organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 4,4′,4′′-(1,3,5-triazine-2,4,6-tri­yl)tripyridinium trichloride 2.5-hydrate

aSchool of Marine Science, Sun Yat-Sen University, Guangzhou 510275, People's Republic of China, and bInstrumental Analysis and Research Center, Sun Yat-Sen University, Guangzhou 510275, People's Republic of China
*Correspondence e-mail: liyang223@mail.sysu.edu.cn

Edited by D.-J. Xu, Zhejiang University (Yuquan Campus), China (Received 18 September 2015; accepted 28 September 2015; online 17 October 2015)

The asymmetric unit of the title compound, C18H15N63+·3Cl·2.5H2O, contains two independent (1,3,5-triazine-2,4,6-tri­yl)tripyridinium cations. Both cations are approximately planar, the r.m.s. deviations of fitted non-H atoms being 0.045 and 0.051 Å. In the crystal, extensive O—H⋯Cl, O—H⋯O, N—H⋯Cl and N—H⋯O hydrogen bonds and weak C—H⋯Cl and C—H⋯O inter­actions link the organic cations, Cl anions and water mol­ecules into a three-dimensional supra­molecular architecture. ππ stacking between the pyridine rings of adjacent cations is also observed, the centroid-to-centroid distance being 3.7578 (8) Å.

1. Related literature

For applications of 2,4,6-tris­(pyridin-4-yl)-1,3,5-triazine, see: Yoshizawa et al. (2006[Yoshizawa, M., Tamura, M. & Fujita, M. (2006). Science, 312, 251-254.]); Inokuma et al. (2011[Inokuma, Y., Kawano, M. & Fujita, M. (2011). Nat. Chem. 3, 349-358.], 2013[Inokuma, Y., Yoshioka, S., Ariyoshi, J., Arai, T., Hitora, Y., Takada, K., Matsunaga, S., Rissanen, K. & Fujita, M. (2013). Nature, 495, 461-466.]). For the crystal structure of 2,4,6-tris­(pyridin-4-yl)-1,3,5-triazine (TPT), see: Janczak et al. (2003[Janczak, J., Śledź, M. & Kubiak, R. (2003). J. Mol. Struct. 659, 71-79.]). For the crystal structure of (1,3,5-triazine-2,4,6-tri­yl)tripyridinium nitrate, see: Zhu et al. (2007[Zhu, S.-R., Chen, W.-D., Zhao, H.-J., Shao, M. & Li, M.-X. (2007). Acta Cryst. E63, o1344-o1346.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • 2C18H15N63+·6Cl·5H2O

  • Mr = 933.50

  • Monoclinic P 21 /c

  • a = 10.6042 (1) Å

  • b = 14.6447 (1) Å

  • c = 27.7906 (3) Å

  • β = 98.310 (1)°

  • V = 4270.44 (7) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 4.15 mm−1

  • T = 150 K

  • 0.50 × 0.20 × 0.10 mm

2.2. Data collection

  • Agilent Xcalibur Atlas Gemini ultra diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.575, Tmax = 1.000

  • 27170 measured reflections

  • 7278 independent reflections

  • 6654 reflections with I > 2σ(I)

  • Rint = 0.020

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.026

  • wR(F2) = 0.076

  • S = 1.05

  • 7278 reflections

  • 572 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯Cl03i 0.77 (2) 2.47 (2) 3.2302 (15) 171 (2)
O1—H1B⋯Cl04 0.87 (2) 2.32 (2) 3.1856 (14) 175 (2)
O2—H2A⋯Cl04 0.86 (2) 2.28 (2) 3.1124 (15) 163.2 (18)
O2—H2B⋯Cl05 0.84 (2) 2.22 (2) 3.0515 (13) 170 (2)
O3—H3A⋯Cl06ii 0.84 (2) 2.22 (2) 3.0379 (13) 164.5 (18)
O3—H3B⋯O2 0.84 (2) 1.91 (2) 2.7426 (17) 176 (2)
O4—H4A⋯Cl05iii 0.78 (2) 2.36 (2) 3.1356 (15) 172 (2)
O4—H4B⋯Cl03 0.83 (3) 2.47 (3) 3.2626 (14) 162 (3)
O5—H5A⋯Cl06 0.92 (2) 2.12 (2) 2.9973 (12) 157.4 (17)
O5—H5B⋯Cl03 0.81 (2) 2.24 (2) 3.0466 (12) 173 (2)
N1—H01⋯Cl01iv 0.86 2.24 3.0678 (12) 161
N2—H02⋯O5 0.86 1.77 2.5985 (16) 162
N3—H03⋯Cl01 0.86 2.23 3.0405 (12) 158
N7—H07⋯O3 0.86 1.84 2.6472 (16) 155
N8—H08⋯Cl02iv 0.86 2.25 3.0732 (12) 159
N9—H09⋯Cl02 0.86 2.19 3.0337 (12) 166
C1—H1⋯Cl03v 0.93 2.57 3.4995 (15) 174
C4—H4⋯Cl04 0.93 2.61 3.4871 (14) 157
C5—H5⋯O1 0.93 2.38 3.2614 (19) 158
C9—H9⋯Cl06v 0.93 2.70 3.4071 (15) 134
C10—H10⋯O4 0.93 2.54 3.370 (2) 148
C11—H11⋯Cl02vi 0.93 2.61 3.5114 (15) 163
C12—H12⋯Cl04 0.93 2.64 3.4992 (15) 154
C15—H15⋯Cl03vii 0.93 2.54 3.3157 (16) 141
C21—H21⋯Cl05 0.93 2.74 3.5424 (15) 146
C22—H22⋯Cl06v 0.93 2.72 3.3883 (15) 130
C24—H24⋯Cl05viii 0.93 2.63 3.4519 (15) 147
C26—H26⋯Cl04ix 0.93 2.53 3.3669 (15) 149
C30—H30⋯O2x 0.93 2.31 3.2331 (19) 174
C31—H31⋯O2viii 0.93 2.50 3.3320 (19) 149
C34—H34⋯O1ix 0.93 2.50 3.3706 (19) 156
C35—H35⋯Cl01xi 0.93 2.72 3.6254 (14) 166
Symmetry codes: (i) [x+1, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) x+1, y, z; (iii) x-1, y, z; (iv) x, y-1, z; (v) [-x, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (vi) [x+1, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (vii) [-x, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (viii) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ix) [x-1, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (x) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (xi) [x-1, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

2,4,6-Tris(4-pyridyl)-1,3,5-triazine (TPT), as a planar tridentate ligand for MOFs (metal-organic frameworks), has been designed for some useful crystals by reactions with metal ions. Due to its special triazine ππ inter­action, triangular plane geometry and tridentate N atoms coordinate, these crystals remarkable applications were discovered gradually such as molecular flask (Yoshizawa & Fujita, 2006; Inokuma & Fujita, 2011) and X-ray single-crystal diffraction carrier (Inokuma & Fujita, 2013). The crystal structure of neutral tpt was reported by (Janczak & Kubiak, 2003). The nitrate salt of TPT was published by Zhu (Zhu et al. 2007).

The crystal has a well layered form through π-π inter­action and Hydrogen Bonds which is analogous to pure TPT crystal (Janczak & Kubiak, 2003). In the crystal, every pyridine has protonized. H3TPT, Cl- and H2O pack in a layer through ionic bonding and hydrogen-bonding.

Synthesis and crystallization top

Excess hydro­chloric acid (2 mL) was added in pure TPT (93mg, 0.3mmol) in a 20 mL scintillation vial. With the dropwise addition of hydro­chloric acid, solution was clear gradually. Then the mixture was put in an oven at 393K for 10h. The colourless crystal will be found.

Refinement top

All H atoms for C and N atoms were geometrically fixed and allowed to ride on their parent C and N atoms, with C–H = 0.93 Å, N–H = 0.86 Å) and with Uiso(H) = 1.2Ueq(C), Uiso(H) = 1.2Ueq(N). H atoms belonging to H2O groups were located in difference Fourier maps and refined isotropically.

Related literature top

For applications of 2,4,6-tris(pyridin-4-yl)-1,3,5-triazine, see: Yoshizawa et al. (2006); Inokuma et al. (2011, 2013). For the crystal structure of 2,4,6-tris(pyridin-4-yl)-1,3,5-triazine (TPT), see: Janczak et al. (2003). For the crystal structure of (1,3,5-triazine-2,4,6-triyl)tripyridinium nitrate, see: Zhu et al. (2007).

Structure description top

2,4,6-Tris(4-pyridyl)-1,3,5-triazine (TPT), as a planar tridentate ligand for MOFs (metal-organic frameworks), has been designed for some useful crystals by reactions with metal ions. Due to its special triazine ππ inter­action, triangular plane geometry and tridentate N atoms coordinate, these crystals remarkable applications were discovered gradually such as molecular flask (Yoshizawa & Fujita, 2006; Inokuma & Fujita, 2011) and X-ray single-crystal diffraction carrier (Inokuma & Fujita, 2013). The crystal structure of neutral tpt was reported by (Janczak & Kubiak, 2003). The nitrate salt of TPT was published by Zhu (Zhu et al. 2007).

The crystal has a well layered form through π-π inter­action and Hydrogen Bonds which is analogous to pure TPT crystal (Janczak & Kubiak, 2003). In the crystal, every pyridine has protonized. H3TPT, Cl- and H2O pack in a layer through ionic bonding and hydrogen-bonding.

For applications of 2,4,6-tris(pyridin-4-yl)-1,3,5-triazine, see: Yoshizawa et al. (2006); Inokuma et al. (2011, 2013). For the crystal structure of 2,4,6-tris(pyridin-4-yl)-1,3,5-triazine (TPT), see: Janczak et al. (2003). For the crystal structure of (1,3,5-triazine-2,4,6-triyl)tripyridinium nitrate, see: Zhu et al. (2007).

Synthesis and crystallization top

Excess hydro­chloric acid (2 mL) was added in pure TPT (93mg, 0.3mmol) in a 20 mL scintillation vial. With the dropwise addition of hydro­chloric acid, solution was clear gradually. Then the mixture was put in an oven at 393K for 10h. The colourless crystal will be found.

Refinement details top

All H atoms for C and N atoms were geometrically fixed and allowed to ride on their parent C and N atoms, with C–H = 0.93 Å, N–H = 0.86 Å) and with Uiso(H) = 1.2Ueq(C), Uiso(H) = 1.2Ueq(N). H atoms belonging to H2O groups were located in difference Fourier maps and refined isotropically.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2014); cell refinement: CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis PRO (Agilent, 2014); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom labeling. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. The crystal packing of the title compound viewed along the b axis. Colour key: red indicates oxygen and green chlorine.
4,4',4''-(1,3,5-Triazine-2,4,6-triyl)tripyridinium trichloride 2.5-hydrate top
Crystal data top
2C18H15N63+·6Cl·5H2OF(000) = 1928
Mr = 933.50Dx = 1.452 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
a = 10.6042 (1) ÅCell parameters from 15012 reflections
b = 14.6447 (1) Åθ = 3.0–65.5°
c = 27.7906 (3) ŵ = 4.15 mm1
β = 98.310 (1)°T = 150 K
V = 4270.44 (7) Å3Rod, colourless
Z = 40.50 × 0.20 × 0.10 mm
Data collection top
Agilent Xcalibur Atlas Gemini ultra
diffractometer
6654 reflections with I > 2σ(I)
Detector resolution: 10.5058 pixels mm-1Rint = 0.020
ω scansθmax = 65.6°, θmin = 3.2°
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2014)
h = 1212
Tmin = 0.575, Tmax = 1.000k = 1116
27170 measured reflectionsl = 3231
7278 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.026H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.076 w = 1/[σ2(Fo2) + (0.0455P)2 + 1.0459P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.002
7278 reflectionsΔρmax = 0.26 e Å3
572 parametersΔρmin = 0.25 e Å3
Crystal data top
2C18H15N63+·6Cl·5H2OV = 4270.44 (7) Å3
Mr = 933.50Z = 4
Monoclinic, P21/cCu Kα radiation
a = 10.6042 (1) ŵ = 4.15 mm1
b = 14.6447 (1) ÅT = 150 K
c = 27.7906 (3) Å0.50 × 0.20 × 0.10 mm
β = 98.310 (1)°
Data collection top
Agilent Xcalibur Atlas Gemini ultra
diffractometer
7278 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2014)
6654 reflections with I > 2σ(I)
Tmin = 0.575, Tmax = 1.000Rint = 0.020
27170 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0260 restraints
wR(F2) = 0.076H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.26 e Å3
7278 reflectionsΔρmin = 0.25 e Å3
572 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl010.65529 (3)0.87819 (2)0.53046 (2)0.02080 (9)
Cl020.15165 (3)0.86725 (2)0.96259 (2)0.02038 (9)
Cl030.30029 (3)0.33680 (2)0.86906 (2)0.02704 (9)
Cl040.76231 (3)0.34758 (2)0.52883 (2)0.02860 (10)
Cl050.69917 (4)0.19615 (3)0.70100 (2)0.03228 (10)
Cl060.24393 (4)0.61127 (3)0.75183 (2)0.03989 (12)
O50.13385 (10)0.45402 (8)0.81302 (4)0.0293 (2)
O30.65114 (11)0.45593 (9)0.68539 (4)0.0292 (2)
O20.80923 (11)0.34430 (8)0.64199 (5)0.0308 (2)
O10.79029 (12)0.14892 (9)0.48489 (5)0.0349 (3)
N110.05285 (10)0.36030 (8)0.90020 (4)0.0181 (2)
N100.20086 (10)0.29011 (7)0.85541 (4)0.0189 (2)
N60.46303 (11)0.37119 (8)0.59643 (4)0.0193 (2)
N50.33219 (11)0.46467 (8)0.63822 (4)0.0199 (2)
O40.13673 (13)0.20960 (9)0.80408 (5)0.0434 (3)
N40.32306 (11)0.30340 (8)0.64532 (4)0.0204 (2)
N120.18691 (10)0.45145 (8)0.85844 (4)0.0190 (2)
N90.06099 (11)0.67836 (8)0.93866 (4)0.0226 (3)
H090.09260.72710.94940.027*
N30.57300 (11)0.68432 (8)0.54975 (4)0.0229 (3)
H030.60400.73180.53750.027*
N10.52800 (11)0.03964 (8)0.57480 (4)0.0224 (3)
H010.55190.01340.56630.027*
N80.00911 (11)0.02831 (8)0.92431 (4)0.0225 (3)
H080.03190.02470.93320.027*
N70.51720 (11)0.39554 (9)0.75219 (4)0.0251 (3)
H070.57270.40010.73260.030*
N20.00613 (11)0.41058 (9)0.74708 (4)0.0268 (3)
H020.04980.41510.76650.032*
C160.41129 (12)0.29914 (9)0.61556 (5)0.0181 (3)
C360.23658 (12)0.37382 (9)0.84431 (5)0.0173 (3)
C370.10782 (12)0.28751 (9)0.88325 (5)0.0164 (3)
C170.28607 (13)0.38778 (9)0.65473 (5)0.0186 (3)
C380.09613 (12)0.44037 (9)0.88672 (5)0.0171 (3)
C230.33836 (13)0.38155 (9)0.81286 (5)0.0191 (3)
C180.42064 (12)0.45195 (9)0.60929 (5)0.0183 (3)
C330.04010 (12)0.52483 (9)0.90481 (5)0.0181 (3)
C280.06487 (12)0.19579 (9)0.89691 (5)0.0179 (3)
C340.04614 (13)0.51835 (9)0.93800 (5)0.0206 (3)
H340.07010.46160.94860.025*
C80.18526 (13)0.39663 (10)0.68655 (5)0.0203 (3)
C30.45303 (12)0.20713 (9)0.60187 (5)0.0190 (3)
C120.56434 (13)0.52499 (10)0.55698 (5)0.0211 (3)
H120.59150.46730.54900.025*
C220.39093 (13)0.30344 (10)0.79539 (5)0.0221 (3)
H220.36550.24590.80430.027*
C40.54831 (13)0.19906 (9)0.57262 (5)0.0204 (3)
H40.58690.25090.56200.025*
C270.02943 (13)0.18762 (9)0.92639 (5)0.0214 (3)
H270.06800.23940.93710.026*
C130.47470 (12)0.53481 (9)0.58865 (5)0.0189 (3)
C20.39638 (14)0.12860 (10)0.61731 (5)0.0232 (3)
H20.33320.13290.63720.028*
C90.13433 (13)0.31852 (10)0.70484 (5)0.0236 (3)
H90.16100.26090.69650.028*
C70.14280 (14)0.48231 (10)0.69901 (5)0.0250 (3)
H70.17510.53520.68680.030*
C310.02052 (14)0.68671 (10)0.90647 (5)0.0244 (3)
H310.04160.74440.89610.029*
C50.58482 (13)0.11328 (10)0.55959 (5)0.0227 (3)
H50.64890.10680.54020.027*
C110.61224 (13)0.60190 (10)0.53762 (5)0.0230 (3)
H110.67160.59650.51620.028*
C240.37914 (13)0.46732 (10)0.79972 (5)0.0232 (3)
H240.34560.52020.81140.028*
C290.11984 (14)0.11722 (9)0.88081 (5)0.0233 (3)
H290.18170.12150.86030.028*
C10.43502 (14)0.04472 (10)0.60282 (5)0.0250 (3)
H10.39710.00830.61240.030*
C260.06542 (14)0.10175 (10)0.93967 (5)0.0240 (3)
H260.12880.09520.95930.029*
C300.08193 (14)0.03369 (10)0.89543 (5)0.0265 (3)
H300.11900.01920.88540.032*
C320.07329 (13)0.61014 (9)0.88867 (5)0.0224 (3)
H320.13010.61540.86630.027*
C350.09538 (13)0.59728 (10)0.95483 (5)0.0231 (3)
H350.15220.59430.97730.028*
C250.47006 (14)0.47203 (10)0.76910 (5)0.0261 (3)
H250.49890.52860.76010.031*
C60.05204 (14)0.48706 (11)0.72970 (5)0.0288 (3)
H60.02250.54360.73840.035*
C140.43625 (14)0.62155 (10)0.60020 (6)0.0252 (3)
H140.37640.62920.62130.030*
C150.48771 (14)0.69618 (10)0.58015 (6)0.0267 (3)
H150.46320.75480.58770.032*
C210.48130 (14)0.31252 (10)0.76462 (5)0.0256 (3)
H210.51710.26090.75260.031*
C100.04389 (14)0.32775 (11)0.73544 (5)0.0269 (3)
H100.00920.27620.74800.032*
H3A0.6891 (18)0.5011 (15)0.6995 (7)0.040 (5)*
H2A0.7816 (19)0.3391 (13)0.6115 (8)0.042 (6)*
H5A0.1779 (18)0.5060 (14)0.8017 (7)0.042 (5)*
H5B0.183 (2)0.4236 (15)0.8260 (8)0.048 (6)*
H3B0.7020 (19)0.4219 (14)0.6736 (7)0.041 (5)*
H1A0.761 (2)0.1505 (14)0.4580 (8)0.044 (6)*
H1B0.784 (2)0.2044 (17)0.4950 (8)0.054 (6)*
H2B0.780 (2)0.2994 (16)0.6554 (8)0.058 (7)*
H4A0.184 (2)0.2070 (14)0.7798 (8)0.047 (6)*
H4B0.187 (3)0.2301 (19)0.8215 (10)0.081 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl010.02249 (17)0.01723 (17)0.02277 (17)0.00011 (12)0.00355 (13)0.00023 (12)
Cl020.02001 (16)0.01681 (16)0.02501 (17)0.00094 (12)0.00562 (13)0.00004 (12)
Cl030.02599 (18)0.02703 (19)0.02979 (19)0.00023 (14)0.00972 (14)0.00424 (14)
Cl040.03331 (19)0.02561 (19)0.03073 (19)0.00059 (14)0.01765 (15)0.00042 (14)
Cl050.0433 (2)0.0277 (2)0.02738 (19)0.00284 (16)0.01019 (16)0.00100 (14)
Cl060.0475 (3)0.0177 (2)0.0515 (3)0.00120 (15)0.0030 (2)0.00063 (15)
O50.0277 (6)0.0328 (6)0.0302 (6)0.0034 (5)0.0133 (5)0.0089 (5)
O30.0305 (6)0.0310 (6)0.0284 (6)0.0026 (5)0.0117 (5)0.0055 (5)
O20.0363 (6)0.0271 (6)0.0311 (6)0.0062 (5)0.0117 (5)0.0014 (5)
O10.0458 (7)0.0299 (7)0.0313 (7)0.0061 (5)0.0130 (6)0.0008 (5)
N110.0168 (5)0.0166 (6)0.0207 (6)0.0013 (4)0.0023 (4)0.0007 (4)
N100.0193 (6)0.0178 (6)0.0200 (6)0.0003 (4)0.0041 (4)0.0017 (4)
N60.0177 (5)0.0182 (6)0.0223 (6)0.0009 (4)0.0040 (5)0.0013 (5)
N50.0196 (6)0.0209 (6)0.0200 (6)0.0002 (5)0.0058 (4)0.0012 (5)
O40.0417 (7)0.0501 (8)0.0365 (7)0.0121 (6)0.0004 (6)0.0063 (6)
N40.0207 (6)0.0205 (6)0.0204 (6)0.0020 (5)0.0043 (5)0.0019 (5)
N120.0197 (6)0.0176 (6)0.0202 (6)0.0011 (4)0.0044 (4)0.0004 (4)
N90.0227 (6)0.0178 (6)0.0277 (6)0.0037 (5)0.0053 (5)0.0045 (5)
N30.0235 (6)0.0177 (6)0.0280 (6)0.0024 (5)0.0060 (5)0.0029 (5)
N10.0266 (6)0.0159 (6)0.0241 (6)0.0045 (5)0.0018 (5)0.0009 (5)
N80.0291 (6)0.0159 (6)0.0228 (6)0.0031 (5)0.0053 (5)0.0019 (5)
N70.0201 (6)0.0362 (7)0.0204 (6)0.0038 (5)0.0077 (5)0.0024 (5)
N20.0217 (6)0.0391 (7)0.0214 (6)0.0031 (5)0.0095 (5)0.0048 (5)
C160.0168 (6)0.0188 (7)0.0182 (6)0.0002 (5)0.0010 (5)0.0011 (5)
C360.0170 (6)0.0185 (7)0.0163 (6)0.0004 (5)0.0021 (5)0.0000 (5)
C370.0152 (6)0.0180 (7)0.0157 (6)0.0001 (5)0.0007 (5)0.0001 (5)
C170.0183 (6)0.0198 (7)0.0176 (6)0.0013 (5)0.0021 (5)0.0010 (5)
C380.0161 (6)0.0181 (7)0.0170 (6)0.0000 (5)0.0018 (5)0.0007 (5)
C230.0172 (6)0.0228 (7)0.0171 (6)0.0013 (5)0.0019 (5)0.0023 (5)
C180.0168 (6)0.0185 (7)0.0192 (6)0.0002 (5)0.0016 (5)0.0010 (5)
C330.0170 (6)0.0169 (7)0.0198 (6)0.0002 (5)0.0014 (5)0.0014 (5)
C280.0172 (6)0.0193 (7)0.0164 (6)0.0010 (5)0.0002 (5)0.0002 (5)
C340.0208 (7)0.0181 (7)0.0238 (7)0.0007 (5)0.0070 (5)0.0013 (5)
C80.0186 (7)0.0252 (7)0.0171 (6)0.0023 (6)0.0025 (5)0.0015 (5)
C30.0175 (6)0.0195 (7)0.0191 (6)0.0004 (5)0.0002 (5)0.0001 (5)
C120.0216 (7)0.0188 (7)0.0236 (7)0.0015 (5)0.0064 (6)0.0017 (5)
C220.0217 (7)0.0228 (7)0.0222 (7)0.0015 (6)0.0042 (6)0.0025 (6)
C40.0205 (7)0.0196 (7)0.0212 (7)0.0009 (5)0.0031 (5)0.0008 (5)
C270.0247 (7)0.0181 (7)0.0224 (7)0.0019 (6)0.0071 (6)0.0002 (5)
C130.0178 (6)0.0190 (7)0.0198 (7)0.0007 (5)0.0025 (5)0.0007 (5)
C20.0216 (7)0.0228 (7)0.0260 (7)0.0005 (6)0.0059 (6)0.0025 (6)
C90.0234 (7)0.0250 (8)0.0228 (7)0.0008 (6)0.0046 (6)0.0034 (6)
C70.0265 (7)0.0237 (8)0.0262 (7)0.0024 (6)0.0088 (6)0.0039 (6)
C310.0249 (7)0.0172 (7)0.0317 (8)0.0013 (6)0.0065 (6)0.0014 (6)
C50.0216 (7)0.0247 (7)0.0219 (7)0.0019 (6)0.0036 (6)0.0015 (6)
C110.0218 (7)0.0243 (7)0.0240 (7)0.0003 (6)0.0075 (6)0.0008 (6)
C240.0240 (7)0.0232 (7)0.0235 (7)0.0024 (6)0.0067 (6)0.0022 (6)
C290.0230 (7)0.0202 (7)0.0282 (8)0.0005 (6)0.0094 (6)0.0007 (6)
C10.0269 (7)0.0191 (7)0.0290 (8)0.0007 (6)0.0040 (6)0.0035 (6)
C260.0265 (7)0.0238 (7)0.0230 (7)0.0016 (6)0.0083 (6)0.0004 (6)
C300.0301 (8)0.0182 (7)0.0328 (8)0.0024 (6)0.0100 (6)0.0027 (6)
C320.0222 (7)0.0198 (7)0.0269 (7)0.0009 (6)0.0087 (6)0.0005 (6)
C350.0225 (7)0.0235 (7)0.0246 (7)0.0016 (6)0.0075 (6)0.0008 (6)
C250.0269 (7)0.0269 (8)0.0255 (7)0.0051 (6)0.0074 (6)0.0006 (6)
C60.0295 (8)0.0309 (8)0.0279 (8)0.0079 (6)0.0103 (6)0.0009 (6)
C140.0253 (7)0.0211 (7)0.0319 (8)0.0009 (6)0.0129 (6)0.0016 (6)
C150.0280 (8)0.0180 (7)0.0360 (8)0.0024 (6)0.0116 (6)0.0019 (6)
C210.0230 (7)0.0297 (8)0.0245 (7)0.0015 (6)0.0053 (6)0.0068 (6)
C100.0239 (7)0.0318 (8)0.0261 (7)0.0002 (6)0.0069 (6)0.0066 (6)
Geometric parameters (Å, º) top
O5—H5A0.92 (2)C18—C131.4917 (19)
O5—H5B0.81 (2)C33—C321.3899 (19)
O3—H3A0.84 (2)C33—C341.3928 (19)
O3—H3B0.84 (2)C28—C271.3865 (19)
O2—H2A0.86 (2)C28—C291.3926 (19)
O2—H2B0.84 (2)C34—C351.378 (2)
O1—H1A0.77 (2)C34—H340.9300
O1—H1B0.87 (2)C8—C91.392 (2)
N11—C381.3325 (17)C8—C71.393 (2)
N11—C371.3332 (17)C3—C41.3904 (19)
N10—C361.3325 (17)C3—C21.394 (2)
N10—C371.3395 (17)C12—C111.377 (2)
N6—C181.3324 (17)C12—C131.3932 (19)
N6—C161.3348 (17)C12—H120.9300
N5—C181.3336 (17)C22—C211.380 (2)
N5—C171.3350 (18)C22—H220.9300
O4—H4A0.78 (2)C4—C51.378 (2)
O4—H4B0.83 (3)C4—H40.9300
N4—C171.3338 (18)C27—C261.380 (2)
N4—C161.3369 (17)C27—H270.9300
N12—C361.3355 (17)C13—C141.386 (2)
N12—C381.3378 (17)C2—C11.374 (2)
N9—C311.3364 (19)C2—H20.9300
N9—C351.3387 (19)C9—C101.377 (2)
N9—H090.8600C9—H90.9300
N3—C151.3351 (19)C7—C61.377 (2)
N3—C111.3359 (19)C7—H70.9300
N3—H030.8600C31—C321.377 (2)
N1—C51.3336 (19)C31—H310.9300
N1—C11.3438 (19)C5—H50.9300
N1—H010.8600C11—H110.9300
N8—C261.3300 (19)C24—C251.377 (2)
N8—C301.3439 (19)C24—H240.9300
N8—H080.8600C29—C301.368 (2)
N7—C211.334 (2)C29—H290.9300
N7—C251.3393 (19)C1—H10.9300
N7—H070.8600C26—H260.9300
N2—C101.332 (2)C30—H300.9300
N2—C61.339 (2)C32—H320.9300
N2—H020.8600C35—H350.9300
C16—C31.4848 (19)C25—H250.9300
C36—C231.4880 (19)C6—H60.9300
C37—C281.4852 (19)C14—C151.375 (2)
C17—C81.4883 (19)C14—H140.9300
C38—C331.4906 (18)C15—H150.9300
C23—C221.390 (2)C21—H210.9300
C23—C241.394 (2)C10—H100.9300
H5A—O5—H5B106.5 (19)C21—C22—H22120.4
H3A—O3—H3B111.1 (19)C23—C22—H22120.4
H2A—O2—H2B106 (2)C5—C4—C3119.11 (13)
H1A—O1—H1B104 (2)C5—C4—H4120.4
C38—N11—C37114.73 (11)C3—C4—H4120.4
C36—N10—C37114.68 (11)C26—C27—C28119.19 (13)
C18—N6—C16114.89 (11)C26—C27—H27120.4
C18—N5—C17114.45 (11)C28—C27—H27120.4
H4A—O4—H4B97 (2)C14—C13—C12119.43 (13)
C17—N4—C16114.62 (11)C14—C13—C18120.95 (12)
C36—N12—C38114.68 (11)C12—C13—C18119.61 (12)
C31—N9—C35122.67 (12)C1—C2—C3119.19 (13)
C31—N9—H09118.7C1—C2—H2120.4
C35—N9—H09118.7C3—C2—H2120.4
C15—N3—C11122.78 (12)C10—C9—C8119.09 (14)
C15—N3—H03118.6C10—C9—H9120.5
C11—N3—H03118.6C8—C9—H9120.5
C5—N1—C1122.81 (12)C6—C7—C8118.64 (14)
C5—N1—H01118.6C6—C7—H7120.7
C1—N1—H01118.6C8—C7—H7120.7
C26—N8—C30122.61 (12)N9—C31—C32120.12 (13)
C26—N8—H08118.7N9—C31—H31119.9
C30—N8—H08118.7C32—C31—H31119.9
C21—N7—C25122.43 (12)N1—C5—C4119.79 (13)
C21—N7—H07118.8N1—C5—H5120.1
C25—N7—H07118.8C4—C5—H5120.1
C10—N2—C6122.45 (12)N3—C11—C12119.64 (13)
C10—N2—H02118.8N3—C11—H11120.2
C6—N2—H02118.8C12—C11—H11120.2
N6—C16—N4125.05 (12)C25—C24—C23118.58 (13)
N6—C16—C3117.42 (12)C25—C24—H24120.7
N4—C16—C3117.52 (12)C23—C24—H24120.7
N10—C36—N12125.28 (12)C30—C29—C28119.28 (13)
N10—C36—C23117.42 (11)C30—C29—H29120.4
N12—C36—C23117.28 (11)C28—C29—H29120.4
N11—C37—N10125.28 (12)N1—C1—C2119.62 (13)
N11—C37—C28117.83 (11)N1—C1—H1120.2
N10—C37—C28116.87 (11)C2—C1—H1120.2
N4—C17—N5125.54 (12)N8—C26—C27119.79 (13)
N4—C17—C8117.00 (12)N8—C26—H26120.1
N5—C17—C8117.46 (12)C27—C26—H26120.1
N11—C38—N12125.32 (12)N8—C30—C29119.81 (13)
N11—C38—C33117.72 (11)N8—C30—H30120.1
N12—C38—C33116.96 (11)C29—C30—H30120.1
C22—C23—C24119.64 (13)C31—C32—C33118.76 (13)
C22—C23—C36120.26 (12)C31—C32—H32120.6
C24—C23—C36120.07 (12)C33—C32—H32120.6
N6—C18—N5125.43 (12)N9—C35—C34119.68 (13)
N6—C18—C13117.10 (11)N9—C35—H35120.2
N5—C18—C13117.46 (12)C34—C35—H35120.2
C32—C33—C34119.75 (12)N7—C25—C24120.35 (14)
C32—C33—C38120.34 (12)N7—C25—H25119.8
C34—C33—C38119.91 (12)C24—C25—H25119.8
C27—C28—C29119.32 (13)N2—C6—C7120.29 (14)
C27—C28—C37120.21 (12)N2—C6—H6119.9
C29—C28—C37120.47 (12)C7—C6—H6119.9
C35—C34—C33119.01 (13)C15—C14—C13119.17 (13)
C35—C34—H34120.5C15—C14—H14120.4
C33—C34—H34120.5C13—C14—H14120.4
C9—C8—C7119.53 (13)N3—C15—C14119.86 (13)
C9—C8—C17119.69 (12)N3—C15—H15120.1
C7—C8—C17120.77 (12)C14—C15—H15120.1
C4—C3—C2119.46 (13)N7—C21—C22119.86 (13)
C4—C3—C16119.71 (12)N7—C21—H21120.1
C2—C3—C16120.82 (12)C22—C21—H21120.1
C11—C12—C13119.11 (13)N2—C10—C9120.00 (14)
C11—C12—H12120.4N2—C10—H10120.0
C13—C12—H12120.4C9—C10—H10120.0
C21—C22—C23119.11 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···Cl03i0.77 (2)2.47 (2)3.2302 (15)171 (2)
O1—H1B···Cl040.87 (2)2.32 (2)3.1856 (14)175 (2)
O2—H2A···Cl040.86 (2)2.28 (2)3.1124 (15)163.2 (18)
O2—H2B···Cl050.84 (2)2.22 (2)3.0515 (13)170 (2)
O3—H3A···Cl06ii0.84 (2)2.22 (2)3.0379 (13)164.5 (18)
O3—H3B···O20.84 (2)1.91 (2)2.7426 (17)176 (2)
O4—H4A···Cl05iii0.78 (2)2.36 (2)3.1356 (15)172 (2)
O4—H4B···Cl030.83 (3)2.47 (3)3.2626 (14)162 (3)
O5—H5A···Cl060.92 (2)2.12 (2)2.9973 (12)157.4 (17)
O5—H5B···Cl030.81 (2)2.24 (2)3.0466 (12)173 (2)
N1—H01···Cl01iv0.862.243.0678 (12)161
N2—H02···O50.861.772.5985 (16)162
N3—H03···Cl010.862.233.0405 (12)158
N7—H07···O30.861.842.6472 (16)155
N8—H08···Cl02iv0.862.253.0732 (12)159
N9—H09···Cl020.862.193.0337 (12)166
C1—H1···Cl03v0.932.573.4995 (15)174
C4—H4···Cl040.932.613.4871 (14)157
C5—H5···O10.932.383.2614 (19)158
C9—H9···Cl06v0.932.703.4071 (15)134
C10—H10···O40.932.543.370 (2)148
C11—H11···Cl02vi0.932.613.5114 (15)163
C12—H12···Cl040.932.643.4992 (15)154
C15—H15···Cl03vii0.932.543.3157 (16)141
C21—H21···Cl050.932.743.5424 (15)146
C22—H22···Cl06v0.932.723.3883 (15)130
C24—H24···Cl05viii0.932.633.4519 (15)147
C26—H26···Cl04ix0.932.533.3669 (15)149
C30—H30···O2x0.932.313.2331 (19)174
C31—H31···O2viii0.932.503.3320 (19)149
C34—H34···O1ix0.932.503.3706 (19)156
C35—H35···Cl01xi0.932.723.6254 (14)166
Symmetry codes: (i) x+1, y+1/2, z1/2; (ii) x+1, y, z; (iii) x1, y, z; (iv) x, y1, z; (v) x, y1/2, z+3/2; (vi) x+1, y+3/2, z1/2; (vii) x, y+1/2, z+3/2; (viii) x+1, y+1/2, z+3/2; (ix) x1, y+1/2, z+1/2; (x) x+1, y1/2, z+3/2; (xi) x1, y+3/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···Cl03i0.77 (2)2.47 (2)3.2302 (15)171 (2)
O1—H1B···Cl040.87 (2)2.32 (2)3.1856 (14)175 (2)
O2—H2A···Cl040.86 (2)2.28 (2)3.1124 (15)163.2 (18)
O2—H2B···Cl050.84 (2)2.22 (2)3.0515 (13)170 (2)
O3—H3A···Cl06ii0.84 (2)2.22 (2)3.0379 (13)164.5 (18)
O3—H3B···O20.84 (2)1.91 (2)2.7426 (17)176 (2)
O4—H4A···Cl05iii0.78 (2)2.36 (2)3.1356 (15)172 (2)
O4—H4B···Cl030.83 (3)2.47 (3)3.2626 (14)162 (3)
O5—H5A···Cl060.92 (2)2.12 (2)2.9973 (12)157.4 (17)
O5—H5B···Cl030.81 (2)2.24 (2)3.0466 (12)173 (2)
N1—H01···Cl01iv0.862.243.0678 (12)161
N2—H02···O50.861.772.5985 (16)162
N3—H03···Cl010.862.233.0405 (12)158
N7—H07···O30.861.842.6472 (16)155
N8—H08···Cl02iv0.862.253.0732 (12)159
N9—H09···Cl020.862.193.0337 (12)166
C1—H1···Cl03v0.932.573.4995 (15)174
C4—H4···Cl040.932.613.4871 (14)157
C5—H5···O10.932.383.2614 (19)158
C9—H9···Cl06v0.932.703.4071 (15)134
C10—H10···O40.932.543.370 (2)148
C11—H11···Cl02vi0.932.613.5114 (15)163
C12—H12···Cl040.932.643.4992 (15)154
C15—H15···Cl03vii0.932.543.3157 (16)141
C21—H21···Cl050.932.743.5424 (15)146
C22—H22···Cl06v0.932.723.3883 (15)130
C24—H24···Cl05viii0.932.633.4519 (15)147
C26—H26···Cl04ix0.932.533.3669 (15)149
C30—H30···O2x0.932.313.2331 (19)174
C31—H31···O2viii0.932.503.3320 (19)149
C34—H34···O1ix0.932.503.3706 (19)156
C35—H35···Cl01xi0.932.723.6254 (14)166
Symmetry codes: (i) x+1, y+1/2, z1/2; (ii) x+1, y, z; (iii) x1, y, z; (iv) x, y1, z; (v) x, y1/2, z+3/2; (vi) x+1, y+3/2, z1/2; (vii) x, y+1/2, z+3/2; (viii) x+1, y+1/2, z+3/2; (ix) x1, y+1/2, z+1/2; (x) x+1, y1/2, z+3/2; (xi) x1, y+3/2, z+1/2.
 

Acknowledgements

This research was supported financially by the National Natural Science Foundation of China (NSFC grants No. 21277177 and 41473092), the Foundation for High-level Talents in Higher Education of Guangdong Province and the Administration of Ocean and Fisheries of Guangdong Province, China.

References

First citationAgilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationInokuma, Y., Kawano, M. & Fujita, M. (2011). Nat. Chem. 3, 349–358.  Web of Science CrossRef CAS PubMed Google Scholar
First citationInokuma, Y., Yoshioka, S., Ariyoshi, J., Arai, T., Hitora, Y., Takada, K., Matsunaga, S., Rissanen, K. & Fujita, M. (2013). Nature, 495, 461–466.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationJanczak, J., Śledź, M. & Kubiak, R. (2003). J. Mol. Struct. 659, 71–79.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationYoshizawa, M., Tamura, M. & Fujita, M. (2006). Science, 312, 251–254.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZhu, S.-R., Chen, W.-D., Zhao, H.-J., Shao, M. & Li, M.-X. (2007). Acta Cryst. E63, o1344–o1346.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds