organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 5-(5-chloro-2-hy­droxy­benzo­yl)-2-(2-methyl-1H-indol-3-yl)nicotino­nitrile

aDepartment of Physics, Presidency College (Autonomous), Chennai 600 005, India, and bOrganic Chemistry, CSIR–Central Leather Research Institute, Adyar, Chennai 600 020, India
*Correspondence e-mail: aspandian59@gmail.com

Edited by P. Bombicz, Hungarian Academy of Sciences, Hungary (Received 9 July 2015; accepted 26 September 2015; online 7 October 2015)

In the title compound, C22H14ClN3O2, the indole unit is essentially coplanar, with a maximum deviation of 0.035 Å for the C atom bearing the methyl group. The central pyridine ring is inclined to the indole ring system by 43.7 (1)°. The dihedral angle between the phenyl ring and the indole ring system is 15.7 (2)°, while that between the phenyl ring and the central pyridine ring is 46.3 (1)°. The mol­ecular structure is stabilized by an intra­molecular O—H⋯O hydrogen bonding, forming an S(6) ring motif. In the crystal, mol­ecules are linked via pairs of N—H⋯N hydrogen bonds, forming inversion dimers with an R22(16) ring motif. The crystal structure also features C—H⋯π and ππ inter­actions [centroid–centroid separation = 3.688 (1) Å].

1. Related literature

For applications of acrylate derivatives, see: Barden (2011[Barden, T. C. (2011). Top Heterocycl. Chem. 26, 31-46.]); Chai et al. (2006[Chai, H., Zhao, C., Zhao, C. & Gong, P. (2006). Bioorg. Med. Chem. 14, 911-917.]); Nieto et al. (2005[Nieto, M. J., Alovero, F. L., Manzo, R. H. & Mazzieri, M. R. (2005). Eur. J. Med. Chem. 40, 361-369.]); Singh et al. (2000[Singh, U. P., Sarma, B. K., Mishra, P. K. & Ray, A. B. (2000). Fol. Microbiol. 45, 173-176.]); Andreani et al. (2001[Andreani, A., Granaiola, M., Leoni, A., Locatelli, A., Morigi, R., Rambaldi, M., Giorgi, G., Salvini, L. & Garaliene, V. (2001). Anticancer Drug. Des. 16, 167-174.]); Quetin-Leclercq (1994[Quetin-Leclercq, J. (1994). J. Pharm. Belg. 49, 181-192.]); Mukhopadhyay et al. (1981[Mukhopadhyay, S., Handy, G. A., Funayama, S. & Cordell, G. A. (1981). J. Nat. Prod. 44, 696-700.]). For related crystal structures, see: Penthala et al. (2008[Penthala, N. R., Reddy, T. R. Y., Parkin, S. & Crooks, P. A. (2008). Acta Cryst. E64, o2122.]). For graph-set analysis, see: Grell et al. (2000[Grell, J., Bernstein, J. & Tinhofer, G. (2000). Acta Cryst. B56, 166.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C22H14ClN3O2

  • Mr = 387.81

  • Monoclinic P 21 /n

  • a = 16.0673 (15) Å

  • b = 7.4804 (7) Å

  • c = 17.0159 (15) Å

  • β = 113.452 (3)°

  • V = 1876.2 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 293 K

  • 0.27 × 0.23 × 0.18 mm

2.2. Data collection

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.941, Tmax = 0.960

  • 7690 measured reflections

  • 3638 independent reflections

  • 2447 reflections with I > 2σ(I)

  • Rint = 0.038

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.170

  • S = 1.01

  • 3638 reflections

  • 254 parameters

  • H-atom parameters constrained

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.36 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg3 and Cg4 are the centroids of the C1–C6 and C16–C21 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2 0.82 1.91 2.596 (3) 140
N3—H3A⋯N2i 0.86 2.27 3.110 (4) 164
C2—H2⋯Cg3ii 0.90 2.93 3.656 (4) 136
C12—H12⋯Cg4iii 0.93 2.99 3.361 (4) 106
Symmetry codes: (i) -x, -y+2, -z; (ii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

In modern times, analogs based on indole are significant players in a diverse array of markets such as dyes, plastics, agriculture, vitamin supplements, over-the-counterdrugs, flavour enhancers and perfumery (Barden, 2011). Indole derivatives exhibit antihepatitis B virus (Chai et al., 2006) and antibacterial (Nieto et al., 2005) activities. Indole derivatives have been found to exhibit antibacterial, antifungal (Singh et al., 2000) and antitumour activities (Andreani et al., 2001). Some of the indole alkaloids extracted from plants possess interesting cytotoxic, antitumour or antiparasitic properties (Quetin-Leclercq, 1994; Mukhopadhyay et al., 1981). Against this background, the crystal structure of the title compound has been determined and the results are presented herein.

In the title molecule, the indole unit is essentially co-planar with a maximum deviation of -0.035 Å for the C15 atom. The central pyridine (N1/C8—C12) ring is almost halfway to be orthogonal to the indole ring system (N3/C14—C21), making a dihedral angle of 43.7 (1)°. The carbonyl-bound phenyl ring (C16—C21) forms a dihedral angle of 15.7 (2)° with the plane of the indole ring system. The pyridine ring and the phenyl ring are inclined at an angle of 46.3 (1)°. The cyano bond distance C13N2 agrees well with the reported value of 1.141 (4) Å.

The crystal packing (Fig. 2 and Table 1) is stabilized by an intramolecular O—H···O hydrogen bond, forms S(6) ring motif. The molecules are linked into inversion dimers via N—H···N hydrogen bonds resulting in an R22(16) graph-set motif, which are stablized by C—H···π (Table 1) and π-π interactions. The Cg1···Cg2ii seperation is 3.688 (1) Å (Fig.2; Cg1 and Cg2 are centroids of the N3/C14—C16/C21 ring and N1/C8—C12 pyridine ring, repectively; symmetry codes: (ii) 1/2 - x, y - 1/2, 1/2 - z).

Related literature top

For applications of acrylate derivatives, see: Barden (2011); Chai et al. (2006); Nieto et al. (2005); Singh et al. (2000); Andreani et al. (2001); Quetin-Leclercq (1994); Mukhopadhyay et al. (1981). For related crystal structures, see: Penthala et al. (2008). For graph-set analysis, see: Grell et al. (2000).

Experimental top

A mixture of 6-chlorol-3-formylchromone (1 mmol), cyanoacetylindole (1 mmol) and ammonium acetate (1 mmol) in DMF and a catalytic amount of SnCl2.2H2O (0.020 mol %) was added and refluxed for about 3 hrs. After completition of the reaction, the solvent was removed under reduced pressure and the residue was purified by column chromatography on siliga gel (3:97% ethylacetate and petether) to afford pure product. The purified compound was recrystalized from ethanol by using slow evaporation method. The yield of the isolated product was 92%, giving block like crystals suitable for X ray diffraction.

Refinement top

All H atoms were fixed geometrically and allowed to ride on their parent C atoms, with C—H distances fixed in the range 0.93–0.97 Å with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for all other H atoms.

Structure description top

In modern times, analogs based on indole are significant players in a diverse array of markets such as dyes, plastics, agriculture, vitamin supplements, over-the-counterdrugs, flavour enhancers and perfumery (Barden, 2011). Indole derivatives exhibit antihepatitis B virus (Chai et al., 2006) and antibacterial (Nieto et al., 2005) activities. Indole derivatives have been found to exhibit antibacterial, antifungal (Singh et al., 2000) and antitumour activities (Andreani et al., 2001). Some of the indole alkaloids extracted from plants possess interesting cytotoxic, antitumour or antiparasitic properties (Quetin-Leclercq, 1994; Mukhopadhyay et al., 1981). Against this background, the crystal structure of the title compound has been determined and the results are presented herein.

In the title molecule, the indole unit is essentially co-planar with a maximum deviation of -0.035 Å for the C15 atom. The central pyridine (N1/C8—C12) ring is almost halfway to be orthogonal to the indole ring system (N3/C14—C21), making a dihedral angle of 43.7 (1)°. The carbonyl-bound phenyl ring (C16—C21) forms a dihedral angle of 15.7 (2)° with the plane of the indole ring system. The pyridine ring and the phenyl ring are inclined at an angle of 46.3 (1)°. The cyano bond distance C13N2 agrees well with the reported value of 1.141 (4) Å.

The crystal packing (Fig. 2 and Table 1) is stabilized by an intramolecular O—H···O hydrogen bond, forms S(6) ring motif. The molecules are linked into inversion dimers via N—H···N hydrogen bonds resulting in an R22(16) graph-set motif, which are stablized by C—H···π (Table 1) and π-π interactions. The Cg1···Cg2ii seperation is 3.688 (1) Å (Fig.2; Cg1 and Cg2 are centroids of the N3/C14—C16/C21 ring and N1/C8—C12 pyridine ring, repectively; symmetry codes: (ii) 1/2 - x, y - 1/2, 1/2 - z).

For applications of acrylate derivatives, see: Barden (2011); Chai et al. (2006); Nieto et al. (2005); Singh et al. (2000); Andreani et al. (2001); Quetin-Leclercq (1994); Mukhopadhyay et al. (1981). For related crystal structures, see: Penthala et al. (2008). For graph-set analysis, see: Grell et al. (2000).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: APEX2 and SAINT (Bruker, 2008); data reduction: SAINT and XPREP (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with the atomic numbering scheme and displacement ellipsoids drawn at 30% probability level.
[Figure 2] Fig. 2. O—H···O intra and N—H···N intermlecular interactions (dotted lines) in the crystal structure of the title compound. The crystal packing of the molecules is viewed down the b axis.
5-(5-Chloro-2-hydroxybenzoyl)-2-(2-methyl-1H-indol-3-yl)pyridine-3-carbonitrile top
Crystal data top
C22H14ClN3O2F(000) = 800
Mr = 387.81Dx = 1.373 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2447 reflections
a = 16.0673 (15) Åθ = 1.5–25.9°
b = 7.4804 (7) ŵ = 0.23 mm1
c = 17.0159 (15) ÅT = 293 K
β = 113.452 (3)°Block, colourless
V = 1876.2 (3) Å30.27 × 0.23 × 0.18 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3638 independent reflections
Radiation source: fine-focus sealed tube2447 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
Detector resolution: 0 pixels mm-1θmax = 25.9°, θmin = 1.5°
ω and φ scanh = 1915
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
k = 79
Tmin = 0.941, Tmax = 0.960l = 2020
7690 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.170H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0793P)2 + 1.1008P]
where P = (Fo2 + 2Fc2)/3
3638 reflections(Δ/σ)max < 0.001
254 parametersΔρmax = 0.43 e Å3
0 restraintsΔρmin = 0.36 e Å3
Crystal data top
C22H14ClN3O2V = 1876.2 (3) Å3
Mr = 387.81Z = 4
Monoclinic, P21/nMo Kα radiation
a = 16.0673 (15) ŵ = 0.23 mm1
b = 7.4804 (7) ÅT = 293 K
c = 17.0159 (15) Å0.27 × 0.23 × 0.18 mm
β = 113.452 (3)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3638 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
2447 reflections with I > 2σ(I)
Tmin = 0.941, Tmax = 0.960Rint = 0.038
7690 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0570 restraints
wR(F2) = 0.170H-atom parameters constrained
S = 1.01Δρmax = 0.43 e Å3
3638 reflectionsΔρmin = 0.36 e Å3
254 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6829 (2)1.0448 (4)0.2799 (2)0.0475 (8)
C20.7315 (2)1.0614 (5)0.2278 (2)0.0599 (9)
H20.78771.11760.24870.072*
C30.6961 (2)0.9945 (5)0.1459 (2)0.0608 (9)
H30.72851.00550.11150.073*
C40.6122 (2)0.9108 (5)0.11432 (19)0.0497 (8)
C50.56120 (19)0.9038 (4)0.16240 (17)0.0416 (7)
H50.50360.85320.13930.050*
C60.59480 (17)0.9718 (4)0.24590 (17)0.0377 (6)
C70.54170 (18)0.9672 (4)0.29877 (17)0.0363 (6)
C80.44084 (17)0.9513 (4)0.26081 (16)0.0327 (6)
C90.39945 (18)0.8749 (4)0.31059 (17)0.0382 (6)
H90.43700.83060.36410.046*
C100.25482 (17)0.9246 (3)0.21050 (15)0.0309 (6)
C110.29038 (17)1.0110 (4)0.15727 (15)0.0328 (6)
C120.38420 (17)1.0235 (4)0.18271 (16)0.0341 (6)
H120.40841.07940.14770.041*
C130.23147 (18)1.0979 (4)0.07944 (17)0.0391 (7)
C140.15806 (17)0.9068 (4)0.19015 (16)0.0331 (6)
C150.09024 (19)0.8498 (4)0.11465 (17)0.0411 (7)
C160.02316 (18)0.9066 (4)0.20583 (19)0.0424 (7)
C170.0377 (2)0.9216 (5)0.2447 (3)0.0577 (9)
H170.09920.89910.21460.069*
C180.0039 (2)0.9706 (5)0.3289 (3)0.0625 (10)
H180.04300.97980.35690.075*
C190.0883 (2)1.0074 (4)0.3739 (2)0.0565 (9)
H190.10911.04230.43100.068*
C200.1487 (2)0.9931 (4)0.33560 (18)0.0428 (7)
H200.21001.01770.36620.051*
C210.11658 (17)0.9409 (3)0.25004 (17)0.0356 (6)
C220.0944 (2)0.7734 (5)0.03518 (18)0.0563 (9)
H22A0.03400.74730.00540.084*
H22B0.12960.66540.04900.084*
H22C0.12210.85830.01080.084*
N10.31060 (14)0.8602 (3)0.28774 (13)0.0373 (6)
N20.18555 (17)1.1658 (4)0.01731 (16)0.0565 (7)
N30.00999 (15)0.8531 (3)0.12427 (16)0.0481 (7)
H3A0.04170.82550.08490.058*
O10.72328 (15)1.1053 (4)0.36103 (15)0.0673 (7)
H10.69731.06400.38980.101*
O20.58003 (13)0.9826 (3)0.37762 (12)0.0537 (6)
Cl10.57239 (7)0.81118 (15)0.01424 (5)0.0737 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0320 (16)0.0497 (19)0.0610 (19)0.0020 (13)0.0186 (14)0.0031 (15)
C20.0342 (18)0.072 (2)0.083 (2)0.0061 (16)0.0330 (17)0.0059 (19)
C30.047 (2)0.073 (2)0.078 (2)0.0088 (18)0.0412 (19)0.0046 (19)
C40.0410 (18)0.061 (2)0.0480 (17)0.0175 (15)0.0186 (14)0.0019 (15)
C50.0311 (15)0.0455 (17)0.0471 (16)0.0076 (13)0.0143 (13)0.0030 (13)
C60.0244 (14)0.0397 (15)0.0473 (16)0.0027 (12)0.0125 (12)0.0018 (12)
C70.0276 (14)0.0419 (16)0.0384 (15)0.0000 (12)0.0121 (12)0.0023 (12)
C80.0249 (13)0.0380 (15)0.0340 (13)0.0006 (11)0.0104 (11)0.0015 (11)
C90.0284 (14)0.0479 (17)0.0333 (14)0.0022 (12)0.0072 (11)0.0052 (12)
C100.0264 (13)0.0334 (14)0.0303 (13)0.0008 (11)0.0084 (11)0.0012 (10)
C110.0272 (14)0.0383 (14)0.0295 (13)0.0006 (11)0.0078 (11)0.0003 (11)
C120.0287 (14)0.0394 (15)0.0357 (14)0.0006 (11)0.0143 (11)0.0017 (11)
C130.0300 (15)0.0510 (17)0.0354 (15)0.0029 (13)0.0119 (12)0.0032 (13)
C140.0257 (14)0.0356 (14)0.0356 (14)0.0015 (11)0.0098 (11)0.0032 (11)
C150.0326 (16)0.0429 (16)0.0404 (15)0.0040 (12)0.0067 (12)0.0056 (12)
C160.0290 (15)0.0383 (16)0.0590 (18)0.0020 (12)0.0164 (13)0.0113 (13)
C170.0327 (17)0.054 (2)0.091 (3)0.0040 (14)0.0296 (18)0.0153 (18)
C180.057 (2)0.057 (2)0.096 (3)0.0111 (17)0.053 (2)0.0110 (19)
C190.067 (2)0.0496 (19)0.066 (2)0.0045 (17)0.0405 (18)0.0023 (16)
C200.0400 (17)0.0411 (16)0.0504 (17)0.0008 (13)0.0213 (14)0.0007 (13)
C210.0255 (13)0.0325 (14)0.0478 (16)0.0006 (11)0.0134 (12)0.0066 (12)
C220.058 (2)0.058 (2)0.0391 (16)0.0120 (16)0.0050 (15)0.0068 (14)
N10.0286 (12)0.0456 (14)0.0353 (12)0.0018 (10)0.0102 (10)0.0055 (10)
N20.0393 (15)0.074 (2)0.0440 (15)0.0056 (13)0.0042 (12)0.0157 (14)
N30.0230 (13)0.0574 (16)0.0514 (15)0.0069 (11)0.0018 (11)0.0063 (12)
O10.0365 (13)0.0949 (19)0.0668 (15)0.0177 (12)0.0167 (11)0.0186 (14)
O20.0325 (11)0.0819 (16)0.0400 (11)0.0051 (10)0.0074 (9)0.0039 (11)
Cl10.0757 (7)0.0959 (8)0.0522 (5)0.0250 (5)0.0283 (5)0.0047 (5)
Geometric parameters (Å, º) top
C1—O11.349 (4)C12—H120.9300
C1—C21.399 (4)C13—N21.140 (3)
C1—C61.409 (4)C14—C151.380 (4)
C2—C31.373 (5)C14—C211.445 (4)
C2—H20.9300C15—N31.363 (4)
C3—C41.386 (5)C15—C221.494 (4)
C3—H30.9300C16—N31.377 (4)
C4—C51.370 (4)C16—C171.386 (4)
C4—Cl11.731 (3)C16—C211.409 (4)
C5—C61.399 (4)C17—C181.365 (5)
C5—H50.9300C17—H170.9300
C6—C71.466 (4)C18—C191.398 (5)
C7—O21.239 (3)C18—H180.9300
C7—C81.491 (4)C19—C201.372 (4)
C8—C121.387 (4)C19—H190.9300
C8—C91.391 (4)C20—C211.393 (4)
C9—N11.327 (3)C20—H200.9300
C9—H90.9300C22—H22A0.9600
C10—N11.351 (3)C22—H22B0.9600
C10—C111.405 (4)C22—H22C0.9600
C10—C141.458 (3)N3—H3A0.8600
C11—C121.396 (3)O1—H10.8200
C11—C131.441 (4)
O1—C1—C2117.2 (3)N2—C13—C11179.1 (3)
O1—C1—C6123.0 (3)C15—C14—C21107.2 (2)
C2—C1—C6119.8 (3)C15—C14—C10128.4 (2)
C3—C2—C1120.0 (3)C21—C14—C10124.3 (2)
C3—C2—H2120.0N3—C15—C14108.5 (3)
C1—C2—H2120.0N3—C15—C22120.0 (3)
C2—C3—C4120.3 (3)C14—C15—C22131.1 (3)
C2—C3—H3119.9N3—C16—C17130.5 (3)
C4—C3—H3119.9N3—C16—C21107.1 (2)
C5—C4—C3120.4 (3)C17—C16—C21122.3 (3)
C5—C4—Cl1119.8 (3)C18—C17—C16117.4 (3)
C3—C4—Cl1119.8 (2)C18—C17—H17121.3
C4—C5—C6120.8 (3)C16—C17—H17121.3
C4—C5—H5119.6C17—C18—C19121.3 (3)
C6—C5—H5119.6C17—C18—H18119.3
C5—C6—C1118.4 (3)C19—C18—H18119.3
C5—C6—C7122.1 (2)C20—C19—C18121.4 (3)
C1—C6—C7119.5 (3)C20—C19—H19119.3
O2—C7—C6120.2 (2)C18—C19—H19119.3
O2—C7—C8117.5 (2)C19—C20—C21118.7 (3)
C6—C7—C8122.2 (2)C19—C20—H20120.6
C12—C8—C9116.9 (2)C21—C20—H20120.6
C12—C8—C7124.7 (2)C20—C21—C16118.8 (3)
C9—C8—C7118.0 (2)C20—C21—C14134.7 (2)
N1—C9—C8125.1 (2)C16—C21—C14106.5 (2)
N1—C9—H9117.4C15—C22—H22A109.5
C8—C9—H9117.4C15—C22—H22B109.5
N1—C10—C11120.6 (2)H22A—C22—H22B109.5
N1—C10—C14115.5 (2)C15—C22—H22C109.5
C11—C10—C14123.9 (2)H22A—C22—H22C109.5
C12—C11—C10119.8 (2)H22B—C22—H22C109.5
C12—C11—C13119.2 (2)C9—N1—C10118.4 (2)
C10—C11—C13120.9 (2)C15—N3—C16110.7 (2)
C8—C12—C11119.1 (2)C15—N3—H3A124.7
C8—C12—H12120.4C16—N3—H3A124.7
C11—C12—H12120.4C1—O1—H1109.5
O1—C1—C2—C3176.8 (3)C10—C11—C13—N2138 (22)
C6—C1—C2—C34.8 (5)N1—C10—C14—C15135.0 (3)
C1—C2—C3—C40.1 (5)C11—C10—C14—C1548.5 (4)
C2—C3—C4—C54.1 (5)N1—C10—C14—C2142.3 (3)
C2—C3—C4—Cl1174.8 (3)C11—C10—C14—C21134.3 (3)
C3—C4—C5—C63.6 (5)C21—C14—C15—N32.0 (3)
Cl1—C4—C5—C6175.3 (2)C10—C14—C15—N3179.6 (2)
C4—C5—C6—C11.1 (4)C21—C14—C15—C22170.9 (3)
C4—C5—C6—C7179.7 (3)C10—C14—C15—C226.7 (5)
O1—C1—C6—C5176.5 (3)N3—C16—C17—C18176.8 (3)
C2—C1—C6—C55.3 (4)C21—C16—C17—C180.3 (4)
O1—C1—C6—C72.8 (5)C16—C17—C18—C191.1 (5)
C2—C1—C6—C7175.4 (3)C17—C18—C19—C201.0 (5)
C5—C6—C7—O2160.6 (3)C18—C19—C20—C210.1 (4)
C1—C6—C7—O218.6 (4)C19—C20—C21—C160.6 (4)
C5—C6—C7—C821.8 (4)C19—C20—C21—C14177.9 (3)
C1—C6—C7—C8158.9 (3)N3—C16—C21—C20178.3 (2)
O2—C7—C8—C12144.3 (3)C17—C16—C21—C200.5 (4)
C6—C7—C8—C1233.3 (4)N3—C16—C21—C140.6 (3)
O2—C7—C8—C928.8 (4)C17—C16—C21—C14178.4 (3)
C6—C7—C8—C9153.6 (3)C15—C14—C21—C20177.0 (3)
C12—C8—C9—N12.6 (4)C10—C14—C21—C200.7 (5)
C7—C8—C9—N1176.2 (2)C15—C14—C21—C161.6 (3)
N1—C10—C11—C122.8 (4)C10—C14—C21—C16179.4 (2)
C14—C10—C11—C12179.2 (2)C8—C9—N1—C100.4 (4)
N1—C10—C11—C13172.8 (2)C11—C10—N1—C92.3 (4)
C14—C10—C11—C133.5 (4)C14—C10—N1—C9179.0 (2)
C9—C8—C12—C112.0 (4)C14—C15—N3—C161.7 (3)
C7—C8—C12—C11175.1 (2)C22—C15—N3—C16172.1 (3)
C10—C11—C12—C80.5 (4)C17—C16—N3—C15176.9 (3)
C13—C11—C12—C8175.2 (2)C21—C16—N3—C150.6 (3)
C12—C11—C13—N247 (22)
Hydrogen-bond geometry (Å, º) top
Cg3 and Cg4 are the centroids of the C1–C6 and C16–C21 rings, respectively.
D—H···AD—HH···AD···AD—H···A
O1—H1···O20.821.912.596 (3)140
N3—H3A···N2i0.862.273.110 (4)164
C2—H2···Cg3ii0.902.933.656 (4)136
C12—H12···Cg4iii0.932.993.361 (4)106
Symmetry codes: (i) x, y+2, z; (ii) x+3/2, y+1/2, z+1/2; (iii) x+1/2, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
Cg3 and Cg4 are the centroids of the C1–C6 and C16–C21 rings, respectively.
D—H···AD—HH···AD···AD—H···A
O1—H1···O20.821.912.596 (3)140
N3—H3A···N2i0.862.273.110 (4)164
C2—H2···Cg3ii0.902.933.656 (4)136
C12—H12···Cg4iii0.932.993.361 (4)106
Symmetry codes: (i) x, y+2, z; (ii) x+3/2, y+1/2, z+1/2; (iii) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

The authors thank the Department of Chemistry, IIT, Chennai, India, for the X-ray intensity data collection.

References

First citationAndreani, A., Granaiola, M., Leoni, A., Locatelli, A., Morigi, R., Rambaldi, M., Giorgi, G., Salvini, L. & Garaliene, V. (2001). Anticancer Drug. Des. 16, 167–174.  Web of Science PubMed CAS Google Scholar
First citationBarden, T. C. (2011). Top Heterocycl. Chem. 26, 31–46.  CrossRef Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChai, H., Zhao, C., Zhao, C. & Gong, P. (2006). Bioorg. Med. Chem. 14, 911–917.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGrell, J., Bernstein, J. & Tinhofer, G. (2000). Acta Cryst. B56, 166.  Web of Science CrossRef IUCr Journals Google Scholar
First citationMukhopadhyay, S., Handy, G. A., Funayama, S. & Cordell, G. A. (1981). J. Nat. Prod. 44, 696–700.  CrossRef CAS PubMed Web of Science Google Scholar
First citationNieto, M. J., Alovero, F. L., Manzo, R. H. & Mazzieri, M. R. (2005). Eur. J. Med. Chem. 40, 361–369.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPenthala, N. R., Reddy, T. R. Y., Parkin, S. & Crooks, P. A. (2008). Acta Cryst. E64, o2122.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationQuetin-Leclercq, J. (1994). J. Pharm. Belg. 49, 181–192.  CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSingh, U. P., Sarma, B. K., Mishra, P. K. & Ray, A. B. (2000). Fol. Microbiol. 45, 173–176.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds