organic compounds
E,4E)-5-[bis(2-hydroxyethyl)amino]-1-(4-chlorophenyl)-5-phenylpenta-2,4-dien-1-one
of (2aDepartment of Chemistry, Chemical Processes and Techologies, Togliatti State University, 445667 Togliatti, Russian Federation, bNesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, 119991 Moscow, Russian Federation, and cThe Laboratory of Functional Heterocyclic Compounds, Togliatti State University, 445667 Togliatti, Russian Federation
*Correspondence e-mail: labofhc@gmail.com
In the title compound, C21H22ClNO3, the pentadiene unit is nearly planar [maximum deviation = 0.023 (1) Å], but the carbonyl O atom deviates significantly [by 0.304 (1) Å] from its mean plane, which is twisted with respect to the phenyl and chlorobenzene rings by 71.34 (13) and 46.40 (13)°, respectively. In the crystal, inversion-related molecules are linked by two pairs of O—H⋯O hydrogen bonds, forming chains propagating along [01-1], enclosing R22(16) and R22(22) ring motifs. The chains are linked via C—H⋯O hydrogen bonds and C—H⋯π interactions into a three-dimensional supramolecular architecture.
Keywords: crystal structure; dienes; enamines; hydrogen bonding; C—H⋯π interactions.
CCDC reference: 1431635
1. Related literature
For crystal structures of 1-aryl-5-phenylpenta-2,4-dien-1-ones, see: Kashino & Haisa (1980); Fischer et al. (2007a,b); Patil et al. (2007); Zhao et al. (2007); Silva et al. (2011); Vologzhanina et al. (2013); Golovanov et al. (2014). For non-linear optical properties of 1,5-diarylpent-2,4-dien-1-ones, see: Singh & Miyata (1996). For the biological activity of related see: Karaman et al. (2012); Nielsen et al. (2005); Wu et al. (2011).
2. Experimental
2.1. Crystal data
|
2.3. Refinement
|
Data collection: APEX2 (Bruker, 2005); cell SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and publCIF (Westrip, 2010).
Supporting information
CCDC reference: 1431635
https://doi.org/10.1107/S2056989015019568/xu5877sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989015019568/xu5877Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989015019568/xu5877Isup3.cml
By the reaction between diethanolamine and (E)-1-(4-chlorophenyl)-5-phenylpent-2-en-4-yn-1-one the title compound was synthesized.
All bond lengths and valence angles are characteristic of single, double and aromatic bonds (Allen et al., 1987), although the length of the C3—C4 bond (1.416 (2) Å) indicates slight delocalization of electron density along polyenone chain. In contrast with previously characterized 1-aryl-5-phenylpent-2,4-dien-1-ones (Kashino & Haisa, 1980; Fischer et al., 2007a,b) Patil et al., 2007; Zhao et al., 2007; Silva et al., 2011) and the (E,Z)-1-(4-chlorophenyl)-5-phenyl-5-(phenylsulfanyl)penta-2,4-dien-1-one (Vologzhanina et al., 2013), the title compound adopts the cis-orientation of C(3) and C(6) atoms in respect to the C(4)═C(5) do uble bond (Figure S1) which was previously observed only for (E,E)-1-(4-chlorophenyl)-5-phenyl-5-(piperidin-1-yl)penta-2,4-dien-1-one (Golovanov et al., 2014). Besides, it is the first representative of 1-aryl-5-phenylpent-2,4-dien-1-ones with the s-trans conformation of the enone fragment. As the result coplanarity between pentdienone and phenyl rings is absent, whilst the other 1,5-diarylpentdienones are quasi-planar. The angles between the meanplane of the pent-2,4-dien-1-one chain (RMSD = 0.11 (8) Å) and those of chlorophen-4-yl and phenyl rings are equal to, respectively, 137.65 (6) and 72.48 (4) °.
Due to the presence of two donor H(O) atoms, hydrogen bonding realizes in t he crystal of the title compound. Despite the presence of chlorine and nitr ogen atoms, only O—H···O bifurcate bonding was found with the oxygen atom of keto-group (Figure S2). The resulting H-bonded chain motif is characterized by O···O distances as short as 2.748 (2) and 2.698 (2) Å and OHO angles equal to 168 and 169 °.
A solution of (499 mg, 1.87 mmol) (E)-1-(4-chlorophenyl)-5-phenylpent-2-en-4-yn-1-one and (236 mg, 2.24 mmol) diethanolamine in 95% EtOH (7 ml) was heated 10 h under reflux. The mixture was cooled, and the precipitate of adduct was filtered off, washed on a filter with 2 ml of cold 50% EtOH, and dried. Yield is 87 %. The single crystals of the product were obtained by slow crystallization from 95% EtOH. M.p. 370-371 K.
By the reaction between diethanolamine and (E)-1-(4-chlorophenyl)-5-phenylpent-2-en-4-yn-1-one the title compound was synthesized.
All bond lengths and valence angles are characteristic of single, double and aromatic bonds (Allen et al., 1987), although the length of the C3—C4 bond (1.416 (2) Å) indicates slight delocalization of electron density along polyenone chain. In contrast with previously characterized 1-aryl-5-phenylpent-2,4-dien-1-ones (Kashino & Haisa, 1980; Fischer et al., 2007a,b) Patil et al., 2007; Zhao et al., 2007; Silva et al., 2011) and the (E,Z)-1-(4-chlorophenyl)-5-phenyl-5-(phenylsulfanyl)penta-2,4-dien-1-one (Vologzhanina et al., 2013), the title compound adopts the cis-orientation of C(3) and C(6) atoms in respect to the C(4)═C(5) do uble bond (Figure S1) which was previously observed only for (E,E)-1-(4-chlorophenyl)-5-phenyl-5-(piperidin-1-yl)penta-2,4-dien-1-one (Golovanov et al., 2014). Besides, it is the first representative of 1-aryl-5-phenylpent-2,4-dien-1-ones with the s-trans conformation of the enone fragment. As the result coplanarity between pentdienone and phenyl rings is absent, whilst the other 1,5-diarylpentdienones are quasi-planar. The angles between the meanplane of the pent-2,4-dien-1-one chain (RMSD = 0.11 (8) Å) and those of chlorophen-4-yl and phenyl rings are equal to, respectively, 137.65 (6) and 72.48 (4) °.
Due to the presence of two donor H(O) atoms, hydrogen bonding realizes in t he crystal of the title compound. Despite the presence of chlorine and nitr ogen atoms, only O—H···O bifurcate bonding was found with the oxygen atom of keto-group (Figure S2). The resulting H-bonded chain motif is characterized by O···O distances as short as 2.748 (2) and 2.698 (2) Å and OHO angles equal to 168 and 169 °.
For crystal structures of 1-aryl-5-phenylpenta-2,4-dien-1-ones, see: Kashino & Haisa (1980); Fischer et al. (2007a,b); Patil et al. (2007); Zhao et al. (2007); Silva et al. (2011); Vologzhanina et al. (2013); Golovanov et al. (2014). For non-linear optical properties of 1,5-diarylpent-2,4-dien-1-ones, see: Singh & Miyata (1996). For the biological activity of related
see: Karaman et al. (2012); Nielsen et al. (2005); Wu et al. (2011).A solution of (499 mg, 1.87 mmol) (E)-1-(4-chlorophenyl)-5-phenylpent-2-en-4-yn-1-one and (236 mg, 2.24 mmol) diethanolamine in 95% EtOH (7 ml) was heated 10 h under reflux. The mixture was cooled, and the precipitate of adduct was filtered off, washed on a filter with 2 ml of cold 50% EtOH, and dried. Yield is 87 %. The single crystals of the product were obtained by slow crystallization from 95% EtOH. M.p. 370-371 K.
detailsH atoms were placed in the calculated positions with O—H = 0.84 and C—H = 0.95–0.99 Å, and refined in ride mode with Uiso(H) = 1.5Ueq(O) and 1.5Ueq(C) for methyl H atoms and 1.2Uiso(C) for the others.
Data collection: APEX2 (Bruker, 2005); cell
SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and publCIF (Westrip, 2010).Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. | |
Fig. 2. Fragment of a classic H-bonded chain (shown with dashed lines). The H(C) atoms are omitted for clarity. |
C21H22ClNO3 | Z = 2 |
Mr = 371.85 | F(000) = 392 |
Triclinic, P1 | Dx = 1.338 Mg m−3 |
Hall symbol: -P 1 | Melting point: 370 K |
a = 6.6258 (1) Å | Cu Kα radiation, λ = 1.54178 Å |
b = 11.0019 (2) Å | Cell parameters from 2512 reflections |
c = 13.8592 (3) Å | θ = 3.5–67.5° |
α = 110.980 (1)° | µ = 2.00 mm−1 |
β = 99.401 (2)° | T = 120 K |
γ = 93.338 (1)° | Needle, yellow |
V = 923.14 (3) Å3 | 0.18 × 0.06 × 0.06 mm |
Bruker APEXII CCD diffractometer | 3028 independent reflections |
Radiation source: fine-focus sealed tube | 2686 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.030 |
φ and ω scans | θmax = 64.9°, θmin = 3.5° |
Absorption correction: multi-scan (SADABS; Bruker, 2005) | h = −7→7 |
Tmin = 0.715, Tmax = 0.890 | k = −12→12 |
8297 measured reflections | l = −14→16 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.031 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.092 | H-atom parameters constrained |
S = 0.99 | w = 1/[σ2(Fo2) + (0.060P)2 + 0.130P] where P = (Fo2 + 2Fc2)/3 |
3028 reflections | (Δ/σ)max = 0.005 |
235 parameters | Δρmax = 0.19 e Å−3 |
0 restraints | Δρmin = −0.20 e Å−3 |
C21H22ClNO3 | γ = 93.338 (1)° |
Mr = 371.85 | V = 923.14 (3) Å3 |
Triclinic, P1 | Z = 2 |
a = 6.6258 (1) Å | Cu Kα radiation |
b = 11.0019 (2) Å | µ = 2.00 mm−1 |
c = 13.8592 (3) Å | T = 120 K |
α = 110.980 (1)° | 0.18 × 0.06 × 0.06 mm |
β = 99.401 (2)° |
Bruker APEXII CCD diffractometer | 3028 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2005) | 2686 reflections with I > 2σ(I) |
Tmin = 0.715, Tmax = 0.890 | Rint = 0.030 |
8297 measured reflections |
R[F2 > 2σ(F2)] = 0.031 | 0 restraints |
wR(F2) = 0.092 | H-atom parameters constrained |
S = 0.99 | Δρmax = 0.19 e Å−3 |
3028 reflections | Δρmin = −0.20 e Å−3 |
235 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.20029 (6) | 1.12487 (4) | 0.63194 (3) | 0.03690 (14) | |
O1 | 0.91844 (17) | 0.73532 (11) | 0.65905 (8) | 0.0324 (3) | |
O2 | 0.01218 (16) | 0.13121 (10) | −0.03794 (8) | 0.0299 (3) | |
H2B | 0.0429 | 0.0713 | −0.0890 | 0.045* | |
O3 | 0.83459 (16) | 0.06098 (10) | 0.18632 (8) | 0.0307 (3) | |
H3B | 0.9239 | 0.1182 | 0.2330 | 0.046* | |
N1 | 0.52198 (18) | 0.30611 (12) | 0.12564 (9) | 0.0246 (3) | |
C1 | 0.7721 (2) | 0.71163 (14) | 0.58302 (11) | 0.0256 (3) | |
C2 | 0.7492 (2) | 0.59076 (14) | 0.49358 (12) | 0.0266 (3) | |
H2A | 0.8258 | 0.5243 | 0.5034 | 0.032* | |
C3 | 0.6301 (2) | 0.56068 (14) | 0.39630 (12) | 0.0249 (3) | |
H3A | 0.5444 | 0.6229 | 0.3857 | 0.030* | |
C4 | 0.6263 (2) | 0.44205 (14) | 0.30992 (12) | 0.0254 (3) | |
H4A | 0.7134 | 0.3803 | 0.3201 | 0.030* | |
C5 | 0.5039 (2) | 0.41119 (14) | 0.21228 (12) | 0.0241 (3) | |
C6 | 0.3479 (2) | 0.49831 (14) | 0.19510 (11) | 0.0246 (3) | |
C7 | 0.1775 (2) | 0.51077 (15) | 0.24391 (12) | 0.0274 (3) | |
H7A | 0.1595 | 0.4631 | 0.2877 | 0.033* | |
C8 | 0.0346 (2) | 0.59274 (16) | 0.22843 (13) | 0.0318 (3) | |
H8A | −0.0810 | 0.6011 | 0.2618 | 0.038* | |
C9 | 0.0598 (2) | 0.66242 (15) | 0.16460 (13) | 0.0322 (4) | |
H9A | −0.0384 | 0.7182 | 0.1540 | 0.039* | |
C10 | 0.2289 (3) | 0.65052 (15) | 0.11611 (13) | 0.0325 (4) | |
H10A | 0.2460 | 0.6980 | 0.0720 | 0.039* | |
C11 | 0.3729 (2) | 0.56964 (15) | 0.13177 (12) | 0.0295 (3) | |
H11A | 0.4894 | 0.5628 | 0.0991 | 0.035* | |
C12 | 0.6260 (2) | 0.81178 (15) | 0.58804 (11) | 0.0254 (3) | |
C13 | 0.7033 (2) | 0.94446 (15) | 0.64078 (12) | 0.0290 (3) | |
H13A | 0.8468 | 0.9689 | 0.6691 | 0.035* | |
C14 | 0.5731 (3) | 1.04078 (15) | 0.65230 (12) | 0.0311 (3) | |
H14A | 0.6268 | 1.1309 | 0.6867 | 0.037* | |
C15 | 0.3643 (2) | 1.00379 (15) | 0.61308 (12) | 0.0296 (3) | |
C16 | 0.2823 (2) | 0.87320 (15) | 0.56061 (12) | 0.0285 (3) | |
H16A | 0.1383 | 0.8495 | 0.5337 | 0.034* | |
C17 | 0.4143 (2) | 0.77749 (15) | 0.54807 (11) | 0.0267 (3) | |
H17A | 0.3600 | 0.6877 | 0.5119 | 0.032* | |
C18 | 0.3543 (2) | 0.25212 (14) | 0.03273 (11) | 0.0262 (3) | |
H18A | 0.4102 | 0.1966 | −0.0281 | 0.031* | |
H18B | 0.2993 | 0.3252 | 0.0155 | 0.031* | |
C19 | 0.1793 (2) | 0.17064 (15) | 0.04944 (12) | 0.0287 (3) | |
H19A | 0.2299 | 0.0920 | 0.0590 | 0.034* | |
H19B | 0.1316 | 0.2230 | 0.1142 | 0.034* | |
C20 | 0.6923 (2) | 0.22827 (14) | 0.13012 (12) | 0.0263 (3) | |
H20A | 0.8160 | 0.2875 | 0.1771 | 0.032* | |
H20B | 0.7240 | 0.1899 | 0.0587 | 0.032* | |
C21 | 0.6511 (2) | 0.11742 (15) | 0.16928 (12) | 0.0277 (3) | |
H21A | 0.5997 | 0.1523 | 0.2359 | 0.033* | |
H21B | 0.5436 | 0.0492 | 0.1165 | 0.033* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0381 (2) | 0.0326 (2) | 0.0451 (3) | 0.01395 (16) | 0.01386 (17) | 0.01676 (17) |
O1 | 0.0319 (6) | 0.0311 (6) | 0.0294 (6) | 0.0036 (4) | −0.0017 (4) | 0.0091 (4) |
O2 | 0.0251 (5) | 0.0301 (6) | 0.0299 (6) | 0.0051 (4) | 0.0018 (4) | 0.0072 (4) |
O3 | 0.0286 (6) | 0.0287 (5) | 0.0301 (6) | 0.0081 (4) | 0.0001 (4) | 0.0073 (4) |
N1 | 0.0233 (6) | 0.0258 (6) | 0.0246 (7) | 0.0044 (5) | 0.0055 (5) | 0.0087 (5) |
C1 | 0.0249 (7) | 0.0279 (7) | 0.0256 (8) | 0.0010 (6) | 0.0049 (6) | 0.0122 (6) |
C2 | 0.0246 (7) | 0.0262 (7) | 0.0300 (8) | 0.0047 (6) | 0.0052 (6) | 0.0116 (6) |
C3 | 0.0227 (7) | 0.0255 (7) | 0.0286 (8) | 0.0029 (5) | 0.0069 (6) | 0.0117 (6) |
C4 | 0.0248 (7) | 0.0251 (7) | 0.0283 (8) | 0.0049 (6) | 0.0064 (6) | 0.0116 (6) |
C5 | 0.0230 (7) | 0.0236 (7) | 0.0277 (8) | 0.0019 (5) | 0.0081 (5) | 0.0106 (6) |
C6 | 0.0248 (7) | 0.0227 (7) | 0.0236 (8) | 0.0023 (6) | 0.0026 (5) | 0.0066 (5) |
C7 | 0.0277 (8) | 0.0278 (7) | 0.0290 (8) | 0.0031 (6) | 0.0068 (6) | 0.0128 (6) |
C8 | 0.0267 (8) | 0.0323 (8) | 0.0377 (9) | 0.0067 (6) | 0.0090 (6) | 0.0129 (6) |
C9 | 0.0314 (8) | 0.0294 (8) | 0.0348 (9) | 0.0083 (6) | 0.0008 (6) | 0.0125 (6) |
C10 | 0.0392 (9) | 0.0305 (8) | 0.0310 (9) | 0.0042 (7) | 0.0044 (6) | 0.0165 (6) |
C11 | 0.0325 (8) | 0.0290 (8) | 0.0287 (8) | 0.0055 (6) | 0.0092 (6) | 0.0113 (6) |
C12 | 0.0283 (8) | 0.0286 (7) | 0.0211 (8) | 0.0042 (6) | 0.0066 (5) | 0.0105 (6) |
C13 | 0.0278 (8) | 0.0305 (8) | 0.0274 (8) | 0.0024 (6) | 0.0046 (6) | 0.0099 (6) |
C14 | 0.0364 (9) | 0.0263 (7) | 0.0290 (8) | 0.0033 (6) | 0.0061 (6) | 0.0088 (6) |
C15 | 0.0343 (8) | 0.0310 (8) | 0.0288 (8) | 0.0109 (6) | 0.0116 (6) | 0.0142 (6) |
C16 | 0.0272 (8) | 0.0324 (8) | 0.0275 (8) | 0.0043 (6) | 0.0057 (6) | 0.0130 (6) |
C17 | 0.0289 (8) | 0.0279 (7) | 0.0231 (8) | 0.0021 (6) | 0.0055 (6) | 0.0092 (6) |
C18 | 0.0276 (8) | 0.0270 (7) | 0.0227 (8) | 0.0040 (6) | 0.0044 (6) | 0.0077 (6) |
C19 | 0.0277 (8) | 0.0301 (8) | 0.0273 (8) | 0.0031 (6) | 0.0039 (6) | 0.0105 (6) |
C20 | 0.0230 (7) | 0.0284 (7) | 0.0271 (8) | 0.0069 (6) | 0.0072 (6) | 0.0084 (6) |
C21 | 0.0258 (8) | 0.0277 (7) | 0.0283 (8) | 0.0062 (6) | 0.0041 (6) | 0.0089 (6) |
Cl1—C15 | 1.7423 (15) | C9—H9A | 0.9500 |
O1—C1 | 1.2483 (19) | C10—C11 | 1.385 (2) |
O2—C19 | 1.4179 (18) | C10—H10A | 0.9500 |
O2—H2B | 0.8400 | C11—H11A | 0.9500 |
O3—C21 | 1.4209 (17) | C12—C17 | 1.397 (2) |
O3—H3B | 0.8400 | C12—C13 | 1.398 (2) |
N1—C5 | 1.3644 (19) | C13—C14 | 1.387 (2) |
N1—C20 | 1.4624 (18) | C13—H13A | 0.9500 |
N1—C18 | 1.4672 (19) | C14—C15 | 1.380 (2) |
C1—C2 | 1.436 (2) | C14—H14A | 0.9500 |
C1—C12 | 1.499 (2) | C15—C16 | 1.386 (2) |
C2—C3 | 1.361 (2) | C16—C17 | 1.389 (2) |
C2—H2A | 0.9500 | C16—H16A | 0.9500 |
C3—C4 | 1.416 (2) | C17—H17A | 0.9500 |
C3—H3A | 0.9500 | C18—C19 | 1.522 (2) |
C4—C5 | 1.373 (2) | C18—H18A | 0.9900 |
C4—H4A | 0.9500 | C18—H18B | 0.9900 |
C5—C6 | 1.4978 (19) | C19—H19A | 0.9900 |
C6—C11 | 1.393 (2) | C19—H19B | 0.9900 |
C6—C7 | 1.397 (2) | C20—C21 | 1.530 (2) |
C7—C8 | 1.388 (2) | C20—H20A | 0.9900 |
C7—H7A | 0.9500 | C20—H20B | 0.9900 |
C8—C9 | 1.385 (2) | C21—H21A | 0.9900 |
C8—H8A | 0.9500 | C21—H21B | 0.9900 |
C9—C10 | 1.387 (2) | ||
C19—O2—H2B | 109.5 | C13—C12—C1 | 118.42 (13) |
C21—O3—H3B | 109.5 | C14—C13—C12 | 120.79 (15) |
C5—N1—C20 | 120.41 (12) | C14—C13—H13A | 119.6 |
C5—N1—C18 | 121.58 (12) | C12—C13—H13A | 119.6 |
C20—N1—C18 | 117.00 (11) | C15—C14—C13 | 119.04 (15) |
O1—C1—C2 | 119.50 (13) | C15—C14—H14A | 120.5 |
O1—C1—C12 | 118.48 (13) | C13—C14—H14A | 120.5 |
C2—C1—C12 | 122.02 (13) | C14—C15—C16 | 121.69 (14) |
C3—C2—C1 | 127.31 (13) | C14—C15—Cl1 | 118.85 (12) |
C3—C2—H2A | 116.3 | C16—C15—Cl1 | 119.45 (12) |
C1—C2—H2A | 116.3 | C17—C16—C15 | 118.86 (14) |
C2—C3—C4 | 123.85 (13) | C17—C16—H16A | 120.6 |
C2—C3—H3A | 118.1 | C15—C16—H16A | 120.6 |
C4—C3—H3A | 118.1 | C16—C17—C12 | 120.77 (14) |
C5—C4—C3 | 123.74 (13) | C16—C17—H17A | 119.6 |
C5—C4—H4A | 118.1 | C12—C17—H17A | 119.6 |
C3—C4—H4A | 118.1 | N1—C18—C19 | 112.61 (12) |
N1—C5—C4 | 123.35 (13) | N1—C18—H18A | 109.1 |
N1—C5—C6 | 116.34 (13) | C19—C18—H18A | 109.1 |
C4—C5—C6 | 120.23 (13) | N1—C18—H18B | 109.1 |
C11—C6—C7 | 119.24 (13) | C19—C18—H18B | 109.1 |
C11—C6—C5 | 120.35 (13) | H18A—C18—H18B | 107.8 |
C7—C6—C5 | 120.40 (13) | O2—C19—C18 | 110.76 (12) |
C8—C7—C6 | 120.05 (14) | O2—C19—H19A | 109.5 |
C8—C7—H7A | 120.0 | C18—C19—H19A | 109.5 |
C6—C7—H7A | 120.0 | O2—C19—H19B | 109.5 |
C9—C8—C7 | 120.30 (15) | C18—C19—H19B | 109.5 |
C9—C8—H8A | 119.9 | H19A—C19—H19B | 108.1 |
C7—C8—H8A | 119.9 | N1—C20—C21 | 114.63 (12) |
C10—C9—C8 | 119.85 (14) | N1—C20—H20A | 108.6 |
C10—C9—H9A | 120.1 | C21—C20—H20A | 108.6 |
C8—C9—H9A | 120.1 | N1—C20—H20B | 108.6 |
C11—C10—C9 | 120.18 (15) | C21—C20—H20B | 108.6 |
C11—C10—H10A | 119.9 | H20A—C20—H20B | 107.6 |
C9—C10—H10A | 119.9 | O3—C21—C20 | 110.36 (12) |
C10—C11—C6 | 120.38 (14) | O3—C21—H21A | 109.6 |
C10—C11—H11A | 119.8 | C20—C21—H21A | 109.6 |
C6—C11—H11A | 119.8 | O3—C21—H21B | 109.6 |
C17—C12—C13 | 118.83 (14) | C20—C21—H21B | 109.6 |
C17—C12—C1 | 122.62 (13) | H21A—C21—H21B | 108.1 |
O1—C1—C2—C3 | −164.68 (15) | C5—C6—C11—C10 | −179.81 (14) |
C12—C1—C2—C3 | 14.9 (2) | O1—C1—C12—C17 | −142.76 (15) |
C1—C2—C3—C4 | 175.65 (14) | C2—C1—C12—C17 | 37.7 (2) |
C2—C3—C4—C5 | 179.10 (15) | O1—C1—C12—C13 | 33.1 (2) |
C20—N1—C5—C4 | −7.3 (2) | C2—C1—C12—C13 | −146.49 (15) |
C18—N1—C5—C4 | 160.89 (14) | C17—C12—C13—C14 | −0.8 (2) |
C20—N1—C5—C6 | 169.64 (12) | C1—C12—C13—C14 | −176.78 (13) |
C18—N1—C5—C6 | −22.20 (19) | C12—C13—C14—C15 | 1.6 (2) |
C3—C4—C5—N1 | 170.29 (14) | C13—C14—C15—C16 | −1.4 (2) |
C3—C4—C5—C6 | −6.5 (2) | C13—C14—C15—Cl1 | 177.71 (11) |
N1—C5—C6—C11 | −64.96 (19) | C14—C15—C16—C17 | 0.5 (2) |
C4—C5—C6—C11 | 112.05 (17) | Cl1—C15—C16—C17 | −178.65 (11) |
N1—C5—C6—C7 | 116.19 (15) | C15—C16—C17—C12 | 0.4 (2) |
C4—C5—C6—C7 | −66.80 (19) | C13—C12—C17—C16 | −0.2 (2) |
C11—C6—C7—C8 | 0.5 (2) | C1—C12—C17—C16 | 175.64 (13) |
C5—C6—C7—C8 | 179.36 (14) | C5—N1—C18—C19 | −76.12 (17) |
C6—C7—C8—C9 | 0.1 (2) | C20—N1—C18—C19 | 92.42 (15) |
C7—C8—C9—C10 | −0.2 (2) | N1—C18—C19—O2 | 174.26 (11) |
C8—C9—C10—C11 | −0.3 (2) | C5—N1—C20—C21 | 86.90 (16) |
C9—C10—C11—C6 | 0.9 (2) | C18—N1—C20—C21 | −81.78 (16) |
C7—C6—C11—C10 | −0.9 (2) | N1—C20—C21—O3 | −171.02 (11) |
Cg1 is the centroid of the C12–C17 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H2B···O3i | 0.84 | 1.92 | 2.7475 (15) | 168 |
O3—H3B···O1ii | 0.84 | 1.87 | 2.6983 (16) | 169 |
C7—H7A···O1iii | 0.95 | 2.59 | 3.497 (2) | 159 |
C20—H20B···O2iv | 0.99 | 2.49 | 3.3396 (18) | 143 |
C21—H21A···Cg1iii | 0.99 | 2.73 | 3.5791 (17) | 144 |
Symmetry codes: (i) −x+1, −y, −z; (ii) −x+2, −y+1, −z+1; (iii) −x+1, −y+1, −z+1; (iv) x+1, y, z. |
Cg1 is the centroid of the C12–C17 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H2B···O3i | 0.84 | 1.92 | 2.7475 (15) | 168 |
O3—H3B···O1ii | 0.84 | 1.87 | 2.6983 (16) | 169 |
C7—H7A···O1iii | 0.95 | 2.59 | 3.497 (2) | 159 |
C20—H20B···O2iv | 0.99 | 2.49 | 3.3396 (18) | 143 |
C21—H21A···Cg1iii | 0.99 | 2.73 | 3.5791 (17) | 144 |
Symmetry codes: (i) −x+1, −y, −z; (ii) −x+2, −y+1, −z+1; (iii) −x+1, −y+1, −z+1; (iv) x+1, y, z. |
Acknowledgements
The authors are grateful to the Ministry of Education and Science of the Russian Federation (State program No. 426).
References
Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Fischer, A., Yathirajan, H. S., Sarojini, B. K., Bindya, S. & Narayana, B. (2007a). Acta Cryst. E63, o2832. CSD CrossRef IUCr Journals Google Scholar
Fischer, A., Yathirajan, H. S., Sarojini, B. K., Bindya, S. & Narayana, B. (2007b). Acta Cryst. E63, o3540. CSD CrossRef IUCr Journals Google Scholar
Golovanov, A. A., Odin, I. S., Vologzhanina, A. V., Bekin, V. V. & Nebritova, A. E. (2014). Russ. J. Org. Chem. 50, 943–947. CSD CrossRef CAS Google Scholar
Karaman, İ., Gezegen, H., Ceylan, M. & Dilmaç, M. (2012). Phosphorus Sulfur Silicon Relat. Elem. 187, 580–586. CrossRef CAS Google Scholar
Kashino, S. & Haisa, M. (1980). Acta Cryst. B36, 346–353. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Nielsen, S. F., Larsen, M., Boesen, T., Schønning, K. & Kromann, H. (2005). J. Med. Chem. 48, 2667–2677. Web of Science CrossRef PubMed CAS Google Scholar
Patil, P. S., Teh, J. B.-J., Fun, H.-K., Razak, I. A. & Dharmaprakash, S. M. (2007). Acta Cryst. E63, o2122–o2123. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Silva, W. A., Gatto, C. C. & Oliveira, G. R. (2011). Acta Cryst. E67, o2210. CSD CrossRef IUCr Journals Google Scholar
Singh, H. S. & Miyata, S. (1996). Editors. Nonlinear optics of organic molecules and polymers. Boca Raton: CRC Press. Google Scholar
Vologzhanina, A. V., Gusev, D. M., Golovanov, A. A. & Pisareva, V. S. (2013). Acta Cryst. E69, o1479. CSD CrossRef IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wu, J., Li, J., Cai, Y., Pan, Y., Ye, F., Zhang, Y., Zhao, Y., Yang, S., Li, X. & Liang, G. (2011). J. Med. Chem. 54, 8110–8123. Web of Science CrossRef CAS PubMed Google Scholar
Zhao, B., Rong, Y.-Z. & Huang, W. (2007). Acta Cryst. E63, o2971. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.