organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of (2E,4E)-5-[bis­­(2-hy­dr­oxy­eth­yl)amino]-1-(4-chloro­phen­yl)-5-phenyl­penta-2,4-dien-1-one

aDepartment of Chemistry, Chemical Processes and Techologies, Togliatti State University, 445667 Togliatti, Russian Federation, bNesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, 119991 Moscow, Russian Federation, and cThe Laboratory of Functional Heterocyclic Compounds, Togliatti State University, 445667 Togliatti, Russian Federation
*Correspondence e-mail: labofhc@gmail.com

Edited by D.-J. Xu, Zhejiang University (Yuquan Campus), China (Received 9 October 2015; accepted 15 October 2015; online 24 October 2015)

In the title compound, C21H22ClNO3, the penta­diene unit is nearly planar [maximum deviation = 0.023 (1) Å], but the carbonyl O atom deviates significantly [by 0.304 (1) Å] from its mean plane, which is twisted with respect to the phenyl and chloro­benzene rings by 71.34 (13) and 46.40 (13)°, respectively. In the crystal, inversion-related molecules are linked by two pairs of O—H⋯O hydrogen bonds, forming chains propagating along [01-1], enclosing R22(16) and R22(22) ring motifs. The chains are linked via C—H⋯O hydrogen bonds and C—H⋯π inter­actions into a three-dimensional supra­molecular architecture.

1. Related literature

For crystal structures of 1-aryl-5-phenyl­penta-2,4-dien-1-ones, see: Kashino & Haisa (1980[Kashino, S. & Haisa, M. (1980). Acta Cryst. B36, 346-353.]); Fischer et al. (2007a[Fischer, A., Yathirajan, H. S., Sarojini, B. K., Bindya, S. & Narayana, B. (2007a). Acta Cryst. E63, o2832.],b[Fischer, A., Yathirajan, H. S., Sarojini, B. K., Bindya, S. & Narayana, B. (2007b). Acta Cryst. E63, o3540.]); Patil et al. (2007[Patil, P. S., Teh, J. B.-J., Fun, H.-K., Razak, I. A. & Dharmaprakash, S. M. (2007). Acta Cryst. E63, o2122-o2123.]); Zhao et al. (2007[Zhao, B., Rong, Y.-Z. & Huang, W. (2007). Acta Cryst. E63, o2971.]); Silva et al. (2011[Silva, W. A., Gatto, C. C. & Oliveira, G. R. (2011). Acta Cryst. E67, o2210.]); Vologzhanina et al. (2013[Vologzhanina, A. V., Gusev, D. M., Golovanov, A. A. & Pisareva, V. S. (2013). Acta Cryst. E69, o1479.]); Golovanov et al. (2014[Golovanov, A. A., Odin, I. S., Vologzhanina, A. V., Bekin, V. V. & Nebritova, A. E. (2014). Russ. J. Org. Chem. 50, 943-947.]). For non-linear optical properties of 1,5-di­aryl­pent-2,4-dien-1-ones, see: Singh & Miyata (1996[Singh, H. S. & Miyata, S. (1996). Editors. Nonlinear optics of organic molecules and polymers. Boca Raton: CRC Press.]). For the biological activity of related chalcones, see: Karaman et al. (2012[Karaman, İ., Gezegen, H., Ceylan, M. & Dilmaç, M. (2012). Phosphorus Sulfur Silicon Relat. Elem. 187, 580-586.]); Nielsen et al. (2005[Nielsen, S. F., Larsen, M., Boesen, T., Schønning, K. & Kromann, H. (2005). J. Med. Chem. 48, 2667-2677.]); Wu et al. (2011[Wu, J., Li, J., Cai, Y., Pan, Y., Ye, F., Zhang, Y., Zhao, Y., Yang, S., Li, X. & Liang, G. (2011). J. Med. Chem. 54, 8110-8123.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C21H22ClNO3

  • Mr = 371.85

  • Triclinic, [P \overline 1]

  • a = 6.6258 (1) Å

  • b = 11.0019 (2) Å

  • c = 13.8592 (3) Å

  • α = 110.980 (1)°

  • β = 99.401 (2)°

  • γ = 93.338 (1)°

  • V = 923.14 (3) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 2.00 mm−1

  • T = 120 K

  • 0.18 × 0.06 × 0.06 mm

2.2. Data collection

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.715, Tmax = 0.890

  • 8297 measured reflections

  • 3028 independent reflections

  • 2686 reflections with I > 2σ(I)

  • Rint = 0.030

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.092

  • S = 0.99

  • 3028 reflections

  • 235 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C12–C17 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2B⋯O3i 0.84 1.92 2.7475 (15) 168
O3—H3B⋯O1ii 0.84 1.87 2.6983 (16) 169
C7—H7A⋯O1iii 0.95 2.59 3.497 (2) 159
C20—H20B⋯O2iv 0.99 2.49 3.3396 (18) 143
C21—H21ACg1iii 0.99 2.73 3.5791 (17) 144
Symmetry codes: (i) -x+1, -y, -z; (ii) -x+2, -y+1, -z+1; (iii) -x+1, -y+1, -z+1; (iv) x+1, y, z.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Structural commentary top

By the reaction between di­ethano­lamine and (E)-1-(4-chloro­phenyl)-5-phenyl­pent-2-en-4-yn-1-one the title compound was synthesized.

All bond lengths and valence angles are characteristic of single, double and aromatic bonds (Allen et al., 1987), although the length of the C3—C4 bond (1.416 (2) Å) indicates slight delocalization of electron density along polyenone chain. In contrast with previously characterized 1-aryl-5-phenyl­pent-2,4-dien-1-ones (Kashino & Haisa, 1980; Fischer et al., 2007a,b) Patil et al., 2007; Zhao et al., 2007; Silva et al., 2011) and the (E,Z)-1-(4-chloro­phenyl)-5-phenyl-5-(phenyl­sulfanyl)penta-2,4-dien-1-one (Vologzhanina et al., 2013), the title compound adopts the cis-orientation of C(3) and C(6) atoms in respect to the C(4)C(5) do uble bond (Figure S1) which was previously observed only for (E,E)-1-(4-chloro­phenyl)-5-phenyl-5-(piperidin-1-yl)penta-2,4-dien-1-one (Golovanov et al., 2014). Besides, it is the first representative of 1-aryl-5-phenyl­pent-2,4-dien-1-ones with the s-trans conformation of the enone fragment. As the result coplanarity between pentdienone and phenyl rings is absent, whilst the other 1,5-di­aryl­pentdienones are quasi-planar. The angles between the meanplane of the pent-2,4-dien-1-one chain (RMSD = 0.11 (8) Å) and those of chloro­phen-4-yl and phenyl rings are equal to, respectively, 137.65 (6) and 72.48 (4) °.

Due to the presence of two donor H(O) atoms, hydrogen bonding realizes in t he crystal of the title compound. Despite the presence of chlorine and nitr ogen atoms, only O—H···O bifurcate bonding was found with the oxygen atom of keto-group (Figure S2). The resulting H-bonded chain motif is characterized by O···O distances as short as 2.748 (2) and 2.698 (2) Å and OHO angles equal to 168 and 169 °.

Synthesis and crystallization top

A solution of (499 mg, 1.87 mmol) (E)-1-(4-chloro­phenyl)-5-phenyl­pent-2-en-4-yn-1-one and (236 mg, 2.24 mmol) di­ethano­lamine in 95% EtOH (7 ml) was heated 10 h under reflux. The mixture was cooled, and the precipitate of adduct was filtered off, washed on a filter with 2 ml of cold 50% EtOH, and dried. Yield is 87 %. The single crystals of the product were obtained by slow crystallization from 95% EtOH. M.p. 370-371 K.

Refinement top

H atoms were placed in the calculated positions with O—H = 0.84 and C—H = 0.95–0.99 Å, and refined in ride mode with Uiso(H) = 1.5Ueq(O) and 1.5Ueq(C) for methyl H atoms and 1.2Uiso(C) for the others.

Related literature top

For crystal structures of 1-aryl-5-phenylpenta-2,4-dien-1-ones, see: Kashino & Haisa (1980); Fischer et al. (2007a,b); Patil et al. (2007); Zhao et al. (2007); Silva et al. (2011); Vologzhanina et al. (2013); Golovanov et al. (2014). For non-linear optical properties of 1,5-diarylpent-2,4-dien-1-ones, see: Singh & Miyata (1996). For the biological activity of related chalcones, see: Karaman et al. (2012); Nielsen et al. (2005); Wu et al. (2011).

Structure description top

By the reaction between di­ethano­lamine and (E)-1-(4-chloro­phenyl)-5-phenyl­pent-2-en-4-yn-1-one the title compound was synthesized.

All bond lengths and valence angles are characteristic of single, double and aromatic bonds (Allen et al., 1987), although the length of the C3—C4 bond (1.416 (2) Å) indicates slight delocalization of electron density along polyenone chain. In contrast with previously characterized 1-aryl-5-phenyl­pent-2,4-dien-1-ones (Kashino & Haisa, 1980; Fischer et al., 2007a,b) Patil et al., 2007; Zhao et al., 2007; Silva et al., 2011) and the (E,Z)-1-(4-chloro­phenyl)-5-phenyl-5-(phenyl­sulfanyl)penta-2,4-dien-1-one (Vologzhanina et al., 2013), the title compound adopts the cis-orientation of C(3) and C(6) atoms in respect to the C(4)C(5) do uble bond (Figure S1) which was previously observed only for (E,E)-1-(4-chloro­phenyl)-5-phenyl-5-(piperidin-1-yl)penta-2,4-dien-1-one (Golovanov et al., 2014). Besides, it is the first representative of 1-aryl-5-phenyl­pent-2,4-dien-1-ones with the s-trans conformation of the enone fragment. As the result coplanarity between pentdienone and phenyl rings is absent, whilst the other 1,5-di­aryl­pentdienones are quasi-planar. The angles between the meanplane of the pent-2,4-dien-1-one chain (RMSD = 0.11 (8) Å) and those of chloro­phen-4-yl and phenyl rings are equal to, respectively, 137.65 (6) and 72.48 (4) °.

Due to the presence of two donor H(O) atoms, hydrogen bonding realizes in t he crystal of the title compound. Despite the presence of chlorine and nitr ogen atoms, only O—H···O bifurcate bonding was found with the oxygen atom of keto-group (Figure S2). The resulting H-bonded chain motif is characterized by O···O distances as short as 2.748 (2) and 2.698 (2) Å and OHO angles equal to 168 and 169 °.

For crystal structures of 1-aryl-5-phenylpenta-2,4-dien-1-ones, see: Kashino & Haisa (1980); Fischer et al. (2007a,b); Patil et al. (2007); Zhao et al. (2007); Silva et al. (2011); Vologzhanina et al. (2013); Golovanov et al. (2014). For non-linear optical properties of 1,5-diarylpent-2,4-dien-1-ones, see: Singh & Miyata (1996). For the biological activity of related chalcones, see: Karaman et al. (2012); Nielsen et al. (2005); Wu et al. (2011).

Synthesis and crystallization top

A solution of (499 mg, 1.87 mmol) (E)-1-(4-chloro­phenyl)-5-phenyl­pent-2-en-4-yn-1-one and (236 mg, 2.24 mmol) di­ethano­lamine in 95% EtOH (7 ml) was heated 10 h under reflux. The mixture was cooled, and the precipitate of adduct was filtered off, washed on a filter with 2 ml of cold 50% EtOH, and dried. Yield is 87 %. The single crystals of the product were obtained by slow crystallization from 95% EtOH. M.p. 370-371 K.

Refinement details top

H atoms were placed in the calculated positions with O—H = 0.84 and C—H = 0.95–0.99 Å, and refined in ride mode with Uiso(H) = 1.5Ueq(O) and 1.5Ueq(C) for methyl H atoms and 1.2Uiso(C) for the others.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Fragment of a classic H-bonded chain (shown with dashed lines). The H(C) atoms are omitted for clarity.
(2E,4E)-5-[Bis(2-hydroxyethyl)amino]-1-(4-chlorophenyl)-5-phenylpenta-2,4-dien-1-one top
Crystal data top
C21H22ClNO3Z = 2
Mr = 371.85F(000) = 392
Triclinic, P1Dx = 1.338 Mg m3
Hall symbol: -P 1Melting point: 370 K
a = 6.6258 (1) ÅCu Kα radiation, λ = 1.54178 Å
b = 11.0019 (2) ÅCell parameters from 2512 reflections
c = 13.8592 (3) Åθ = 3.5–67.5°
α = 110.980 (1)°µ = 2.00 mm1
β = 99.401 (2)°T = 120 K
γ = 93.338 (1)°Needle, yellow
V = 923.14 (3) Å30.18 × 0.06 × 0.06 mm
Data collection top
Bruker APEXII CCD
diffractometer
3028 independent reflections
Radiation source: fine-focus sealed tube2686 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
φ and ω scansθmax = 64.9°, θmin = 3.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 77
Tmin = 0.715, Tmax = 0.890k = 1212
8297 measured reflectionsl = 1416
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.092H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.060P)2 + 0.130P]
where P = (Fo2 + 2Fc2)/3
3028 reflections(Δ/σ)max = 0.005
235 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C21H22ClNO3γ = 93.338 (1)°
Mr = 371.85V = 923.14 (3) Å3
Triclinic, P1Z = 2
a = 6.6258 (1) ÅCu Kα radiation
b = 11.0019 (2) ŵ = 2.00 mm1
c = 13.8592 (3) ÅT = 120 K
α = 110.980 (1)°0.18 × 0.06 × 0.06 mm
β = 99.401 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
3028 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2686 reflections with I > 2σ(I)
Tmin = 0.715, Tmax = 0.890Rint = 0.030
8297 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.092H-atom parameters constrained
S = 0.99Δρmax = 0.19 e Å3
3028 reflectionsΔρmin = 0.20 e Å3
235 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.20029 (6)1.12487 (4)0.63194 (3)0.03690 (14)
O10.91844 (17)0.73532 (11)0.65905 (8)0.0324 (3)
O20.01218 (16)0.13121 (10)0.03794 (8)0.0299 (3)
H2B0.04290.07130.08900.045*
O30.83459 (16)0.06098 (10)0.18632 (8)0.0307 (3)
H3B0.92390.11820.23300.046*
N10.52198 (18)0.30611 (12)0.12564 (9)0.0246 (3)
C10.7721 (2)0.71163 (14)0.58302 (11)0.0256 (3)
C20.7492 (2)0.59076 (14)0.49358 (12)0.0266 (3)
H2A0.82580.52430.50340.032*
C30.6301 (2)0.56068 (14)0.39630 (12)0.0249 (3)
H3A0.54440.62290.38570.030*
C40.6263 (2)0.44205 (14)0.30992 (12)0.0254 (3)
H4A0.71340.38030.32010.030*
C50.5039 (2)0.41119 (14)0.21228 (12)0.0241 (3)
C60.3479 (2)0.49831 (14)0.19510 (11)0.0246 (3)
C70.1775 (2)0.51077 (15)0.24391 (12)0.0274 (3)
H7A0.15950.46310.28770.033*
C80.0346 (2)0.59274 (16)0.22843 (13)0.0318 (3)
H8A0.08100.60110.26180.038*
C90.0598 (2)0.66242 (15)0.16460 (13)0.0322 (4)
H9A0.03840.71820.15400.039*
C100.2289 (3)0.65052 (15)0.11611 (13)0.0325 (4)
H10A0.24600.69800.07200.039*
C110.3729 (2)0.56964 (15)0.13177 (12)0.0295 (3)
H11A0.48940.56280.09910.035*
C120.6260 (2)0.81178 (15)0.58804 (11)0.0254 (3)
C130.7033 (2)0.94446 (15)0.64078 (12)0.0290 (3)
H13A0.84680.96890.66910.035*
C140.5731 (3)1.04078 (15)0.65230 (12)0.0311 (3)
H14A0.62681.13090.68670.037*
C150.3643 (2)1.00379 (15)0.61308 (12)0.0296 (3)
C160.2823 (2)0.87320 (15)0.56061 (12)0.0285 (3)
H16A0.13830.84950.53370.034*
C170.4143 (2)0.77749 (15)0.54807 (11)0.0267 (3)
H17A0.36000.68770.51190.032*
C180.3543 (2)0.25212 (14)0.03273 (11)0.0262 (3)
H18A0.41020.19660.02810.031*
H18B0.29930.32520.01550.031*
C190.1793 (2)0.17064 (15)0.04944 (12)0.0287 (3)
H19A0.22990.09200.05900.034*
H19B0.13160.22300.11420.034*
C200.6923 (2)0.22827 (14)0.13012 (12)0.0263 (3)
H20A0.81600.28750.17710.032*
H20B0.72400.18990.05870.032*
C210.6511 (2)0.11742 (15)0.16928 (12)0.0277 (3)
H21A0.59970.15230.23590.033*
H21B0.54360.04920.11650.033*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0381 (2)0.0326 (2)0.0451 (3)0.01395 (16)0.01386 (17)0.01676 (17)
O10.0319 (6)0.0311 (6)0.0294 (6)0.0036 (4)0.0017 (4)0.0091 (4)
O20.0251 (5)0.0301 (6)0.0299 (6)0.0051 (4)0.0018 (4)0.0072 (4)
O30.0286 (6)0.0287 (5)0.0301 (6)0.0081 (4)0.0001 (4)0.0073 (4)
N10.0233 (6)0.0258 (6)0.0246 (7)0.0044 (5)0.0055 (5)0.0087 (5)
C10.0249 (7)0.0279 (7)0.0256 (8)0.0010 (6)0.0049 (6)0.0122 (6)
C20.0246 (7)0.0262 (7)0.0300 (8)0.0047 (6)0.0052 (6)0.0116 (6)
C30.0227 (7)0.0255 (7)0.0286 (8)0.0029 (5)0.0069 (6)0.0117 (6)
C40.0248 (7)0.0251 (7)0.0283 (8)0.0049 (6)0.0064 (6)0.0116 (6)
C50.0230 (7)0.0236 (7)0.0277 (8)0.0019 (5)0.0081 (5)0.0106 (6)
C60.0248 (7)0.0227 (7)0.0236 (8)0.0023 (6)0.0026 (5)0.0066 (5)
C70.0277 (8)0.0278 (7)0.0290 (8)0.0031 (6)0.0068 (6)0.0128 (6)
C80.0267 (8)0.0323 (8)0.0377 (9)0.0067 (6)0.0090 (6)0.0129 (6)
C90.0314 (8)0.0294 (8)0.0348 (9)0.0083 (6)0.0008 (6)0.0125 (6)
C100.0392 (9)0.0305 (8)0.0310 (9)0.0042 (7)0.0044 (6)0.0165 (6)
C110.0325 (8)0.0290 (8)0.0287 (8)0.0055 (6)0.0092 (6)0.0113 (6)
C120.0283 (8)0.0286 (7)0.0211 (8)0.0042 (6)0.0066 (5)0.0105 (6)
C130.0278 (8)0.0305 (8)0.0274 (8)0.0024 (6)0.0046 (6)0.0099 (6)
C140.0364 (9)0.0263 (7)0.0290 (8)0.0033 (6)0.0061 (6)0.0088 (6)
C150.0343 (8)0.0310 (8)0.0288 (8)0.0109 (6)0.0116 (6)0.0142 (6)
C160.0272 (8)0.0324 (8)0.0275 (8)0.0043 (6)0.0057 (6)0.0130 (6)
C170.0289 (8)0.0279 (7)0.0231 (8)0.0021 (6)0.0055 (6)0.0092 (6)
C180.0276 (8)0.0270 (7)0.0227 (8)0.0040 (6)0.0044 (6)0.0077 (6)
C190.0277 (8)0.0301 (8)0.0273 (8)0.0031 (6)0.0039 (6)0.0105 (6)
C200.0230 (7)0.0284 (7)0.0271 (8)0.0069 (6)0.0072 (6)0.0084 (6)
C210.0258 (8)0.0277 (7)0.0283 (8)0.0062 (6)0.0041 (6)0.0089 (6)
Geometric parameters (Å, º) top
Cl1—C151.7423 (15)C9—H9A0.9500
O1—C11.2483 (19)C10—C111.385 (2)
O2—C191.4179 (18)C10—H10A0.9500
O2—H2B0.8400C11—H11A0.9500
O3—C211.4209 (17)C12—C171.397 (2)
O3—H3B0.8400C12—C131.398 (2)
N1—C51.3644 (19)C13—C141.387 (2)
N1—C201.4624 (18)C13—H13A0.9500
N1—C181.4672 (19)C14—C151.380 (2)
C1—C21.436 (2)C14—H14A0.9500
C1—C121.499 (2)C15—C161.386 (2)
C2—C31.361 (2)C16—C171.389 (2)
C2—H2A0.9500C16—H16A0.9500
C3—C41.416 (2)C17—H17A0.9500
C3—H3A0.9500C18—C191.522 (2)
C4—C51.373 (2)C18—H18A0.9900
C4—H4A0.9500C18—H18B0.9900
C5—C61.4978 (19)C19—H19A0.9900
C6—C111.393 (2)C19—H19B0.9900
C6—C71.397 (2)C20—C211.530 (2)
C7—C81.388 (2)C20—H20A0.9900
C7—H7A0.9500C20—H20B0.9900
C8—C91.385 (2)C21—H21A0.9900
C8—H8A0.9500C21—H21B0.9900
C9—C101.387 (2)
C19—O2—H2B109.5C13—C12—C1118.42 (13)
C21—O3—H3B109.5C14—C13—C12120.79 (15)
C5—N1—C20120.41 (12)C14—C13—H13A119.6
C5—N1—C18121.58 (12)C12—C13—H13A119.6
C20—N1—C18117.00 (11)C15—C14—C13119.04 (15)
O1—C1—C2119.50 (13)C15—C14—H14A120.5
O1—C1—C12118.48 (13)C13—C14—H14A120.5
C2—C1—C12122.02 (13)C14—C15—C16121.69 (14)
C3—C2—C1127.31 (13)C14—C15—Cl1118.85 (12)
C3—C2—H2A116.3C16—C15—Cl1119.45 (12)
C1—C2—H2A116.3C17—C16—C15118.86 (14)
C2—C3—C4123.85 (13)C17—C16—H16A120.6
C2—C3—H3A118.1C15—C16—H16A120.6
C4—C3—H3A118.1C16—C17—C12120.77 (14)
C5—C4—C3123.74 (13)C16—C17—H17A119.6
C5—C4—H4A118.1C12—C17—H17A119.6
C3—C4—H4A118.1N1—C18—C19112.61 (12)
N1—C5—C4123.35 (13)N1—C18—H18A109.1
N1—C5—C6116.34 (13)C19—C18—H18A109.1
C4—C5—C6120.23 (13)N1—C18—H18B109.1
C11—C6—C7119.24 (13)C19—C18—H18B109.1
C11—C6—C5120.35 (13)H18A—C18—H18B107.8
C7—C6—C5120.40 (13)O2—C19—C18110.76 (12)
C8—C7—C6120.05 (14)O2—C19—H19A109.5
C8—C7—H7A120.0C18—C19—H19A109.5
C6—C7—H7A120.0O2—C19—H19B109.5
C9—C8—C7120.30 (15)C18—C19—H19B109.5
C9—C8—H8A119.9H19A—C19—H19B108.1
C7—C8—H8A119.9N1—C20—C21114.63 (12)
C10—C9—C8119.85 (14)N1—C20—H20A108.6
C10—C9—H9A120.1C21—C20—H20A108.6
C8—C9—H9A120.1N1—C20—H20B108.6
C11—C10—C9120.18 (15)C21—C20—H20B108.6
C11—C10—H10A119.9H20A—C20—H20B107.6
C9—C10—H10A119.9O3—C21—C20110.36 (12)
C10—C11—C6120.38 (14)O3—C21—H21A109.6
C10—C11—H11A119.8C20—C21—H21A109.6
C6—C11—H11A119.8O3—C21—H21B109.6
C17—C12—C13118.83 (14)C20—C21—H21B109.6
C17—C12—C1122.62 (13)H21A—C21—H21B108.1
O1—C1—C2—C3164.68 (15)C5—C6—C11—C10179.81 (14)
C12—C1—C2—C314.9 (2)O1—C1—C12—C17142.76 (15)
C1—C2—C3—C4175.65 (14)C2—C1—C12—C1737.7 (2)
C2—C3—C4—C5179.10 (15)O1—C1—C12—C1333.1 (2)
C20—N1—C5—C47.3 (2)C2—C1—C12—C13146.49 (15)
C18—N1—C5—C4160.89 (14)C17—C12—C13—C140.8 (2)
C20—N1—C5—C6169.64 (12)C1—C12—C13—C14176.78 (13)
C18—N1—C5—C622.20 (19)C12—C13—C14—C151.6 (2)
C3—C4—C5—N1170.29 (14)C13—C14—C15—C161.4 (2)
C3—C4—C5—C66.5 (2)C13—C14—C15—Cl1177.71 (11)
N1—C5—C6—C1164.96 (19)C14—C15—C16—C170.5 (2)
C4—C5—C6—C11112.05 (17)Cl1—C15—C16—C17178.65 (11)
N1—C5—C6—C7116.19 (15)C15—C16—C17—C120.4 (2)
C4—C5—C6—C766.80 (19)C13—C12—C17—C160.2 (2)
C11—C6—C7—C80.5 (2)C1—C12—C17—C16175.64 (13)
C5—C6—C7—C8179.36 (14)C5—N1—C18—C1976.12 (17)
C6—C7—C8—C90.1 (2)C20—N1—C18—C1992.42 (15)
C7—C8—C9—C100.2 (2)N1—C18—C19—O2174.26 (11)
C8—C9—C10—C110.3 (2)C5—N1—C20—C2186.90 (16)
C9—C10—C11—C60.9 (2)C18—N1—C20—C2181.78 (16)
C7—C6—C11—C100.9 (2)N1—C20—C21—O3171.02 (11)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C12–C17 ring.
D—H···AD—HH···AD···AD—H···A
O2—H2B···O3i0.841.922.7475 (15)168
O3—H3B···O1ii0.841.872.6983 (16)169
C7—H7A···O1iii0.952.593.497 (2)159
C20—H20B···O2iv0.992.493.3396 (18)143
C21—H21A···Cg1iii0.992.733.5791 (17)144
Symmetry codes: (i) x+1, y, z; (ii) x+2, y+1, z+1; (iii) x+1, y+1, z+1; (iv) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C12–C17 ring.
D—H···AD—HH···AD···AD—H···A
O2—H2B···O3i0.841.922.7475 (15)168
O3—H3B···O1ii0.841.872.6983 (16)169
C7—H7A···O1iii0.952.593.497 (2)159
C20—H20B···O2iv0.992.493.3396 (18)143
C21—H21A···Cg1iii0.992.733.5791 (17)144
Symmetry codes: (i) x+1, y, z; (ii) x+2, y+1, z+1; (iii) x+1, y+1, z+1; (iv) x+1, y, z.
 

Acknowledgements

The authors are grateful to the Ministry of Education and Science of the Russian Federation (State program No. 426).

References

First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFischer, A., Yathirajan, H. S., Sarojini, B. K., Bindya, S. & Narayana, B. (2007a). Acta Cryst. E63, o2832.  CSD CrossRef IUCr Journals Google Scholar
First citationFischer, A., Yathirajan, H. S., Sarojini, B. K., Bindya, S. & Narayana, B. (2007b). Acta Cryst. E63, o3540.  CSD CrossRef IUCr Journals Google Scholar
First citationGolovanov, A. A., Odin, I. S., Vologzhanina, A. V., Bekin, V. V. & Nebritova, A. E. (2014). Russ. J. Org. Chem. 50, 943–947.  CSD CrossRef CAS Google Scholar
First citationKaraman, İ., Gezegen, H., Ceylan, M. & Dilmaç, M. (2012). Phosphorus Sulfur Silicon Relat. Elem. 187, 580–586.  CrossRef CAS Google Scholar
First citationKashino, S. & Haisa, M. (1980). Acta Cryst. B36, 346–353.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationNielsen, S. F., Larsen, M., Boesen, T., Schønning, K. & Kromann, H. (2005). J. Med. Chem. 48, 2667–2677.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPatil, P. S., Teh, J. B.-J., Fun, H.-K., Razak, I. A. & Dharmaprakash, S. M. (2007). Acta Cryst. E63, o2122–o2123.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSilva, W. A., Gatto, C. C. & Oliveira, G. R. (2011). Acta Cryst. E67, o2210.  CSD CrossRef IUCr Journals Google Scholar
First citationSingh, H. S. & Miyata, S. (1996). Editors. Nonlinear optics of organic molecules and polymers. Boca Raton: CRC Press.  Google Scholar
First citationVologzhanina, A. V., Gusev, D. M., Golovanov, A. A. & Pisareva, V. S. (2013). Acta Cryst. E69, o1479.  CSD CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWu, J., Li, J., Cai, Y., Pan, Y., Ye, F., Zhang, Y., Zhao, Y., Yang, S., Li, X. & Liang, G. (2011). J. Med. Chem. 54, 8110–8123.  Web of Science CrossRef CAS PubMed Google Scholar
First citationZhao, B., Rong, Y.-Z. & Huang, W. (2007). Acta Cryst. E63, o2971.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds