organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of N′-[(E)-3,5-di­chloro-2-hy­dr­oxy­benzyl­­idene]-4-nitro­benzo­hydrazide di­methyl­formamide monosolvate

aDepartment of Applied Chemistry, Cochin University of Science and Technology, Kochi 682 022, India, bDepartment of Chemistry, Faculty of Science, Eastern University, Chenkalady, Sri Lanka, and cDepartment of Chemistry, TMJM Govt. College, Manimalakkunnu, India
*Correspondence e-mail: msithambaresan@gmail.com

Edited by A. V. Yatsenko, Moscow State University, Russia (Received 29 August 2015; accepted 30 September 2015; online 7 October 2015)

In the title compound, C14H9Cl2N3O4·C3H7NO, the hydrazone mol­ecule adopts an E conformation with respect to azomethine bond, and the dihedral angle between the two aromatic rings [8.96 (11)°] shows that the rings are almost co-planar. The planar conformation of the mol­ecule is stabilized by the intra­molecular O—H⋯N hydrogen bond involving the OH group and azomethine N atom. The azomethine and keto bond distances [1.269 (2) and 1.210 (2) Å, respectively] are very close to the formal C=N and C=O bond lengths. The di­methyl­formamide solvent mol­ecule is connected to the hydrazone NH group via an N—H⋯O hydrogen bond. In the crystal, non-classical C—H⋯O and C—H⋯Cl hydrogen bonds link the mol­ecules into chains along [322]. A supra­molecular three-dimensional architecture is created by weak C—Cl⋯π [4.163 (3) Å, 83.26 (9)°] and ππ [centroid–centroid distance = 4.0395 (14) Å] inter­actions.

1. Related literature

For applications of hydrazones in supra­molecular chemistry, see: Su & Aprahamian (2014[Su, X. & Aprahamian, I. (2014). Chem. Soc. Rev. 43, 1963-1981.]). For biological applications of hydrazones and derivatives, see: Nair et al. (2014[Nair, R. S., Kuriakose, M., Somasundaram, V., Shenoi, V., Kurup, M. R. P. & Srinivas, P. (2014). Life Sci. 116, 90-97.]); Prasanna & Kumar (2013[Prasanna, M. K. & Kumar, K. P. (2013). Int. J. Pharm. Biomed. Sci. 4, 24-29.]); Holló et al. (2014[Holló, B., Magyari, J., Živković-Radovanović, V., Vučković, G., Tomić, Z. D., Szilágyi, I. M., Pokol, G. & Mészáros Szécsényi, K. (2014). Polyhedron, 80, 142-150.]). For the synthesis of related compounds, see: Bessy et al. (2006[Bessy, R. B. N., Kurup, M. R. P. & Suresh, E. (2006). Struct. Chem. 17, 201-208.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C14H9Cl2N3O4·C3H7NO

  • Mr = 427.24

  • Triclinic, [P \overline 1]

  • a = 7.8853 (6) Å

  • b = 11.9445 (10) Å

  • c = 11.9521 (15) Å

  • α = 114.408 (6)°

  • β = 102.895 (7)°

  • γ = 98.939 (5)°

  • V = 959.60 (17) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.38 mm−1

  • T = 296 K

  • 0.40 × 0.11 × 0.09 mm

2.2. Data collection

  • Bruker Kappa APEXII CCD Diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). SADABS, APEX2, XPREP and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.834, Tmax = 0.929

  • 7569 measured reflections

  • 4660 independent reflections

  • 3000 reflections with I > 2σ(I)

  • Rint = 0.019

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.159

  • S = 0.95

  • 4660 reflections

  • 263 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.84 (1) 1.82 (2) 2.581 (2) 151 (3)
N2—H2⋯O5i 0.87 (1) 1.90 (1) 2.757 (2) 169 (3)
C3—H3⋯Cl1ii 0.93 2.92 3.836 (2) 169
C7—H7⋯O5i 0.93 2.38 3.145 (3) 139
C13—H13⋯O4iii 0.93 2.42 3.231 (3) 146
Symmetry codes: (i) -x+1, -y+2, -z+1; (ii) -x+3, -y+3, -z+3; (iii) -x, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). SADABS, APEX2, XPREP and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2004[Bruker (2004). SADABS, APEX2, XPREP and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP (Bruker, 2004[Bruker (2004). SADABS, APEX2, XPREP and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Recent studies of hydrazones emphasis the importance of the hydrazone functional group in various fields ranging from organic synthesis and medicinal chemistry to supra­molecular chemistry (Su & Aprahamian, 2014). They have growing importance because of their biological applications (Nair et al., 2014; Prasanna & Kumar, 2013; Hollo et al., 2014). Here we discuss the synthesis of N'-[(E)-(3,5-di­chloro-2-hy­droxy­phenyl)­methyl­idene]-4-nitro­benzohydrazide di­methyl­formamide monosolvate from 3,5-di­chloro­salicyl­aldehyde and 4-nitro­benzoyl hydrazide. By this reaction, we obtained a novel di­methyl­formamide solvated aroylhydrazone in a simple condensation reaction.

The title compound, C14H9Cl2N3O4·C3H7NO, adopts an E configuration with respect to C7N1 bond (Fig. 1). The two aromatic rings of the molecule are almost in a plane with a slight twist with a dihedral angle of 8.96 (11) °. The C7N1 and C8O2 bond distances [1.269 (3) and 1.210 (2) Å, respectively] are very close to the formal CN and CO bond lengths. An intra­molecular hydrogen bond is found between N1 and the H atom of the phenolic group with a D···A distance of 2.581 (2) Å. Each hydrazone molecule forms one classical inter­molecular N—H···O hydrogen bond (to di­methyl­formamide molecule) and three non-classical C–H···O inter­molecular hydrogen bonds. The pairs of non-classical C13–H···O4 inter­actions with D···A distance of 3.232 (3) Å (Table 1) connect molecules into centrosymmetric dimers, and these dimers are connected by means of C–H···Cl inter­actions into chains along [3 2 2]. The packing diagram showing all hydrogen bonds and C—Cl···π inter­actions viewed along c axis is presented in Fig. 2.

Synthesis and crystallization top

The title compound was prepared by adapting a reported procedure (Bessy et al, 2006) as described below. 3,5-Di­chloro­salicyl­aldehyde (0.191 g, 1 mmol) and 4-nitro­benzoyl hydrazide (0.181 g, 1 mmol) were dissolved in 10 mL of DMF. The solution was heated to boiling for 15 min, cooled to room temperature and then poured to 40 mL of water containing crushed ice and 1 mL of concentrated sulfuric acid. The pale yellow colored solid product was separated, washed with DMF and dried over P4O10 in vacuo. Single crystals of the title compound suitable for X-ray analysis were obtained by recrystallization from di­methyl­formamide.

Refinement top

All H atoms on C were placed in calculated positions, guided by difference map, with C—H bond distances of 0.93-0.96 Å. H atoms were assigned Uiso(H) values of 1.2Ueq(carrier). H atoms attached to N2 and O1 were located from a difference Fourier map and the bond distances are restrained to 0.88±0.01 and 0.84±0.01 Å, respectively. The reflections (0 0 1), (0 -1 1) and (0 1 0) were omitted owing to bad agreement.

Related literature top

For applications of hydrazones in supramolecular chemistry, see: Su & Aprahamian (2014). For biological applications of hydrazones and derivatives, see: Nair et al. (2014); Prasanna & Kumar (2013); Holló et al. (2014); For the synthesis of related compounds, see: Bessy et al. (2006).

Structure description top

Recent studies of hydrazones emphasis the importance of the hydrazone functional group in various fields ranging from organic synthesis and medicinal chemistry to supra­molecular chemistry (Su & Aprahamian, 2014). They have growing importance because of their biological applications (Nair et al., 2014; Prasanna & Kumar, 2013; Hollo et al., 2014). Here we discuss the synthesis of N'-[(E)-(3,5-di­chloro-2-hy­droxy­phenyl)­methyl­idene]-4-nitro­benzohydrazide di­methyl­formamide monosolvate from 3,5-di­chloro­salicyl­aldehyde and 4-nitro­benzoyl hydrazide. By this reaction, we obtained a novel di­methyl­formamide solvated aroylhydrazone in a simple condensation reaction.

The title compound, C14H9Cl2N3O4·C3H7NO, adopts an E configuration with respect to C7N1 bond (Fig. 1). The two aromatic rings of the molecule are almost in a plane with a slight twist with a dihedral angle of 8.96 (11) °. The C7N1 and C8O2 bond distances [1.269 (3) and 1.210 (2) Å, respectively] are very close to the formal CN and CO bond lengths. An intra­molecular hydrogen bond is found between N1 and the H atom of the phenolic group with a D···A distance of 2.581 (2) Å. Each hydrazone molecule forms one classical inter­molecular N—H···O hydrogen bond (to di­methyl­formamide molecule) and three non-classical C–H···O inter­molecular hydrogen bonds. The pairs of non-classical C13–H···O4 inter­actions with D···A distance of 3.232 (3) Å (Table 1) connect molecules into centrosymmetric dimers, and these dimers are connected by means of C–H···Cl inter­actions into chains along [3 2 2]. The packing diagram showing all hydrogen bonds and C—Cl···π inter­actions viewed along c axis is presented in Fig. 2.

For applications of hydrazones in supramolecular chemistry, see: Su & Aprahamian (2014). For biological applications of hydrazones and derivatives, see: Nair et al. (2014); Prasanna & Kumar (2013); Holló et al. (2014); For the synthesis of related compounds, see: Bessy et al. (2006).

Synthesis and crystallization top

The title compound was prepared by adapting a reported procedure (Bessy et al, 2006) as described below. 3,5-Di­chloro­salicyl­aldehyde (0.191 g, 1 mmol) and 4-nitro­benzoyl hydrazide (0.181 g, 1 mmol) were dissolved in 10 mL of DMF. The solution was heated to boiling for 15 min, cooled to room temperature and then poured to 40 mL of water containing crushed ice and 1 mL of concentrated sulfuric acid. The pale yellow colored solid product was separated, washed with DMF and dried over P4O10 in vacuo. Single crystals of the title compound suitable for X-ray analysis were obtained by recrystallization from di­methyl­formamide.

Refinement details top

All H atoms on C were placed in calculated positions, guided by difference map, with C—H bond distances of 0.93-0.96 Å. H atoms were assigned Uiso(H) values of 1.2Ueq(carrier). H atoms attached to N2 and O1 were located from a difference Fourier map and the bond distances are restrained to 0.88±0.01 and 0.84±0.01 Å, respectively. The reflections (0 0 1), (0 -1 1) and (0 1 0) were omitted owing to bad agreement.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. ORTEP view of the title compound, drawn with 50% probability displacement ellipsoids for the non-H atoms.
[Figure 2] Fig. 2. Diagram showing molecular packing viewed along the c axis along with intermolecular interactions.
N'-[(E)-3,5-Dichloro-2-hydroxybenzylidene]-4-nitrobenzohydrazide dimethylformamide monosolvate top
Crystal data top
C14H9Cl2N3O4·C3H7NOZ = 2
Mr = 427.24F(000) = 440
Triclinic, P1Dx = 1.479 Mg m3
a = 7.8853 (6) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.9445 (10) ÅCell parameters from 2537 reflections
c = 11.9521 (15) Åθ = 2.8–28.1°
α = 114.408 (6)°µ = 0.38 mm1
β = 102.895 (7)°T = 296 K
γ = 98.939 (5)°Needle, pale yellow
V = 959.60 (17) Å30.40 × 0.11 × 0.09 mm
Data collection top
Bruker Kappa APEXII CCD Diffractometer3000 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.019
ω and φ scanθmax = 28.4°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 109
Tmin = 0.834, Tmax = 0.929k = 1515
7569 measured reflectionsl = 1515
4660 independent reflections
Refinement top
Refinement on F22 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.043H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.159 w = 1/[σ2(Fo2) + (0.0998P)2 + 0.0446P]
where P = (Fo2 + 2Fc2)/3
S = 0.95(Δ/σ)max = 0.001
4660 reflectionsΔρmax = 0.23 e Å3
263 parametersΔρmin = 0.19 e Å3
Crystal data top
C14H9Cl2N3O4·C3H7NOγ = 98.939 (5)°
Mr = 427.24V = 959.60 (17) Å3
Triclinic, P1Z = 2
a = 7.8853 (6) ÅMo Kα radiation
b = 11.9445 (10) ŵ = 0.38 mm1
c = 11.9521 (15) ÅT = 296 K
α = 114.408 (6)°0.40 × 0.11 × 0.09 mm
β = 102.895 (7)°
Data collection top
Bruker Kappa APEXII CCD Diffractometer4660 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
3000 reflections with I > 2σ(I)
Tmin = 0.834, Tmax = 0.929Rint = 0.019
7569 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0432 restraints
wR(F2) = 0.159H atoms treated by a mixture of independent and constrained refinement
S = 0.95Δρmax = 0.23 e Å3
4660 reflectionsΔρmin = 0.19 e Å3
263 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl11.35723 (9)1.29047 (6)1.47197 (6)0.0756 (2)
Cl21.23273 (9)1.51632 (6)1.17091 (7)0.0756 (2)
O11.0508 (2)1.08266 (15)1.27329 (15)0.0576 (4)
O20.6756 (2)0.77509 (15)1.08867 (15)0.0652 (4)
O30.0311 (3)0.25861 (16)0.6472 (2)0.0864 (6)
O40.0770 (3)0.3439 (2)0.5227 (2)0.0989 (7)
O50.4796 (2)1.06202 (17)0.22900 (16)0.0668 (4)
N10.78454 (19)0.97794 (15)1.05922 (16)0.0457 (4)
N20.6378 (2)0.87905 (15)0.96978 (16)0.0454 (4)
N30.0045 (2)0.34550 (18)0.6219 (2)0.0619 (5)
N40.5894 (3)0.96448 (18)0.34168 (18)0.0616 (5)
C11.0866 (2)1.18037 (18)1.24598 (19)0.0441 (4)
C21.2306 (3)1.2870 (2)1.3331 (2)0.0512 (5)
C31.2741 (3)1.39056 (18)1.3111 (2)0.0529 (5)
H31.36941.46221.37140.063*
C41.1756 (3)1.38669 (19)1.1995 (2)0.0521 (5)
C51.0326 (2)1.28330 (19)1.1101 (2)0.0489 (5)
H50.96751.28241.03440.059*
C60.9853 (2)1.17920 (17)1.13350 (19)0.0426 (4)
C70.8316 (2)1.07285 (19)1.03936 (19)0.0464 (4)
H70.76731.07380.96450.056*
C80.5925 (2)0.77882 (18)0.99269 (18)0.0428 (4)
C90.4325 (2)0.67029 (17)0.89195 (18)0.0397 (4)
C100.3727 (3)0.57541 (19)0.9227 (2)0.0496 (5)
H100.42760.58411.00440.060*
C110.2333 (3)0.4681 (2)0.8348 (2)0.0548 (5)
H110.19440.40340.85510.066*
C120.1536 (2)0.45939 (18)0.7164 (2)0.0470 (4)
C130.2077 (3)0.5529 (2)0.6837 (2)0.0507 (5)
H130.14970.54490.60290.061*
C140.3485 (2)0.65882 (19)0.77184 (19)0.0456 (4)
H140.38730.72280.75060.055*
C150.4196 (5)0.8698 (3)0.2961 (4)0.1047 (11)
H15A0.32230.90220.26990.157*
H15B0.40520.85060.36450.157*
H15C0.41770.79340.22360.157*
C160.7510 (5)0.9501 (3)0.4148 (3)0.0998 (10)
H16A0.76920.86910.36410.150*
H16B0.73650.95380.49380.150*
H16C0.85411.01790.43490.150*
C170.6030 (3)1.0510 (2)0.3016 (2)0.0531 (5)
H170.71621.10870.33100.064*
H20.589 (3)0.888 (2)0.9019 (17)0.072 (8)*
H10.962 (3)1.028 (2)1.2106 (19)0.090 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0735 (4)0.0650 (4)0.0560 (3)0.0053 (3)0.0032 (3)0.0191 (3)
Cl20.0772 (4)0.0489 (3)0.1074 (5)0.0066 (3)0.0394 (4)0.0413 (4)
O10.0540 (8)0.0471 (9)0.0590 (9)0.0035 (7)0.0066 (7)0.0249 (8)
O20.0644 (9)0.0599 (10)0.0530 (9)0.0038 (7)0.0047 (7)0.0286 (8)
O30.0830 (12)0.0449 (10)0.1029 (15)0.0120 (8)0.0080 (11)0.0295 (10)
O40.0887 (13)0.0704 (12)0.0839 (13)0.0243 (10)0.0282 (10)0.0310 (11)
O50.0629 (9)0.0687 (11)0.0651 (10)0.0103 (8)0.0063 (8)0.0375 (9)
N10.0368 (8)0.0370 (8)0.0492 (9)0.0012 (6)0.0089 (7)0.0128 (7)
N20.0367 (8)0.0378 (8)0.0467 (9)0.0013 (6)0.0027 (7)0.0152 (8)
N30.0514 (10)0.0408 (10)0.0705 (13)0.0025 (8)0.0058 (9)0.0171 (9)
N40.0783 (12)0.0453 (10)0.0564 (11)0.0101 (9)0.0138 (9)0.0257 (9)
C10.0418 (9)0.0370 (10)0.0489 (11)0.0042 (7)0.0173 (8)0.0169 (9)
C20.0449 (10)0.0446 (11)0.0487 (11)0.0018 (8)0.0140 (9)0.0119 (9)
C30.0440 (10)0.0368 (11)0.0579 (12)0.0015 (8)0.0172 (9)0.0078 (10)
C40.0468 (10)0.0365 (10)0.0702 (14)0.0055 (8)0.0282 (10)0.0197 (10)
C50.0441 (10)0.0433 (11)0.0584 (12)0.0096 (8)0.0187 (9)0.0228 (10)
C60.0363 (8)0.0342 (9)0.0487 (10)0.0052 (7)0.0155 (8)0.0122 (8)
C70.0389 (9)0.0423 (11)0.0495 (11)0.0074 (8)0.0094 (8)0.0174 (9)
C80.0372 (9)0.0391 (10)0.0424 (10)0.0035 (7)0.0080 (7)0.0150 (8)
C90.0349 (8)0.0351 (9)0.0441 (9)0.0061 (7)0.0098 (7)0.0165 (8)
C100.0497 (10)0.0467 (11)0.0499 (11)0.0057 (8)0.0082 (9)0.0267 (10)
C110.0526 (11)0.0412 (11)0.0673 (13)0.0016 (8)0.0121 (10)0.0298 (11)
C120.0399 (9)0.0345 (10)0.0540 (11)0.0019 (7)0.0092 (8)0.0149 (9)
C130.0478 (10)0.0463 (11)0.0484 (11)0.0042 (8)0.0053 (9)0.0214 (9)
C140.0424 (9)0.0399 (10)0.0507 (11)0.0031 (8)0.0093 (8)0.0232 (9)
C150.121 (3)0.072 (2)0.111 (2)0.0127 (17)0.039 (2)0.0468 (19)
C160.128 (3)0.086 (2)0.0810 (19)0.041 (2)0.0054 (18)0.0460 (18)
C170.0537 (11)0.0449 (11)0.0524 (12)0.0040 (9)0.0108 (9)0.0216 (10)
Geometric parameters (Å, º) top
Cl1—C21.716 (2)C5—C61.397 (3)
Cl2—C41.734 (2)C5—H50.9300
O1—C11.342 (2)C6—C71.442 (3)
O1—H10.835 (10)C7—H70.9300
O2—C81.210 (2)C8—C91.498 (2)
O3—N31.206 (2)C9—C101.378 (3)
O4—N31.207 (3)C9—C141.380 (3)
O5—C171.214 (2)C10—C111.375 (3)
N1—C71.269 (2)C10—H100.9300
N1—N21.363 (2)C11—C121.367 (3)
N2—C81.348 (2)C11—H110.9300
N2—H20.872 (10)C12—C131.367 (3)
N3—C121.466 (3)C13—C141.372 (3)
N4—C171.306 (3)C13—H130.9300
N4—C151.437 (3)C14—H140.9300
N4—C161.454 (3)C15—H15A0.9600
C1—C21.386 (3)C15—H15B0.9600
C1—C61.396 (3)C15—H15C0.9600
C2—C31.376 (3)C16—H16A0.9600
C3—C41.363 (3)C16—H16B0.9600
C3—H30.9300C16—H16C0.9600
C4—C51.370 (3)C17—H170.9300
C1—O1—H1105 (2)N2—C8—C9116.40 (16)
C7—N1—N2118.71 (16)C10—C9—C14119.48 (17)
C8—N2—N1117.36 (15)C10—C9—C8116.28 (16)
C8—N2—H2128.4 (18)C14—C9—C8124.20 (16)
N1—N2—H2114.1 (18)C11—C10—C9121.12 (18)
O3—N3—O4123.3 (2)C11—C10—H10119.4
O3—N3—C12118.6 (2)C9—C10—H10119.4
O4—N3—C12118.07 (19)C12—C11—C10117.92 (18)
C17—N4—C15120.0 (2)C12—C11—H11121.0
C17—N4—C16120.2 (2)C10—C11—H11121.0
C15—N4—C16119.0 (2)C13—C12—C11122.36 (18)
O1—C1—C2118.66 (18)C13—C12—N3119.26 (19)
O1—C1—C6122.82 (16)C11—C12—N3118.38 (18)
C2—C1—C6118.52 (17)C12—C13—C14119.15 (18)
C3—C2—C1121.57 (19)C12—C13—H13120.4
C3—C2—Cl1119.12 (16)C14—C13—H13120.4
C1—C2—Cl1119.31 (16)C13—C14—C9119.95 (17)
C4—C3—C2119.06 (18)C13—C14—H14120.0
C4—C3—H3120.5C9—C14—H14120.0
C2—C3—H3120.5N4—C15—H15A109.5
C3—C4—C5121.61 (19)N4—C15—H15B109.5
C3—C4—Cl2119.00 (16)H15A—C15—H15B109.5
C5—C4—Cl2119.39 (18)N4—C15—H15C109.5
C4—C5—C6119.5 (2)H15A—C15—H15C109.5
C4—C5—H5120.2H15B—C15—H15C109.5
C6—C5—H5120.2N4—C16—H16A109.5
C1—C6—C5119.70 (17)N4—C16—H16B109.5
C1—C6—C7121.85 (16)H16A—C16—H16B109.5
C5—C6—C7118.44 (18)N4—C16—H16C109.5
N1—C7—C6119.61 (18)H16A—C16—H16C109.5
N1—C7—H7120.2H16B—C16—H16C109.5
C6—C7—H7120.2O5—C17—N4125.3 (2)
O2—C8—N2122.52 (17)O5—C17—H17117.4
O2—C8—C9121.07 (17)N4—C17—H17117.4
C7—N1—N2—C8179.15 (17)N1—N2—C8—C9179.03 (15)
O1—C1—C2—C3179.80 (17)O2—C8—C9—C108.0 (3)
C6—C1—C2—C30.3 (3)N2—C8—C9—C10172.24 (16)
O1—C1—C2—Cl10.0 (3)O2—C8—C9—C14169.75 (19)
C6—C1—C2—Cl1179.94 (14)N2—C8—C9—C1410.0 (3)
C1—C2—C3—C41.5 (3)C14—C9—C10—C111.4 (3)
Cl1—C2—C3—C4178.75 (15)C8—C9—C10—C11176.44 (18)
C2—C3—C4—C51.2 (3)C9—C10—C11—C121.1 (3)
C2—C3—C4—Cl2179.09 (15)C10—C11—C12—C130.1 (3)
C3—C4—C5—C60.3 (3)C10—C11—C12—N3179.89 (18)
Cl2—C4—C5—C6179.43 (13)O3—N3—C12—C13173.37 (19)
O1—C1—C6—C5178.71 (16)O4—N3—C12—C137.0 (3)
C2—C1—C6—C51.2 (3)O3—N3—C12—C116.8 (3)
O1—C1—C6—C71.2 (3)O4—N3—C12—C11172.8 (2)
C2—C1—C6—C7178.87 (18)C11—C12—C13—C140.9 (3)
C4—C5—C6—C11.5 (3)N3—C12—C13—C14179.30 (18)
C4—C5—C6—C7178.56 (17)C12—C13—C14—C90.5 (3)
N2—N1—C7—C6179.29 (15)C10—C9—C14—C130.6 (3)
C1—C6—C7—N11.0 (3)C8—C9—C14—C13177.11 (18)
C5—C6—C7—N1179.11 (16)C15—N4—C17—O52.2 (4)
N1—N2—C8—O20.7 (3)C16—N4—C17—O5172.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O5i0.87 (1)1.90 (1)2.757 (2)169 (3)
C3—H3···Cl1ii0.932.923.836 (2)169
C7—H7···O5i0.932.383.145 (3)139
C13—H13···O4iii0.932.423.231 (3)146
O1—H1···N10.84 (1)1.82 (2)2.581 (2)151 (3)
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+3, y+3, z+3; (iii) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O5i0.872 (10)1.896 (11)2.757 (2)169 (3)
C3—H3···Cl1ii0.932.923.836 (2)168.6
C7—H7···O5i0.932.383.145 (3)139.0
C13—H13···O4iii0.932.423.231 (3)146.0
O1—H1···N10.835 (10)1.817 (17)2.581 (2)151 (3)
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+3, y+3, z+3; (iii) x, y+1, z+1.
 

Acknowledgements

BJ and SNR are grateful to the Council for Scientific and Industrial Research, New Delhi, India, for the award of Senior Research Fellowships. MRPK is grateful to the UGC, New Delhi, India, for a UGC–BSR one-time grant to Faculty. EBS thanks the UGC, Bangalore, India, for financial assistance in the form of a minor research project. We thank the Sophisticated Analytical Instruments Facility, Cochin University of S & T, Kochi-22, India, for the diffraction measurements.

References

First citationBessy, R. B. N., Kurup, M. R. P. & Suresh, E. (2006). Struct. Chem. 17, 201–208.  CAS Google Scholar
First citationBruker (2004). SADABS, APEX2, XPREP and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationHolló, B., Magyari, J., Živković-Radovanović, V., Vučković, G., Tomić, Z. D., Szilágyi, I. M., Pokol, G. & Mészáros Szécsényi, K. (2014). Polyhedron, 80, 142–150.  Google Scholar
First citationNair, R. S., Kuriakose, M., Somasundaram, V., Shenoi, V., Kurup, M. R. P. & Srinivas, P. (2014). Life Sci. 116, 90–97.  Web of Science CrossRef CAS PubMed Google Scholar
First citationPrasanna, M. K. & Kumar, K. P. (2013). Int. J. Pharm. Biomed. Sci. 4, 24–29.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSu, X. & Aprahamian, I. (2014). Chem. Soc. Rev. 43, 1963–1981.  Web of Science CrossRef CAS PubMed Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds