research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of benzene-1,3,5-tri­carb­­oxy­lic acid–4-pyridone (1/3)

aDepartment of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556-5670, USA
*Correspondence e-mail: aoliver2@nd.edu

Edited by M. Zeller, Youngstown State University, USA (Received 20 September 2015; accepted 23 September 2015; online 3 October 2015)

Slow co-crystallization of a solution of benzene-1,3,5-tri­carb­oxy­lic acid with a large excess of 4-hy­droxy­pyridine produces an inter­penetrating, three-dimensional, hydrogen-bonded framework consisting of three 4-pyridone and one benzene-1,3,5-tri­carb­oxy­lic acid mol­ecules, C9H6O6·3C5H5NO. This structure represents an ortho­rhom­bic polymorph of the previously reported C-centered, monoclinic structure [Campos-Gaxiola et al. (2014[Campos-Gaxiola, J. J., Zamora Falcon, F., Corral Higuera, R., Höpfl, H. & Cruz-Enríquez, A. (2014). Acta Cryst. E70, o453-o454.]). Acta Cryst. E70, o453–o454].

1. Chemical context

We have been inter­ested in the co-crystallization properties of benzene carb­oxy­lic acid derivatives (namely: benzene-1,4-di­carb­oxy­lic acid and benzene-1,3,5-tri­carb­oxy­lic acid) with 3- and 4-hy­droxy­pyridines (Staun & Oliver, 2012[Staun, S. L. & Oliver, A. G. (2012). Acta Cryst. C68, o84-o87.], 2015[Staun, S. L. & Oliver, A. G. (2015). Acta Cryst. E71, 861-863.]; Bhogala et al., 2005[Bhogala, B. R., Basavoju, S. & Nangia, A. (2005). CrystEngComm, 7, 551-562.]). A variety of 3-hy­droxy­pyridine co-crystallants with benzene carb­oxy­lic acids have already been reported and we discontinued pursuit of those materials (Shattock et al., 2008[Shattock, T. R., Arora, K. K., Vishweshwar, P. & Zaworotko, M. J. (2008). Cryst. Growth Des. 8, 4533-4545.]). Both 4-hy­droxy­pyridine and benzene-1,3,5-tri­carb­ox­ylic acid have been used extensively in both metal-organic frameworks as well as suitable donor/acceptor species in crystal engineering (see for example: Castillo et al., 2001[Castillo, O., Luque, A., Lloret, F. & Román, P. (2001). Inorg. Chim. Acta, 324, 141-149.]; Qian et al., 2014[Qian, J., Jiang, F., Zhang, L., Su, K., Pan, J., Li, Q., Yuan, D. & Hong, M. (2014). Chem. Commun. 50, 1678-1681.]). Recently we reported the characterization of the 1:1 co-crystallant 4-hy­droxy­pyridinium 3,5-di­carb­oxy­benzoate (Staun & Oliver, 2015[Staun, S. L. & Oliver, A. G. (2015). Acta Cryst. E71, 861-863.]). We also discovered that from similar preparative conditions (slow evaporation from methanol) with a larger molar ratio of 4-hy­droxy­pyridine to benzene-1,3,5-tri­carb­oxy­lic acid (BTC) a new species could be obtained; reported herein. A comparison of the structure with the Cambridge Structure Database revealed an identical structural motif, albeit in a different crystal system (Campos-Gaxiola et al., 2014[Campos-Gaxiola, J. J., Zamora Falcon, F., Corral Higuera, R., Höpfl, H. & Cruz-Enríquez, A. (2014). Acta Cryst. E70, o453-o454.]). Thus, we report the ortho­rhom­bic polymorph of benzene-1,3,5-tri­carb­oxy­lic acid–4-pyridone (1/3).

[Scheme 1]

2. Structural commentary

The dihedral angles formed by the carb­oxy­lic acid moieties with respect to the benzene ring are 2.95 (16), 6.23 (10) and 10.28 (18)°. These are comparable with those for the previously reported polymorph of this compound [3.9 (2), 9.3 (2), and 13.3 (2)°; Campos-Gaxiola et al., 2014[Campos-Gaxiola, J. J., Zamora Falcon, F., Corral Higuera, R., Höpfl, H. & Cruz-Enríquez, A. (2014). Acta Cryst. E70, o453-o454.]]. It should be noted that the 4-hy­droxy­pyridine has undergone rearrangement from a hy­droxy­pyridine to the pyridone form of the mol­ecule as previously observed (Tyl et al., 2008[Tyl, A., Nowak, M. & Kusz, J. (2008). Acta Cryst. C64, o661-o664.]). The 4-pyridone C—O bond distances range from 1.280 (8) to 1.295 (8) Å. These distances are comparable with previously reported examples of this mol­ecule (Staun & Oliver, 2012[Staun, S. L. & Oliver, A. G. (2012). Acta Cryst. C68, o84-o87.]; Tyl et al., 2008[Tyl, A., Nowak, M. & Kusz, J. (2008). Acta Cryst. C64, o661-o664.]). Inspection of the bond distances about each pyridone ring shows a slight tendency for the C—C bonds α to the nitro­gen [1.347 (12) to 1.371 (11) Å] to be shorter than those to the carbonyl carbon [1.410 (11) to 1.421 (10) Å]. This supports the proposed formal, localized double bond along the `edges' of the pyridone ring.

Two of the three 4-pyridone rings are co-planar with the benzene tri­carb­oxy­lic acid moiety, similar to that of the previously reported structure (Campos-Gaxiola et al., 2014[Campos-Gaxiola, J. J., Zamora Falcon, F., Corral Higuera, R., Höpfl, H. & Cruz-Enríquez, A. (2014). Acta Cryst. E70, o453-o454.]). The remaining 4-pyridone is essentially perpendicular to this plane, also similar to the Campos-Gaxiola structure (Table 1[link]).

Table 1
Pyridone / BTC inter­planar angles (°)

Pyridone ring This work Campos-Gaxiola
N1 7.3 (2) 12.9
N2 8.5 (2) 13.2
N3 87.5 (3) 87.1

3. Supra­molecular features

Each of the pyridone mol­ecules forms a hydrogen-bonded chain of symmetry-related mol­ecules. N1 and N2 form hydrogen bonds to O1i and O2ii, respectively, related by the crystallographic n-glide [symmetry codes: (i) x − [{1\over 2}], −y + [{1\over 2}], z; (ii) x + [{1\over 2}], −y + [{3\over 2}], z]. N3 forms hydrogen bonds to O3iii and O6iv related by translation along the crystallographic c-axis and the [[\overline{1}]01] direction, respectively [symmetry codes: (iii) x, y, z + 1; (iv) x − 1, y, z + 1). Thus N3 forms a bifurcated hydrogen bond. These chains of hydrogen-bonded pyridone mol­ecules are bridged by the BTC mol­ecule. Each carb­oxy­lic acid moiety on BTC donates a hydrogen bond to a nearby pyridone carbonyl oxygen (Fig. 1[link], Table 2[link]). These OCOOH⋯Opy contacts are short for O—H⋯O contacts indicating strong inter­molecular hydrogen bonding. As a result of the N3 pyridone being oriented almost perpendicular to the plane of the other three mol­ecules, the resulting architecture is a three-dimensional hydrogen-bonded network. The BTC, N1 and N2 pyridone mol­ecules form a graph-set R86(44) ring that is parallel with the ab plane (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]). This corresponds with that observed by Campos-Gaxiola et al. The BTC and N3 pyridone form an R55(30) ring that is perpendicular to the previous ring. Further inspection of this network reveals that there are two independent, inter­penetrating networks (Fig. 2[link]). The BTC mol­ecules in the two networks form typical slipped ππ-stacks [CgCg = 3.592 (5) Å, Cgperp = 3.302 (4) Å; Cg represents the center of gravity of the ring, perp is the shortest perpendicular distance; Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]]. Other potential ππ contacts are beyond 4 Å. Due to the efficient packing of these mol­ecules there is a significant number of close C—H⋯O contacts, primarily between pyridone carbon atoms and carb­oxy­lic acid oxygen atoms, with one notable example being a contact from C9 to O3v [symmetry code: (v) x + 1, y, z].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.88 1.89 2.762 (8) 169
N2—H2N⋯O2ii 0.88 1.90 2.711 (8) 152
N3—H3N⋯O3iii 0.88 2.01 2.773 (10) 144
N3—H3N⋯O6iv 0.88 2.59 3.124 (9) 120
O5—H5O⋯O1 0.84 1.75 2.555 (7) 161
O7—H7O⋯O2 0.84 1.73 2.463 (7) 145
O9—H9O⋯O3 0.84 1.70 2.526 (7) 167
C1—H1⋯O4i 0.95 2.38 3.227 (10) 148
C4—H4⋯O5 0.95 2.53 3.174 (9) 126
C6—H6⋯O7ii 0.95 2.26 3.051 (9) 140
C7—H7⋯O8ii 0.95 2.66 3.530 (9) 153
C9—H9⋯O3v 0.95 2.58 3.227 (9) 126
C11—H11⋯O6iv 0.95 2.46 3.076 (11) 123
C11—H11⋯O9vi 0.95 2.55 3.159 (9) 122
C12—H12⋯O6vii 0.95 2.49 3.302 (11) 143
C14—H13⋯O4viii 0.95 2.60 3.405 (10) 143
C15—H15⋯O8iii 0.95 2.66 3.608 (10) 178
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z]; (ii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z]; (iii) x, y, z+1; (iv) x-1, y, z+1; (v) x+1, y, z; (vi) [-x, -y+1, z+{\script{1\over 2}}]; (vii) x-1, y, z; (viii) [-x+1, -y+1, z+{\script{1\over 2}}].
[Figure 1]
Figure 1
Labeling scheme for title compound. Atomic displacement ellipsoids are depicted at the 50% probability level. Dashed lines represent hydrogen bonds within the asymmetric unit.
[Figure 2]
Figure 2
Space-filling views displaying the inter­penetrating networks (a) along the a axis; (b) along the c axis.

4. Database survey

A search in the Cambridge Structural Database (CSD, Version 5.36 plus 3 updates; Groom & Allen, 2014[Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662-671.]) for 4-hy­droxy­pyridine with benzene-1,3,5-tri­carb­oxy­lic acid produced only one hit. The compound is closely related to the title compound, namely: benzene-1,3,5-tri­carb­oxy­lic acid-pyridin­ium-2-olate (1/3) (Campos-Gaxiola et al., 2014[Campos-Gaxiola, J. J., Zamora Falcon, F., Corral Higuera, R., Höpfl, H. & Cruz-Enríquez, A. (2014). Acta Cryst. E70, o453-o454.]). However, the structure is reported to be in the monoclinic space group Cc.

5. Comparison with the structure of the monoclinic polymorph

Inspection of an overlay of the two structures reveals some differences between the two polymorphs (Fig. 3[link]). The orientation of the carb­oxy­lic acid groups of the BTC in the title compound has one `reversed' with respect to the others, while the Campos-Gaxiola structure has all three oriented in the same direction, forming a propeller-like motif about the BTC. This results in a change in the hydrogen-bonding motif, reversing the orientations of the pyridone moieties. Perhaps the most prominent structural change is the orientation of the pyridone perpendicular to the plane of the BTC. In the title compound the pyridone rings are oriented with planes that are parallel to each other along the channels they occupy and are related by the screw axis parallel to the c axis. The perpendicular pyridone rings in the Campos-Gaxiola structure alternate their orientation along the channel, related by the c-glide. The change in hydrogen-bonding directionality is propagated to the orientation of the N1 and N2 pyridone chains. Examining the orientation of the carbonyl of the pyridone in these two chains reveals that the Campos-Gaxiola structure has the N1 and N2 chains oriented with the carbonyl along the a-axis forming a `parallel` alignment of the adjacent pyridone chains; again the c-glide is the cause for this arrangement. The N1 and N2 chains in the title compound adopt an `anti-parallel' orientation with carbonyls in one chain being oriented in the opposite direction to the next chain, again a function of the screw axis. This is highlighted in Fig. 3[link] with the pyridone chain on the left of the figure showing an overlap of the pyridone rings between the two structures and the chain on the right of the figure showing the opposite orientation of the pyridone rings.

[Figure 3]
Figure 3
Overlay of the title compound (red) with the Campos-Gaxiola (light green) structure. The BTC moiety is used as the target for overlay. The view is along the c axis of both structures. Non-H atoms depicted as arbitrary spheres, H atoms as short sticks.

6. Synthesis and crystallization

The compound was formed by dissolving 4-hy­droxy­pyridine (0.112 g, 1.18 mmol) in methanol (3 mL) and benzene 1,3,5-tri­carb­oxy­lic acid (0.052 g, 0.24 mmol) in methanol (3 mL). The two solutions were combined and allowed to evaporate over 5 d yielding crystals suitable for diffraction studies. The crystallization process yields crystals of both the previously reported 1:1 co-crystal (Staun & Oliver, 2015[Staun, S. L. & Oliver, A. G. (2015). Acta Cryst. E71, 861-863.]) and those of the title compound. Presumably the differences in solvent composition and time for crystallization can yield one polymorph over the other. Several crystallization attempts were made using the methodology described herein (slow evaporation from methanol) and all yielded mixtures of the 1:1 and the 3:1 co-crystals reported herein. No evidence of the Campos-Gaxiola structure was observed within the crystals examined (reported as colorless rectangular prisms).

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. Where possible, hydrogen atoms were initially located from a difference Fourier map and were subsequently refined using a riding model with C—H = 0.95 Å, N—H = 0.88 Å and O—H = 0.84 Å. Uiso(H) was set to 1.2Ueq(C/N) and 1.5Ueq(O). The reliability for the correct enanti­omorph of the space group is low, due to the use of Mo Kα radiation with a light atom structure. Analysis of the Flack x [0.1 (10); Flack, 1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]], Hooft y [0.2 (10); Hooft et al., 2008[Hooft, R. W. W., Straver, L. H. & Spek, A. L. (2008). J. Appl. Cryst. 41, 96-103.]] and Parsons z [−0.2 (12); Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.]] parameters tends to indicate that the correct enanti­omorph of the space group and absolute structure has been determined (Flack & Bernardinelli, 1999[Flack, H. D. & Bernardinelli, G. (1999). Acta Cryst. A55, 908-915.]). Since these values are not close to zero the model could be refined as a racemic twin. However, this does not yield new or useful information and we have retained the standard model.

Table 3
Experimental details

Crystal data
Chemical formula C9H6O6·3C5H5NO
Mr 495.44
Crystal system, space group Orthorhombic, Pna21
Temperature (K) 120
a, b, c (Å) 12.699 (3), 26.498 (6), 6.6591 (14)
V3) 2240.9 (8)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.11
Crystal size (mm) 0.11 × 0.07 × 0.05
 
Data collection
Diffractometer Bruker APEXII
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.647, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 19034, 3257, 2418
Rint 0.109
θmax (°) 23.4
(sin θ/λ)max−1) 0.558
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.069, 0.171, 1.04
No. of reflections 3257
No. of parameters 328
No. of restraints 1
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.43, −0.43
Computer programs: APEX2 and SAINT (Bruker 2012[Bruker (2012). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014/7 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2012); cell refinement: SAINT (Bruker 2012); data reduction: SAINT (Bruker 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Benzene-1,3,5-tricarboxylic acid–4-pyridone (1/3) top
Crystal data top
C9H6O6·3C5H5NODx = 1.469 Mg m3
Mr = 495.44Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pna21Cell parameters from 1078 reflections
a = 12.699 (3) Åθ = 3.1–19.2°
b = 26.498 (6) ŵ = 0.11 mm1
c = 6.6591 (14) ÅT = 120 K
V = 2240.9 (8) Å3Rod, colorless
Z = 40.11 × 0.07 × 0.05 mm
F(000) = 1032
Data collection top
Bruker APEXII
diffractometer
3257 independent reflections
Radiation source: fine-focus sealed tube2418 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.109
Detector resolution: 8.33 pixels mm-1θmax = 23.4°, θmin = 1.5°
combination of ω and φ–scansh = 1414
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 2929
Tmin = 0.647, Tmax = 0.745l = 77
19034 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.069H-atom parameters constrained
wR(F2) = 0.171 w = 1/[σ2(Fo2) + (0.1002P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
3257 reflectionsΔρmax = 0.43 e Å3
328 parametersΔρmin = 0.43 e Å3
1 restraintAbsolute structure: Flack x determined using 801 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013).
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.1 (10)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.4424 (4)0.29680 (18)0.8670 (10)0.0258 (14)
N10.1387 (5)0.2479 (3)0.8807 (11)0.0282 (18)
H1N0.07300.23740.88410.034*
C10.2175 (6)0.2147 (3)0.9013 (15)0.029 (2)
H10.20170.17990.92020.035*
C20.3205 (6)0.2300 (3)0.8955 (14)0.028 (2)
H20.37540.20590.90940.034*
C30.3455 (5)0.2814 (3)0.8692 (14)0.023 (2)
C40.2598 (6)0.3152 (3)0.8499 (14)0.029 (2)
H40.27200.35030.83350.035*
C50.1594 (6)0.2968 (3)0.8551 (15)0.030 (2)
H50.10230.31970.84000.036*
O20.7873 (4)0.71124 (18)0.8498 (10)0.0258 (14)
N21.1005 (5)0.7401 (2)0.8856 (11)0.0268 (18)
H2N1.16840.74650.89130.032*
C61.0301 (6)0.7782 (3)0.9018 (15)0.029 (2)
H61.05500.81160.92160.034*
C70.9253 (6)0.7700 (3)0.8907 (14)0.025 (2)
H70.87790.79760.90230.030*
C80.8859 (5)0.7208 (3)0.8619 (14)0.0216 (19)
C90.9618 (5)0.6815 (3)0.8493 (14)0.026 (2)
H90.93920.64760.83300.031*
C101.0663 (6)0.6920 (3)0.8605 (14)0.028 (2)
H101.11610.66540.85070.034*
O30.0529 (4)0.56842 (19)0.8945 (9)0.0217 (14)
N30.0040 (5)0.5697 (3)1.4925 (12)0.0283 (19)
H3N0.01610.56911.62260.034*
C110.0812 (6)0.5564 (3)1.3647 (15)0.023 (2)
H110.14790.54681.41670.028*
C120.0659 (7)0.5566 (3)1.1636 (14)0.025 (2)
H120.12180.54761.07560.030*
C130.0335 (6)0.5702 (3)1.0850 (13)0.020 (2)
C140.1109 (6)0.5847 (3)1.2259 (13)0.023 (2)
H130.17800.59541.17940.027*
C150.0916 (7)0.5838 (3)1.4248 (13)0.022 (2)
H150.14530.59311.51720.026*
O40.6262 (4)0.39539 (18)0.7880 (11)0.0327 (16)
O50.4504 (3)0.39158 (18)0.7983 (10)0.0270 (14)
H5O0.46250.36070.81430.040*
O60.7915 (4)0.57133 (19)0.7531 (10)0.0257 (14)
O70.6792 (4)0.63488 (19)0.8051 (13)0.046 (2)
H7O0.73460.65130.82730.069*
O80.2964 (4)0.61537 (19)0.7789 (11)0.0293 (14)
O90.2359 (4)0.53621 (19)0.8195 (9)0.0261 (15)
H9O0.17940.55120.84740.039*
C160.5281 (5)0.4719 (3)0.7808 (14)0.0161 (17)
C170.6164 (5)0.5025 (3)0.7756 (13)0.0196 (19)
H170.68450.48780.77360.023*
C180.6062 (5)0.5544 (3)0.7733 (13)0.0163 (17)
C190.5061 (6)0.5761 (3)0.7777 (14)0.0200 (18)
H190.49900.61180.77740.024*
C200.4175 (5)0.5460 (3)0.7823 (13)0.0177 (18)
C210.4275 (6)0.4933 (3)0.7853 (14)0.0195 (18)
H210.36670.47250.79030.023*
C220.5408 (6)0.4164 (3)0.7873 (14)0.0229 (19)
C230.3122 (5)0.5701 (3)0.7927 (13)0.021 (2)
C240.7028 (6)0.5873 (3)0.7757 (14)0.0204 (18)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.011 (3)0.021 (3)0.046 (4)0.002 (2)0.004 (3)0.002 (3)
N10.013 (3)0.029 (4)0.043 (5)0.010 (3)0.004 (4)0.003 (4)
C10.024 (5)0.025 (5)0.040 (6)0.008 (4)0.001 (4)0.001 (5)
C20.024 (5)0.024 (5)0.037 (6)0.002 (4)0.005 (4)0.001 (4)
C30.016 (4)0.024 (4)0.028 (5)0.001 (4)0.001 (4)0.008 (4)
C40.021 (4)0.026 (5)0.039 (6)0.005 (4)0.000 (5)0.001 (5)
C50.021 (4)0.030 (5)0.038 (6)0.002 (4)0.002 (4)0.001 (5)
O20.013 (3)0.022 (3)0.042 (4)0.000 (2)0.004 (3)0.003 (3)
N20.012 (3)0.030 (4)0.038 (5)0.003 (3)0.003 (4)0.002 (4)
C60.018 (5)0.021 (5)0.046 (6)0.006 (4)0.000 (4)0.003 (5)
C70.023 (5)0.014 (4)0.037 (5)0.001 (3)0.001 (4)0.006 (4)
C80.011 (4)0.028 (5)0.026 (5)0.005 (3)0.006 (4)0.002 (4)
C90.020 (4)0.014 (4)0.044 (6)0.003 (3)0.002 (4)0.001 (4)
C100.021 (4)0.025 (5)0.040 (6)0.000 (4)0.004 (4)0.001 (5)
O30.018 (3)0.025 (3)0.023 (4)0.004 (2)0.001 (3)0.000 (3)
N30.042 (5)0.019 (4)0.024 (4)0.003 (4)0.001 (4)0.005 (3)
C110.012 (4)0.022 (5)0.036 (6)0.000 (3)0.003 (4)0.001 (5)
C120.024 (5)0.017 (5)0.033 (6)0.003 (4)0.003 (4)0.007 (4)
C130.024 (5)0.006 (4)0.028 (6)0.005 (4)0.001 (4)0.000 (4)
C140.011 (4)0.026 (5)0.031 (6)0.002 (4)0.002 (4)0.000 (4)
C150.018 (5)0.024 (5)0.022 (5)0.001 (4)0.007 (4)0.001 (4)
O40.012 (3)0.023 (3)0.063 (5)0.005 (2)0.006 (3)0.004 (4)
O50.012 (3)0.018 (3)0.050 (4)0.003 (2)0.000 (3)0.006 (4)
O60.009 (3)0.025 (3)0.043 (4)0.000 (2)0.001 (3)0.003 (3)
O70.013 (3)0.021 (3)0.106 (6)0.004 (2)0.011 (4)0.011 (4)
O80.016 (3)0.019 (3)0.053 (4)0.001 (2)0.000 (3)0.004 (3)
O90.013 (3)0.022 (3)0.043 (4)0.001 (2)0.006 (3)0.003 (3)
C160.010 (4)0.016 (4)0.022 (4)0.004 (3)0.003 (4)0.007 (4)
C170.010 (4)0.027 (4)0.021 (5)0.003 (3)0.000 (4)0.003 (4)
C180.011 (4)0.015 (4)0.022 (4)0.002 (3)0.002 (4)0.006 (4)
C190.016 (4)0.019 (4)0.025 (5)0.000 (3)0.000 (4)0.003 (4)
C200.011 (4)0.014 (4)0.028 (5)0.000 (3)0.003 (4)0.002 (4)
C210.013 (4)0.022 (4)0.024 (5)0.003 (3)0.001 (4)0.004 (4)
C220.021 (5)0.023 (4)0.025 (5)0.000 (4)0.003 (4)0.005 (5)
C230.011 (4)0.021 (5)0.030 (6)0.005 (3)0.003 (4)0.000 (4)
C240.022 (5)0.016 (4)0.023 (5)0.001 (3)0.002 (4)0.002 (4)
Geometric parameters (Å, º) top
O1—C31.295 (8)C11—H110.9500
N1—C51.334 (10)C12—C131.413 (12)
N1—C11.340 (10)C12—H120.9500
N1—H1N0.8800C13—C141.413 (12)
C1—C21.371 (11)C14—C151.347 (12)
C1—H10.9500C14—H130.9500
C2—C31.410 (11)C15—H150.9500
C2—H20.9500O4—C221.220 (8)
C3—C41.414 (10)O5—C221.324 (8)
C4—C51.365 (10)O5—H5O0.8400
C4—H40.9500O6—C241.213 (9)
C5—H50.9500O7—C241.310 (9)
O2—C81.280 (8)O7—H7O0.8400
N2—C61.353 (10)O8—C231.221 (8)
N2—C101.356 (10)O9—C231.332 (8)
N2—H2N0.8800O9—H9O0.8400
C6—C71.350 (11)C16—C171.385 (9)
C6—H60.9500C16—C211.398 (9)
C7—C81.410 (10)C16—C221.481 (10)
C7—H70.9500C17—C181.380 (9)
C8—C91.421 (10)C17—H170.9500
C9—C101.358 (10)C18—C191.395 (10)
C9—H90.9500C18—C241.506 (10)
C10—H100.9500C19—C201.380 (10)
O3—C131.293 (10)C19—H190.9500
N3—C111.345 (10)C20—C211.401 (10)
N3—C151.348 (10)C20—C231.484 (10)
N3—H3N0.8800C21—H210.9500
C11—C121.353 (12)
C5—N1—C1120.3 (7)C11—C12—C13119.7 (8)
C5—N1—H1N119.8C11—C12—H12120.2
C1—N1—H1N119.8C13—C12—H12120.2
N1—C1—C2121.0 (8)O3—C13—C12121.6 (8)
N1—C1—H1119.5O3—C13—C14121.9 (8)
C2—C1—H1119.5C12—C13—C14116.4 (8)
C1—C2—C3120.4 (7)C15—C14—C13121.4 (9)
C1—C2—H2119.8C15—C14—H13119.3
C3—C2—H2119.8C13—C14—H13119.3
O1—C3—C2121.3 (7)C14—C15—N3119.8 (8)
O1—C3—C4122.0 (7)C14—C15—H15120.1
C2—C3—C4116.7 (7)N3—C15—H15120.1
C5—C4—C3119.4 (7)C22—O5—H5O109.5
C5—C4—H4120.3C24—O7—H7O109.5
C3—C4—H4120.3C23—O9—H9O109.5
N1—C5—C4122.2 (7)C17—C16—C21120.2 (6)
N1—C5—H5118.9C17—C16—C22119.7 (6)
C4—C5—H5118.9C21—C16—C22120.1 (6)
C6—N2—C10120.0 (6)C18—C17—C16120.5 (7)
C6—N2—H2N120.0C18—C17—H17119.7
C10—N2—H2N120.0C16—C17—H17119.7
C7—C6—N2121.8 (8)C17—C18—C19119.7 (7)
C7—C6—H6119.1C17—C18—C24120.0 (6)
N2—C6—H6119.1C19—C18—C24120.2 (6)
C6—C7—C8120.4 (7)C20—C19—C18120.3 (7)
C6—C7—H7119.8C20—C19—H19119.8
C8—C7—H7119.8C18—C19—H19119.8
O2—C8—C7122.6 (7)C19—C20—C21120.2 (6)
O2—C8—C9121.0 (7)C19—C20—C23119.2 (6)
C7—C8—C9116.4 (7)C21—C20—C23120.6 (6)
C10—C9—C8120.6 (7)C16—C21—C20119.1 (6)
C10—C9—H9119.7C16—C21—H21120.4
C8—C9—H9119.7C20—C21—H21120.4
N2—C10—C9120.8 (7)O4—C22—O5123.0 (7)
N2—C10—H10119.6O4—C22—C16123.4 (7)
C9—C10—H10119.6O5—C22—C16113.6 (6)
C11—N3—C15121.2 (8)O8—C23—O9123.6 (6)
C11—N3—H3N119.4O8—C23—C20124.6 (6)
C15—N3—H3N119.4O9—C23—C20111.8 (6)
N3—C11—C12121.4 (8)O6—C24—O7124.5 (7)
N3—C11—H11119.3O6—C24—C18123.6 (7)
C12—C11—H11119.3O7—C24—C18111.9 (6)
C5—N1—C1—C20.3 (15)C21—C16—C17—C180.5 (14)
N1—C1—C2—C30.5 (15)C22—C16—C17—C18178.8 (8)
C1—C2—C3—O1178.7 (9)C16—C17—C18—C190.4 (13)
C1—C2—C3—C40.1 (14)C16—C17—C18—C24177.7 (8)
O1—C3—C4—C5179.4 (9)C17—C18—C19—C200.6 (14)
C2—C3—C4—C50.8 (14)C24—C18—C19—C20177.8 (8)
C1—N1—C5—C40.4 (15)C18—C19—C20—C210.8 (14)
C3—C4—C5—N11.0 (15)C18—C19—C20—C23178.3 (8)
C10—N2—C6—C71.1 (14)C17—C16—C21—C200.7 (13)
N2—C6—C7—C80.2 (15)C22—C16—C21—C20179.0 (9)
C6—C7—C8—O2179.8 (9)C19—C20—C21—C160.9 (13)
C6—C7—C8—C91.0 (14)C23—C20—C21—C16178.3 (8)
O2—C8—C9—C10179.4 (9)C17—C16—C22—O40.2 (15)
C7—C8—C9—C101.4 (14)C21—C16—C22—O4178.4 (9)
C6—N2—C10—C90.7 (14)C17—C16—C22—O5177.9 (7)
C8—C9—C10—N20.6 (15)C21—C16—C22—O50.3 (13)
C15—N3—C11—C120.2 (13)C19—C20—C23—O87.1 (15)
N3—C11—C12—C131.0 (14)C21—C20—C23—O8175.5 (9)
C11—C12—C13—O3176.6 (8)C19—C20—C23—O9172.7 (8)
C11—C12—C13—C142.2 (13)C21—C20—C23—O94.7 (12)
O3—C13—C14—C15176.3 (8)C17—C18—C24—O610.1 (14)
C12—C13—C14—C152.4 (13)C19—C18—C24—O6172.7 (9)
C13—C14—C15—N31.3 (14)C17—C18—C24—O7169.9 (8)
C11—N3—C15—C140.1 (13)C19—C18—C24—O77.3 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.881.892.762 (8)169
N2—H2N···O2ii0.881.902.711 (8)152
N3—H3N···O3iii0.882.012.773 (10)144
N3—H3N···O6iv0.882.593.124 (9)120
O5—H5O···O10.841.752.555 (7)161
O7—H7O···O20.841.732.463 (7)145
O9—H9O···O30.841.702.526 (7)167
C1—H1···O4i0.952.383.227 (10)148
C4—H4···O50.952.533.174 (9)126
C6—H6···O7ii0.952.263.051 (9)140
C7—H7···O8ii0.952.663.530 (9)153
C9—H9···O3v0.952.583.227 (9)126
C11—H11···O6iv0.952.463.076 (11)123
C11—H11···O9vi0.952.553.159 (9)122
C12—H12···O6vii0.952.493.302 (11)143
C14—H13···O4viii0.952.603.405 (10)143
C15—H15···O8iii0.952.663.608 (10)178
Symmetry codes: (i) x1/2, y+1/2, z; (ii) x+1/2, y+3/2, z; (iii) x, y, z+1; (iv) x1, y, z+1; (v) x+1, y, z; (vi) x, y+1, z+1/2; (vii) x1, y, z; (viii) x+1, y+1, z+1/2.
Pyridone / BTC interplanar angles (°) top
Pyridone ringThis workCampos-Gaxiola
N17.3 (2)12.9
N28.5 (2)13.2
N387.5 (3)87.1
 

References

First citationBhogala, B. R., Basavoju, S. & Nangia, A. (2005). CrystEngComm, 7, 551–562.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2012). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCampos-Gaxiola, J. J., Zamora Falcon, F., Corral Higuera, R., Höpfl, H. & Cruz-Enríquez, A. (2014). Acta Cryst. E70, o453–o454.  CSD CrossRef IUCr Journals Google Scholar
First citationCastillo, O., Luque, A., Lloret, F. & Román, P. (2001). Inorg. Chim. Acta, 324, 141–149.  Web of Science CSD CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFlack, H. D. & Bernardinelli, G. (1999). Acta Cryst. A55, 908–915.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.  Web of Science CSD CrossRef CAS Google Scholar
First citationHooft, R. W. W., Straver, L. H. & Spek, A. L. (2008). J. Appl. Cryst. 41, 96–103.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationQian, J., Jiang, F., Zhang, L., Su, K., Pan, J., Li, Q., Yuan, D. & Hong, M. (2014). Chem. Commun. 50, 1678–1681.  Web of Science CSD CrossRef CAS Google Scholar
First citationShattock, T. R., Arora, K. K., Vishweshwar, P. & Zaworotko, M. J. (2008). Cryst. Growth Des. 8, 4533–4545.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStaun, S. L. & Oliver, A. G. (2012). Acta Cryst. C68, o84–o87.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationStaun, S. L. & Oliver, A. G. (2015). Acta Cryst. E71, 861–863.  CSD CrossRef IUCr Journals Google Scholar
First citationTyl, A., Nowak, M. & Kusz, J. (2008). Acta Cryst. C64, o661–o664.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds