1 | 113.67 (13) | ||
Cr1—O2—C1—O3 | −177.75 (14) | C7—C6—C5—C4 | −2.3 (2) |
Cr1—O2—C1—C2 | 4.37 (16) | C5—C6—C7—C8 | 2.0 (2) |
Cr1—O1—C2—O4 | 178.94 (14) | C4—N1—C8—C7 | −1.0 (2) |
Cr1—O1—C2—C1 | −2.76 (16) | C12—C13—C14—N3 | −0.1 (3) |
Cr1—O5—C3—O6 | 179.09 (15) | C8—N1—C4—C5 | 0.7 (2) |
Cr1—O5—C3—C3i | −0.6 (2) | C10—N2—C6—C7 | 1.3 (2) |
O2—C1—C2—O1 | −1.05 (19) | C10—N2—C6—C5 | −178.85 (16) |
O2—C1—C2—O4 | 177.30 (15) | C13i—C12—C13—C14 | 0.02 (12) |
O3—C1—C2—O1 | −179.06 (15) | C14i—N3—C14—C13 | 0.03 (13) |
O3—C1—C2—O4 | −0.7 (2) | C9—N2—C6—C7 | 178.16 (16) |
N2—C6—C7—C8 | −178.10 (14) | C9—N2—C6—C5 | −2.0 (3) |
N2—C6—C5—C4 | 177.81 (15) | C11i—N4—C12—C13 | −179.27 (16) |
C6—C7—C8—N1 | −0.4 (2) | C11i—N4—C12—C13i | 0.74 (16) |
C6—C5—C4—N1 | 1.0 (3) | C11—N4—C12—C13i | −179.26 (16) |
N4—C12—C13—C14 | −179.98 (12) | C11—N4—C12—C13 | 0.74 (16) |
Symmetry code: (i) −x+1, y, −z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O8Wii | 0.91 (2) | 1.84 (2) | 2.702 (2) | 157.8 (19) |
N3—H3···O6iii | 0.92 (4) | 2.12 (3) | 2.879 (3) | 139 (1) |
N3—H3···O6iv | 0.92 (4) | 2.12 (3) | 2.879 (3) | 139 (1) |
O7W—H7WA···O4i | 0.83 (1) | 1.99 (1) | 2.819 (2) | 178 (3) |
O7W—H7WB···O1v | 0.82 (1) | 2.12 (1) | 2.9079 (19) | 161 (3) |
O8W—H8WA···O7W | 0.81 (1) | 1.95 (1) | 2.7578 (19) | 172 (3) |
O8W—H8WB···O6vi | 0.82 (1) | 1.99 (1) | 2.8007 (19) | 175 (3) |
Symmetry codes: (i) −x+1, y, −z+1/2; (ii) x−1/2, y−1/2, z; (iii) −x+1, y+1, −z+1/2; (iv) x, y+1, z; (v) x+1/2, −y+1/2, z+1/2; (vi) x+1/2, y+1/2, z. |
Acknowledgements
The authors are grateful to Professor Simeon Kouam Fogue (Higher Teacher Training College, Chemistry Department, University of Yaounde 1) for the donation of 4-(dimethylamino)pyridine. The Fonds Européen de Développement Régional (FEDER), CNRS, Région Nord Pas-de-Calais and Ministère de l'Education Nationale de l'Enseignement Supérieur et de la Recherche are acknowledged for funding of X-ray diffractometers.
References
Bélombé, M. M., Nenwa, J., Mbiangué, Y. A., Bebga, G., Majoumo-Mbé, F., Hey-Hawkins, E. & Lönnecke, P. (2009a). Inorg. Chim. Acta, 362, 1–4. Google Scholar
Bélombé, M. M., Nenwa, J., Mbiangué, Y. A., Majoumo-Mbé, F., Lönnecke, P. & Hey-Hawkins, E. (2009b). Dalton Trans. pp. 4519. Google Scholar
Bélombé, M. M., Nenwa, J., Mbiangué, Y. A., Nnanga, G. E., Mbomékallé, I. M., Hey-Hawkins, E., Lönnecke, P. & Majoumo, F. (2003). Dalton Trans. pp. 2117–2118. Google Scholar
Ben Nasr, M., Lefebvre, F. & Ben Nasr, C. (2015). Am. J. Anal. Chem. 6, 446–456. CSD CrossRef CAS Google Scholar
Benslimane, M., Merazig, H., Daran, J.-C. & Zeghouan, O. (2012). Acta Cryst. E68, m1321–m1322. CSD CrossRef IUCr Journals Google Scholar
Bruker (2014). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Ghouili, A., Chaari, N. & Zouari, F. (2010). X-ray Struct. Anal. Online, 26, 21–22. CrossRef CAS Google Scholar
Golič, L. & Bulc, N. (1988). Acta Cryst. C44, 2065–2068. CSD CrossRef Web of Science IUCr Journals Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Martin, L., Day, P., Clegg, W., Harrington, R. W., Horton, P. N., Bingham, A., Hursthouse, M. B., McMillan, P. & Firth, S. (2007). J. Mater. Chem. 17, 3324–3329. Web of Science CSD CrossRef CAS Google Scholar
Mbiangué, Y. A., Nenwa, J., Bélombé, M. M., Ngoune, J. & Álvarez, E. (2012). ScienceJet, 1, 1–9. Google Scholar
Nenwa, J., Belombe, M. M., Ngoune, J. & Fokwa, B. P. T. (2010). Acta Cryst. E66, m1410. Web of Science CSD CrossRef IUCr Journals Google Scholar
Neo, K. E., Ong, Y. Y., Huynh, H. V. & Andy-Hor, T. S. (2006). J. Mater. Chem. 17, 1002–1006. CrossRef Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.