research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of tris­­[4-(di­methyl­amino)­pyridinium] tris­­(oxalato-κ2O,O′)chromate(III) tetra­hydrate

aDepartment of Inorganic Chemistry, University of Yaounde 1, POB 812 Yaounde, Cameroon, bUnité de Catalyse et de Chimie du Solide, UMR 8181, Ecole Nationale Supérieure de Chimie de Lille, Université Lille1, 59650 Villeneuve d'Ascq Cedex, France, cHigher Teacher Training College, Chemistry Department, University of Yaounde 1, POB 47, Yaounde, Cameroon, and dUFR de Physique, Université Lille1, 59650 Villeneuve d'Ascq Cedex, France
*Correspondence e-mail: jnenwa@yahoo.fr

Edited by M. Weil, Vienna University of Technology, Austria (Received 14 October 2015; accepted 24 October 2015; online 31 October 2015)

In the title hybrid salt, (C7H11N2)3[Cr(C2O4)3]·4H2O, the central CrIII ion of the complex anion (point group symmetry 2) is coordinated by six O atoms from three chelating oxalate(2−) ligands in a slightly distorted octa­hedral coordination sphere. The Cr—O bond lengths vary from 1.9577 (11) to 1.9804 (11) Å, while the chelate O—Cr—O angles range from 82.11 (6) to 93.41 (5)°. The 4-(di­methyl­amino)­pyridinium cations (one situated in a general position and one on a twofold rotation axis) are protonated at the pyridine N atoms. In the crystal, N—H⋯O and O—H⋯O hydrogen bonds link the cations and anions into a three-dimensional network. ππ inter­actions between the pyridine rings of adjacent cations provide additional stabilization of the crystal packing, with the closest centroid-to-centroid distances being 3.541 (1) and 3.575 (1) Å.

1. Chemical context

The coordination chemistry of oxalate (C2O42−) continues to receive considerable attention because of the ability of this ion to act as a remarkably flexible ligand system in complexations with a wide range of metal ions (Martin et al., 2007[Martin, L., Day, P., Clegg, W., Harrington, R. W., Horton, P. N., Bingham, A., Hursthouse, M. B., McMillan, P. & Firth, S. (2007). J. Mater. Chem. 17, 3324-3329.]). Over the last decade, Bélombé and coworkers (Bélombé et al., 2003[Bélombé, M. M., Nenwa, J., Mbiangué, Y. A., Nnanga, G. E., Mbomékallé, I. M., Hey-Hawkins, E., Lönnecke, P. & Majoumo, F. (2003). Dalton Trans. pp. 2117-2118.]) prepared a novel barium-oxalatochromate(III), {Ba6(H2O)17[Cr(ox)3]4}·7H2O, and demonstrated the use of this complex as a suitable precursor for the synthesis of multi-functional crystalline materials (Bélombé et al., 2009a[Bélombé, M. M., Nenwa, J., Mbiangué, Y. A., Bebga, G., Majoumo-Mbé, F., Hey-Hawkins, E. & Lönnecke, P. (2009a). Inorg. Chim. Acta, 362, 1-4.],b[Bélombé, M. M., Nenwa, J., Mbiangué, Y. A., Majoumo-Mbé, F., Lönnecke, P. & Hey-Hawkins, E. (2009b). Dalton Trans. pp. 4519.]; Mbiangué et al., 2012[Mbiangué, Y. A., Nenwa, J., Bélombé, M. M., Ngoune, J. & Álvarez, E. (2012). ScienceJet, 1, 1-9.]). Moreover, this complex has received much attention in the field of materials science for its use as a convenient route for the preparation of technologically important metallic composite oxides (Neo et al., 2006[Neo, K. E., Ong, Y. Y., Huynh, H. V. & Andy-Hor, T. S. (2006). J. Mater. Chem. 17, 1002-1006.]). As part of our ongoing research program, we have now combined this versatile barium-oxalatochromate(III) complex with 4-(di­methyl­amino)­pyridinium oxalate to isolate the organic–inorganic hybrid salt, (C7H11N2)3[Cr(C2O4)3]·4H2O.

[Scheme 1]

2. Structural commentary

The mol­ecular components of the title compound are shown in Fig. 1[link]. The asymmetric unit contains one and a half 4-(di­methyl­amino)­pyridinium cations, one half of the tris(oxalato)chromate(III) complex anion and two lattice water mol­ecules. The entities are completed by application of twofold rotation symmetry. The central CrIII ion of the complex anion is coordinated by six O atoms from three chelating oxalato(2−) ligands in a slightly distorted (2 + 2 + 2) octa­hedral coordination sphere. The chelate O—Cr—O angles range from 82.11 (6) to 93.41 (5)°. The Cr—O bond lengths vary from 1.9577 (11) to 1.9804 (11) Å and are similar to those found in the guanidinium tris­(oxalato)chromate(III) salt (Golič & Bulc, 1988[Golič, L. & Bulc, N. (1988). Acta Cryst. C44, 2065-2068.]). Bond lengths and angles in the organic cations, [C7H11N2]+, are in agreement with those found in salts with the same cationic entity (Nenwa et al., 2010[Nenwa, J., Belombe, M. M., Ngoune, J. & Fokwa, B. P. T. (2010). Acta Cryst. E66, m1410.]; Ghouili et al., 2010[Ghouili, A., Chaari, N. & Zouari, F. (2010). X-ray Struct. Anal. Online, 26, 21-22.]; Benslimane et al., 2012[Benslimane, M., Merazig, H., Daran, J.-C. & Zeghouan, O. (2012). Acta Cryst. E68, m1321-m1322.]; Ben Nasr et al., 2015[Ben Nasr, M., Lefebvre, F. & Ben Nasr, C. (2015). Am. J. Anal. Chem. 6, 446-456.]).

[Figure 1]
Figure 1
The mol­ecular components of the title compound. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen bonds are shown as dashed lines. [Symmetry codes: (i) 1 − x, y, [{1\over 2}] − z; (ii) −[{1\over 2}] + x, [{1\over 2}] − y, −[{1\over 2}] + z; (iii) [{3\over 2}] − x, [{1\over 2}] − y, 1 − z; (iv) [{3\over 2}] − x, −[{1\over 2}] + y, [{1\over 2}] − z; (v) −[{1\over 2}] + x, −[{1\over 2}] + y, z.]

3. Supra­molecular features

In the title compound, the crystal packing is stabilized by a network of inter­molecular N—H⋯O and O—H⋯O hydrogen bonds linking the coordination octa­hedra, 4-(di­methyl­amino)­pyridinium cations and lattice water mol­ecules (Table 1[link], Fig. 2[link]). In addition, ππ stacking inter­actions [centroid-to-centroid distances of 3.541 (1) and 3.575 (1) Å] between the pyridine rings contribute to the stabilization of the three-dimensional network (Fig. 3[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O8Wi 0.91 (2) 1.84 (2) 2.702 (2) 157.8 (19)
N3—H3⋯O6ii 0.92 (4) 2.12 (3) 2.879 (3) 139 (1)
N3—H3⋯O6iii 0.92 (4) 2.12 (3) 2.879 (3) 139 (1)
O7W—H7WA⋯O4iv 0.83 (1) 1.99 (1) 2.819 (2) 178 (3)
O7W—H7WB⋯O1v 0.82 (1) 2.12 (1) 2.9079 (19) 161 (3)
O8W—H8WA⋯O7W 0.81 (1) 1.95 (1) 2.7578 (19) 172 (3)
O8W—H8WB⋯O6vi 0.82 (1) 1.99 (1) 2.8007 (19) 175 (3)
Symmetry codes: (i) [x-{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (ii) [-x+1, y+1, -z+{\script{1\over 2}}]; (iii) x, y+1, z; (iv) [-x+1, y, -z+{\script{1\over 2}}]; (v) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (vi) [x+{\script{1\over 2}}, y+{\script{1\over 2}}, z].
[Figure 2]
Figure 2
Projection on the ab plane of the crystal structure of the title compound. Hydrogen bonds are shown as dashed lines.
[Figure 3]
Figure 3
ππ stacking inter­actions (dashed lines) between adjacent organic cations in the title compound.

4. Synthesis and crystallization

The title compound was obtained by reaction of an aqueous solution of the freshly prepared barium-oxalatochromate(III) salt {Ba6(H2O)17[Cr(C2O4)3]4}·7H2O (1 mmol, 2.536 g), with an aqueous solution of 4-(di­methyl­amino)­pyridine (12 mmol, 1.464 g) and oxalic acid (6 mmol, 0.756 g). The mixture was stirred at 333 K for about 30 minutes and then cooled to room temperature and filtered. The title compound crystallized by slow evaporation of the solvent at room temperature in form of light-violet crystals with dimensions up to 3 mm within a few weeks.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. H atoms bonded to C atoms were positioned geometrically and allowed to ride on their parent atoms with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C) for aromatic and 0.96 Å and Uiso(H) = 1.5Ueq(C) for methyl H atoms. H atoms of water mol­ecules as well as those bonded to N atoms were located from a difference Fourier map. Water H atoms were refined with soft restraints on O—H and H⋯H distances [O—H = 0.82 (1) Å and H⋯H = 1.30 (2) Å] and Uiso(H) = 1.5Ueq(O) whereas H atoms bonded to N atoms were refined freely.

Table 2
Experimental details

Crystal data
Chemical formula (C7H11N2)3[Cr(C3O4)3]·4H2O
Mr 757.66
Crystal system, space group Monoclinic, C2/c
Temperature (K) 296
a, b, c (Å) 19.1141 (5), 16.7537 (4), 11.0053 (2)
β (°) 98.803 (1)
V3) 3482.73 (14)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.41
Crystal size (mm) 0.58 × 0.21 × 0.14
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.708, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 56955, 5322, 3757
Rint 0.038
(sin θ/λ)max−1) 0.714
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.120, 1.03
No. of reflections 5322
No. of parameters 249
No. of restraints 6
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.23, −0.42
Computer programs: SAINT and APEX2 (Bruker, 2014[Bruker (2014). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]), publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

Data collection: SAINT (Bruker, 2014); cell refinement: APEX2 (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009), publCIF (Westrip, 2010) and PLATON (Spek, 2009).

Tris[4-(dimethylamino)pyridinium] tris(oxalato-κ2O,O')chromate(III) tetrahydrate top
Crystal data top
(C7H11N2)3[Cr(C3O4)3]·4H2OF(000) = 1588
Mr = 757.66Dx = 1.445 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 19.1141 (5) ÅCell parameters from 9987 reflections
b = 16.7537 (4) Åθ = 2.4–27.8°
c = 11.0053 (2) ŵ = 0.41 mm1
β = 98.803 (1)°T = 296 K
V = 3482.73 (14) Å3Prism, violet
Z = 40.58 × 0.21 × 0.14 mm
Data collection top
Bruker APEXII CCD
diffractometer
3757 reflections with I > 2σ(I)
Radiation source: sealed X-ray tubeRint = 0.038
φ and ω scansθmax = 30.5°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 2727
Tmin = 0.708, Tmax = 0.746k = 2323
56955 measured reflectionsl = 1515
5322 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: mixed
wR(F2) = 0.120H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.056P)2 + 1.554P]
where P = (Fo2 + 2Fc2)/3
5322 reflections(Δ/σ)max = 0.001
249 parametersΔρmax = 0.23 e Å3
6 restraintsΔρmin = 0.42 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cr10.50000.25122 (2)0.25000.04246 (11)
O20.44865 (6)0.33279 (7)0.32829 (9)0.0502 (3)
O10.41659 (6)0.25871 (7)0.12056 (10)0.0521 (3)
O50.45866 (6)0.16208 (7)0.33354 (10)0.0522 (3)
O7W0.82663 (8)0.36686 (8)0.49953 (15)0.0698 (4)
O60.45686 (8)0.02935 (8)0.34038 (13)0.0695 (4)
O30.35256 (8)0.40942 (8)0.29279 (12)0.0714 (4)
N20.28924 (8)0.40160 (8)0.65828 (12)0.0507 (3)
O8W0.87475 (9)0.52183 (8)0.53015 (16)0.0762 (4)
N10.33363 (7)0.16521 (9)0.60672 (13)0.0499 (3)
O40.31735 (7)0.32756 (9)0.06984 (14)0.0767 (4)
N30.50000.87873 (15)0.25000.0615 (5)
C60.30440 (7)0.32468 (9)0.64377 (12)0.0405 (3)
N40.50000.63400 (15)0.25000.0730 (7)
C10.39125 (9)0.35760 (9)0.26335 (14)0.0475 (3)
C70.34073 (8)0.29953 (10)0.54716 (12)0.0442 (3)
H70.35560.33700.49430.053*
C20.37147 (9)0.31285 (10)0.13931 (15)0.0496 (4)
C50.28590 (9)0.26379 (10)0.72219 (14)0.0483 (4)
H50.26360.27700.78880.058*
C30.47543 (8)0.09271 (10)0.30033 (14)0.0486 (4)
C40.30043 (9)0.18699 (11)0.70089 (14)0.0521 (4)
H40.28720.14780.75270.063*
C120.50000.71391 (15)0.25000.0505 (5)
C80.35377 (8)0.22127 (10)0.53192 (14)0.0476 (3)
H80.37730.20570.46790.057*
C100.30788 (12)0.46256 (11)0.57456 (17)0.0626 (5)
H10A0.35830.46330.57690.094*
H10B0.29240.51380.59910.094*
H10C0.28530.45080.49250.094*
C130.47586 (10)0.75888 (12)0.34435 (16)0.0563 (4)
H130.45930.73300.40910.068*
C140.47685 (9)0.83913 (12)0.34033 (17)0.0608 (4)
H140.46080.86780.40300.073*
C90.25007 (13)0.42746 (13)0.75514 (19)0.0741 (6)
H9A0.20370.40410.74190.111*
H9B0.24600.48460.75370.111*
H9C0.27480.41080.83360.111*
C110.47408 (17)0.58935 (16)0.3474 (3)0.1074 (10)
H11A0.50280.60120.42470.161*
H11B0.47640.53320.33100.161*
H11C0.42590.60410.35090.161*
H30.50000.934 (2)0.25000.091 (11)*
H7WA0.7843 (7)0.3544 (19)0.481 (3)0.136*
H8WA0.8595 (16)0.4767 (9)0.528 (3)0.136*
H8WB0.8988 (14)0.5268 (17)0.475 (2)0.136*
H7WB0.8432 (14)0.3280 (13)0.540 (3)0.136*
H10.3406 (11)0.1122 (13)0.5955 (18)0.068 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cr10.04232 (19)0.0513 (2)0.03681 (16)0.0000.01578 (13)0.000
O20.0557 (6)0.0565 (7)0.0411 (5)0.0033 (5)0.0164 (5)0.0054 (4)
O10.0505 (6)0.0617 (7)0.0445 (6)0.0005 (5)0.0087 (5)0.0094 (5)
O50.0572 (7)0.0538 (6)0.0530 (6)0.0008 (5)0.0318 (5)0.0011 (5)
O7W0.0775 (9)0.0497 (7)0.0849 (10)0.0032 (7)0.0211 (8)0.0005 (7)
O60.0851 (9)0.0556 (7)0.0795 (9)0.0022 (7)0.0499 (8)0.0054 (6)
O30.0916 (10)0.0639 (8)0.0653 (8)0.0297 (7)0.0330 (7)0.0100 (6)
N20.0646 (8)0.0478 (7)0.0431 (6)0.0014 (6)0.0191 (6)0.0055 (5)
O8W0.0914 (11)0.0531 (8)0.0954 (11)0.0067 (7)0.0501 (9)0.0132 (7)
N10.0509 (7)0.0481 (8)0.0498 (7)0.0025 (6)0.0041 (6)0.0044 (6)
O40.0598 (8)0.0853 (10)0.0794 (9)0.0068 (7)0.0076 (7)0.0037 (8)
N30.0568 (12)0.0558 (13)0.0701 (14)0.0000.0036 (10)0.000
C60.0399 (7)0.0492 (8)0.0323 (6)0.0036 (6)0.0057 (5)0.0039 (5)
N40.0845 (17)0.0570 (13)0.0703 (14)0.0000.0111 (12)0.000
C10.0565 (9)0.0447 (8)0.0467 (8)0.0018 (7)0.0250 (7)0.0078 (6)
C70.0462 (8)0.0530 (8)0.0351 (6)0.0040 (6)0.0123 (6)0.0008 (6)
C20.0469 (8)0.0526 (9)0.0512 (8)0.0051 (7)0.0132 (7)0.0065 (7)
C50.0542 (9)0.0568 (9)0.0363 (7)0.0040 (7)0.0150 (6)0.0003 (6)
C30.0462 (8)0.0569 (9)0.0469 (8)0.0014 (7)0.0205 (6)0.0010 (7)
C40.0598 (10)0.0540 (9)0.0431 (8)0.0056 (7)0.0098 (7)0.0052 (7)
C120.0461 (12)0.0573 (14)0.0448 (11)0.0000.0033 (9)0.000
C80.0435 (8)0.0603 (9)0.0401 (7)0.0017 (7)0.0097 (6)0.0075 (6)
C100.0877 (14)0.0462 (9)0.0567 (10)0.0061 (9)0.0197 (9)0.0016 (7)
C130.0509 (9)0.0763 (13)0.0430 (8)0.0002 (8)0.0113 (7)0.0062 (7)
C140.0546 (10)0.0712 (12)0.0572 (10)0.0095 (9)0.0107 (8)0.0094 (8)
C90.1006 (16)0.0638 (12)0.0665 (11)0.0046 (11)0.0406 (11)0.0154 (9)
C110.127 (2)0.0759 (16)0.108 (2)0.0233 (15)0.0179 (17)0.0327 (14)
Geometric parameters (Å, º) top
Cr1—O2i1.9577 (11)C6—C51.416 (2)
Cr1—O21.9577 (11)N4—C121.339 (3)
Cr1—O1i1.9728 (12)N4—C111.455 (3)
Cr1—O11.9728 (12)N4—C11i1.455 (3)
Cr1—O5i1.9804 (11)C1—C21.553 (2)
Cr1—O51.9804 (11)C7—H70.9300
O2—C11.2834 (19)C7—C81.350 (2)
O1—C21.290 (2)C5—H50.9300
O5—C31.274 (2)C5—C41.344 (2)
O7W—H7WA0.830 (10)C3—C3i1.558 (3)
O7W—H7WB0.822 (10)C4—H40.9300
O6—C31.223 (2)C12—C13i1.416 (2)
O3—C11.2162 (19)C12—C131.416 (2)
N2—C61.336 (2)C8—H80.9300
N2—C101.456 (2)C10—H10A0.9600
N2—C91.459 (2)C10—H10B0.9600
O8W—H8WA0.810 (10)C10—H10C0.9600
O8W—H8WB0.818 (10)C13—H130.9300
N1—C41.346 (2)C13—C141.345 (3)
N1—C81.343 (2)C14—H140.9300
N1—H10.91 (2)C9—H9A0.9600
O4—C21.214 (2)C9—H9B0.9600
N3—C14i1.326 (2)C9—H9C0.9600
N3—C141.326 (2)C11—H11A0.9600
N3—H30.92 (4)C11—H11B0.9600
C6—C71.4200 (19)C11—H11C0.9600
O2i—Cr1—O291.45 (7)O4—C2—O1124.63 (17)
O2—Cr1—O182.48 (5)O4—C2—C1121.68 (16)
O2—Cr1—O1i92.41 (5)C6—C5—H5119.8
O2i—Cr1—O192.41 (5)C4—C5—C6120.39 (15)
O2i—Cr1—O1i82.47 (5)C4—C5—H5119.8
O2—Cr1—O5i173.35 (5)O5—C3—C3i114.17 (8)
O2—Cr1—O593.41 (5)O6—C3—O5126.08 (14)
O2i—Cr1—O5173.35 (5)O6—C3—C3i119.75 (9)
O2i—Cr1—O5i93.41 (5)N1—C4—H4119.1
O1—Cr1—O1i172.70 (7)C5—C4—N1121.88 (15)
O1—Cr1—O5i92.78 (5)C5—C4—H4119.1
O1i—Cr1—O592.79 (5)N4—C12—C13122.15 (11)
O1—Cr1—O592.72 (5)N4—C12—C13i122.15 (11)
O1i—Cr1—O5i92.72 (5)C13—C12—C13i115.7 (2)
O5i—Cr1—O582.11 (6)N1—C8—C7121.82 (14)
C1—O2—Cr1115.12 (10)N1—C8—H8119.1
C2—O1—Cr1114.55 (10)C7—C8—H8119.1
C3—O5—Cr1114.77 (9)N2—C10—H10A109.5
H7WA—O7W—H7WB102 (2)N2—C10—H10B109.5
C6—N2—C10121.50 (13)N2—C10—H10C109.5
C6—N2—C9121.25 (15)H10A—C10—H10B109.5
C10—N2—C9117.18 (15)H10A—C10—H10C109.5
H8WA—O8W—H8WB108 (2)H10B—C10—H10C109.5
C4—N1—H1117.7 (13)C12—C13—H13120.0
C8—N1—C4119.70 (15)C14—C13—C12119.98 (17)
C8—N1—H1122.5 (13)C14—C13—H13120.0
C14—N3—C14i120.0 (3)N3—C14—C13122.18 (19)
C14i—N3—H3120.02 (13)N3—C14—H14118.9
C14—N3—H3120.01 (13)C13—C14—H14118.9
N2—C6—C7121.05 (14)N2—C9—H9A109.5
N2—C6—C5122.92 (13)N2—C9—H9B109.5
C5—C6—C7116.04 (14)N2—C9—H9C109.5
C12—N4—C11i120.94 (15)H9A—C9—H9B109.5
C12—N4—C11120.93 (15)H9A—C9—H9C109.5
C11i—N4—C11118.1 (3)H9B—C9—H9C109.5
O2—C1—C2113.93 (13)N4—C11—H11A109.5
O3—C1—O2125.85 (16)N4—C11—H11B109.5
O3—C1—C2120.19 (15)N4—C11—H11C109.5
C6—C7—H7119.9H11A—C11—H11B109.5
C8—C7—C6120.14 (14)H11A—C11—H11C109.5
C8—C7—H7119.9H11B—C11—H11C109.5
O1—C2—C1113.67 (13)
Cr1—O2—C1—O3177.75 (14)C7—C6—C5—C42.3 (2)
Cr1—O2—C1—C24.37 (16)C5—C6—C7—C82.0 (2)
Cr1—O1—C2—O4178.94 (14)C4—N1—C8—C71.0 (2)
Cr1—O1—C2—C12.76 (16)C12—C13—C14—N30.1 (3)
Cr1—O5—C3—O6179.09 (15)C8—N1—C4—C50.7 (2)
Cr1—O5—C3—C3i0.6 (2)C10—N2—C6—C71.3 (2)
O2—C1—C2—O11.05 (19)C10—N2—C6—C5178.85 (16)
O2—C1—C2—O4177.30 (15)C13i—C12—C13—C140.02 (12)
O3—C1—C2—O1179.06 (15)C14i—N3—C14—C130.03 (13)
O3—C1—C2—O40.7 (2)C9—N2—C6—C7178.16 (16)
N2—C6—C7—C8178.10 (14)C9—N2—C6—C52.0 (3)
N2—C6—C5—C4177.81 (15)C11i—N4—C12—C13179.27 (16)
C6—C7—C8—N10.4 (2)C11i—N4—C12—C13i0.74 (16)
C6—C5—C4—N11.0 (3)C11—N4—C12—C13i179.26 (16)
N4—C12—C13—C14179.98 (12)C11—N4—C12—C130.74 (16)
Symmetry code: (i) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O8Wii0.91 (2)1.84 (2)2.702 (2)157.8 (19)
N3—H3···O6iii0.92 (4)2.12 (3)2.879 (3)139 (1)
N3—H3···O6iv0.92 (4)2.12 (3)2.879 (3)139 (1)
O7W—H7WA···O4i0.83 (1)1.99 (1)2.819 (2)178 (3)
O7W—H7WB···O1v0.82 (1)2.12 (1)2.9079 (19)161 (3)
O8W—H8WA···O7W0.81 (1)1.95 (1)2.7578 (19)172 (3)
O8W—H8WB···O6vi0.82 (1)1.99 (1)2.8007 (19)175 (3)
Symmetry codes: (i) x+1, y, z+1/2; (ii) x1/2, y1/2, z; (iii) x+1, y+1, z+1/2; (iv) x, y+1, z; (v) x+1/2, y+1/2, z+1/2; (vi) x+1/2, y+1/2, z.
 

Acknowledgements

The authors are grateful to Professor Simeon Kouam Fogue (Higher Teacher Training College, Chemistry Department, University of Yaounde 1) for the donation of 4-(di­methyl­amino)­pyridine. The Fonds Européen de Développement Régional (FEDER), CNRS, Région Nord Pas-de-Calais and Ministère de l'Education Nationale de l'Enseignement Supérieur et de la Recherche are acknowledged for funding of X-ray diffractometers.

References

First citationBélombé, M. M., Nenwa, J., Mbiangué, Y. A., Bebga, G., Majoumo-Mbé, F., Hey-Hawkins, E. & Lönnecke, P. (2009a). Inorg. Chim. Acta, 362, 1–4.  Google Scholar
First citationBélombé, M. M., Nenwa, J., Mbiangué, Y. A., Majoumo-Mbé, F., Lönnecke, P. & Hey-Hawkins, E. (2009b). Dalton Trans. pp. 4519.  Google Scholar
First citationBélombé, M. M., Nenwa, J., Mbiangué, Y. A., Nnanga, G. E., Mbomékallé, I. M., Hey-Hawkins, E., Lönnecke, P. & Majoumo, F. (2003). Dalton Trans. pp. 2117–2118.  Google Scholar
First citationBen Nasr, M., Lefebvre, F. & Ben Nasr, C. (2015). Am. J. Anal. Chem. 6, 446–456.  CSD CrossRef CAS Google Scholar
First citationBenslimane, M., Merazig, H., Daran, J.-C. & Zeghouan, O. (2012). Acta Cryst. E68, m1321–m1322.  CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2014). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGhouili, A., Chaari, N. & Zouari, F. (2010). X-ray Struct. Anal. Online, 26, 21–22.  CrossRef CAS Google Scholar
First citationGolič, L. & Bulc, N. (1988). Acta Cryst. C44, 2065–2068.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMartin, L., Day, P., Clegg, W., Harrington, R. W., Horton, P. N., Bingham, A., Hursthouse, M. B., McMillan, P. & Firth, S. (2007). J. Mater. Chem. 17, 3324–3329.  Web of Science CSD CrossRef CAS Google Scholar
First citationMbiangué, Y. A., Nenwa, J., Bélombé, M. M., Ngoune, J. & Álvarez, E. (2012). ScienceJet, 1, 1–9.  Google Scholar
First citationNenwa, J., Belombe, M. M., Ngoune, J. & Fokwa, B. P. T. (2010). Acta Cryst. E66, m1410.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNeo, K. E., Ong, Y. Y., Huynh, H. V. & Andy-Hor, T. S. (2006). J. Mater. Chem. 17, 1002–1006.  CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds