organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 3-chloro-1-methyl-5-nitro-1H-indazole

aLaboratoire de Chimie Organique et Analytique, Université Sultan Moulay Slimane, Faculté des Sciences et Techniques, Béni-Mellal, BP 523, Morocco, and bLaboratoire de Chimie du Solide Appliquée, Faculté des Sciences, Université Mohammed V, Avenue Ibn Battouta, BP 1014, Rabat, Morocco
*Correspondence e-mail: assoman_k@yahoo.fr

Edited by P. Bombicz, Hungarian Academy of Sciences, Hungary (Received 17 September 2015; accepted 1 October 2015; online 10 October 2015)

The mol­ecule of the title compound, C8H6ClN3O2, is built up from fused five- and six-membered rings connected to a chlorine atom and to nitro and methyl groups. The indazole system is essentially planar with the largest deviation from the mean plane being 0.007 (2) Å. No classical hydrogen bonds are observed in the structure. Two mol­ecules form a dimer organised by a symmetry centre via a close contact between a nitro-O atom and the chlorine atom [at 3.066 (2) Å this is shorter than the sum of their van der Waals radii].

1. Related literature

For biological activities such as as anti­microbial, anti­cancer, anti­inflammatory, anti­platelet and selective 5-HT6 antagonists of the title compound and derivatives, see: Schmidt et al. (2008[Schmidt, A., Beutler, A. & Snovydovych, B. (2008). Eur. J. Org. Chem. pp. 4073-4095.]); Shafakat Ali et al. (2012[Shafakat Ali, N. ali, Zakir, S., Patel, M. & Farooqui, M. (2012). Eur. J. Med. Chem. 50, 39-43.]); Abbassi et al. (2014[Abbassi, N., Rakib, E. M., Chicha, H., Bouissane, L., Hannioui, A., Aiello, C., Gangemi, R., Castagnola, P., Rosano, C. & Viale, M. (2014). Arch. Pharm. Chem. Life Sci. 347, 423-431.]); Plescia et al. (2010[Plescia, S., Raffa, D., Plescia, F., Casula, G., Maggio, B., Daidone, G., Raimondi, M. V., Cusimano, M. G., Bombieri, G. & Meneghetti, F. (2010). ARKIVOC, x, 163-177.]); Lee et al. (2001[Lee, F., Lien, J. C., Huang, L., Huang, T., Tsai, S. C., Teng, C. M., Wu, C. C., Cheng, F. C. & Kuo, S. C. (2001). J. Med. Chem. 44, 3746-3749.]); Liu et al. (2011[Liu, K. G., Robichaud, A. J., Greenfield, A. A., Lo, J. R., Grosanu, C., Mattes, J. F., Cai, Y., Zhang, G. M., Zhang, J. Y., Kowal, D. M., Smith, D. L., Di, L., Kerns, E. H., Schechter, L. E. & Comery, T. A. (2011). Bioorg. Med. Chem. 19, 650-662.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C8H6ClN3O2

  • Mr = 211.61

  • Monoclinic, P 21 /n

  • a = 3.8273 (2) Å

  • b = 14.678 (6) Å

  • c = 15.549 (6) Å

  • β = 96.130 (9)°

  • V = 868.5 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.41 mm−1

  • T = 296 K

  • 0.31 × 0.27 × 0.21 mm

2.2. Data collection

  • Bruker X8 APEX Diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.654, Tmax = 0.747

  • 19793 measured reflections

  • 2243 independent reflections

  • 1963 reflections with I > 2σ(I)

  • Rint = 0.028

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.115

  • S = 1.10

  • 2243 reflections

  • 127 parameters

  • H-atom parameters constrained

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.27 e Å−3

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: ORTEP-3 (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]; Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Indazole derivatives are a versatile class of compounds that have found use in biology, catalysis, and medicinal chemistry. They exhibit a variety of biological activities such as anti-microbial, anti-cancer, anti-inflammatory, anti- platelet, and selective 5-HT6 antagonists (Schmidt et al., 2008, Shafakat Ali et al., 2012, Abbassi et al., 2014, Plescia et al., 2010, Lee et al., 2001, Liu et al., 2011).

The two fused five- and six-membered rings (N2N3 C1 to C7) part of the molecule are almost planar, with a maximum deviation of -0.007 (2) Å at C1 atom (Fig.1). The chlorine atom and the nitro group linked to the indazole ring are nearly coplanar with the largest deviation from the mean plane being -0.070 (2) Å at O1. No classic hydrogen bonds are observed in the structure.

Related literature top

For biological activities such as as antimicrobial, anticancer, antiinflammatory, antiplatelet and selective 5-HT6 antagonists of the title compound and derivatives, see: Schmidt et al. (2008); Shafakat Ali et al. (2012); Abbassi et al. (2014); Plescia et al. (2010); Lee et al. (2001); Liu et al. (2011).

Experimental top

To a solution of 3-chloro-5-nitroindazole (6.13 mmol) in acetone (15 ml) was added potassium hydroxide (6.8 mmol). After 15 mn at 298 K, methyl iodide (12.26 mmol) was added dropwise. Upon disappearance of the starting material as indicated by TLC, the resulting mixture was evaporated. The crude material was dissolved with EtOAc (50 ml), washed with water and brine, dried over MgSO4 and the solvent was evaporated in vacuo. The resulting residue was purified by column chromatography (EtOAc/hexane 2/8). The title compound was recrystallized from ethanol at room temperature giving colourless crystals (m.p. 471 K, yield: 70%).

Refinement top

H atoms were located in a difference map and treated as riding with C–H = 0.96 Å and C–H = 0.93 Å for methyl and aromatic, respectively. All hydrogen with Uiso(H) = 1.5 Ueq for methyl and Uiso(H) = 1.2 Ueq for aromatic.

Structure description top

Indazole derivatives are a versatile class of compounds that have found use in biology, catalysis, and medicinal chemistry. They exhibit a variety of biological activities such as anti-microbial, anti-cancer, anti-inflammatory, anti- platelet, and selective 5-HT6 antagonists (Schmidt et al., 2008, Shafakat Ali et al., 2012, Abbassi et al., 2014, Plescia et al., 2010, Lee et al., 2001, Liu et al., 2011).

The two fused five- and six-membered rings (N2N3 C1 to C7) part of the molecule are almost planar, with a maximum deviation of -0.007 (2) Å at C1 atom (Fig.1). The chlorine atom and the nitro group linked to the indazole ring are nearly coplanar with the largest deviation from the mean plane being -0.070 (2) Å at O1. No classic hydrogen bonds are observed in the structure.

For biological activities such as as antimicrobial, anticancer, antiinflammatory, antiplatelet and selective 5-HT6 antagonists of the title compound and derivatives, see: Schmidt et al. (2008); Shafakat Ali et al. (2012); Abbassi et al. (2014); Plescia et al. (2010); Lee et al. (2001); Liu et al. (2011).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: ORTEP-3 (Burnett & Johnson, 1996; Farrugia, 2012); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Plot of the molecule of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small circles.
3-Chloro-1-methyl-5-nitro-1H-indazole top
Crystal data top
C8H6ClN3O2Dx = 1.618 Mg m3
Mr = 211.61Melting point: 471 K
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 3.8273 (2) ÅCell parameters from 2243 reflections
b = 14.678 (6) Åθ = 2.6–28.7°
c = 15.549 (6) ŵ = 0.41 mm1
β = 96.130 (9)°T = 296 K
V = 868.5 (6) Å3Block, colourless
Z = 40.31 × 0.27 × 0.21 mm
F(000) = 432
Data collection top
Bruker X8 APEX Diffractometer2243 independent reflections
Radiation source: fine-focus sealed tube1963 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
φ and ω scansθmax = 28.7°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 55
Tmin = 0.654, Tmax = 0.747k = 1919
19793 measured reflectionsl = 2020
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043H-atom parameters constrained
wR(F2) = 0.115 w = 1/[σ2(Fo2) + (0.0484P)2 + 0.5276P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max < 0.001
2243 reflectionsΔρmax = 0.36 e Å3
127 parametersΔρmin = 0.27 e Å3
Crystal data top
C8H6ClN3O2V = 868.5 (6) Å3
Mr = 211.61Z = 4
Monoclinic, P21/nMo Kα radiation
a = 3.8273 (2) ŵ = 0.41 mm1
b = 14.678 (6) ÅT = 296 K
c = 15.549 (6) Å0.31 × 0.27 × 0.21 mm
β = 96.130 (9)°
Data collection top
Bruker X8 APEX Diffractometer2243 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
1963 reflections with I > 2σ(I)
Tmin = 0.654, Tmax = 0.747Rint = 0.028
19793 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.115H-atom parameters constrained
S = 1.10Δρmax = 0.36 e Å3
2243 reflectionsΔρmin = 0.27 e Å3
127 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.39641 (14)0.41233 (3)0.10469 (3)0.04683 (17)
N30.7340 (4)0.56202 (10)0.29223 (9)0.0345 (3)
N20.6938 (4)0.48003 (10)0.25083 (10)0.0358 (3)
N10.0460 (5)0.79442 (11)0.05310 (10)0.0416 (4)
O20.0907 (5)0.75957 (11)0.01323 (11)0.0671 (5)
O10.0360 (6)0.87596 (11)0.06625 (11)0.0669 (5)
C30.4260 (4)0.59119 (11)0.16618 (10)0.0283 (3)
C40.5778 (4)0.63052 (11)0.24420 (10)0.0299 (3)
C20.2473 (4)0.64453 (11)0.10193 (10)0.0301 (3)
H20.14590.61960.05020.036*
C10.2289 (5)0.73599 (12)0.11912 (11)0.0325 (3)
C70.5114 (4)0.49799 (12)0.17658 (11)0.0320 (3)
C50.5521 (5)0.72408 (12)0.26022 (11)0.0373 (4)
H50.64980.74970.31200.045*
C60.3773 (5)0.77622 (12)0.19662 (12)0.0381 (4)
H60.35640.83870.20470.046*
C90.9194 (5)0.56629 (15)0.37845 (12)0.0442 (5)
H9A1.00180.50660.39570.066*
H9B1.11600.60690.37850.066*
H9C0.76340.58820.41820.066*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0591 (3)0.0334 (2)0.0457 (3)0.00152 (19)0.0049 (2)0.01074 (18)
N30.0347 (8)0.0374 (8)0.0308 (7)0.0012 (6)0.0006 (6)0.0012 (6)
N20.0367 (8)0.0345 (7)0.0360 (7)0.0011 (6)0.0033 (6)0.0012 (6)
N10.0497 (9)0.0357 (8)0.0405 (8)0.0048 (7)0.0095 (7)0.0062 (6)
O20.0955 (14)0.0476 (9)0.0513 (9)0.0052 (9)0.0246 (9)0.0045 (7)
O10.1054 (15)0.0352 (8)0.0589 (10)0.0147 (9)0.0037 (9)0.0054 (7)
C30.0266 (8)0.0304 (8)0.0285 (7)0.0028 (6)0.0056 (6)0.0032 (6)
C40.0270 (8)0.0348 (8)0.0284 (7)0.0043 (6)0.0051 (6)0.0020 (6)
C20.0310 (8)0.0321 (8)0.0276 (7)0.0024 (6)0.0048 (6)0.0014 (6)
C10.0342 (9)0.0315 (8)0.0328 (8)0.0001 (7)0.0084 (7)0.0029 (6)
C70.0317 (8)0.0314 (8)0.0331 (8)0.0018 (6)0.0047 (6)0.0039 (6)
C50.0430 (10)0.0359 (9)0.0330 (8)0.0069 (7)0.0044 (7)0.0093 (7)
C60.0463 (10)0.0283 (8)0.0407 (9)0.0028 (7)0.0100 (8)0.0058 (7)
C90.0422 (10)0.0559 (12)0.0326 (9)0.0021 (9)0.0055 (8)0.0008 (8)
Geometric parameters (Å, º) top
Cl1—C71.7086 (18)C4—C51.401 (2)
N3—C41.353 (2)C2—C11.372 (2)
N3—N21.366 (2)C2—H20.9300
N3—C91.450 (2)C1—C61.406 (3)
N2—C71.311 (2)C5—C61.367 (3)
N1—O11.215 (2)C5—H50.9300
N1—O21.218 (2)C6—H60.9300
N1—C11.458 (2)C9—H9A0.9600
C3—C21.390 (2)C9—H9B0.9600
C3—C41.411 (2)C9—H9C0.9600
C3—C71.412 (2)
C4—N3—N2111.95 (14)C2—C1—N1117.97 (16)
C4—N3—C9128.47 (16)C6—C1—N1118.43 (16)
N2—N3—C9119.56 (16)N2—C7—C3113.01 (15)
C7—N2—N3105.10 (14)N2—C7—Cl1120.27 (14)
O1—N1—O2122.53 (18)C3—C7—Cl1126.72 (13)
O1—N1—C1118.81 (17)C6—C5—C4117.27 (16)
O2—N1—C1118.66 (16)C6—C5—H5121.4
C2—C3—C4120.87 (15)C4—C5—H5121.4
C2—C3—C7135.89 (15)C5—C6—C1120.43 (16)
C4—C3—C7103.23 (14)C5—C6—H6119.8
N3—C4—C5131.73 (16)C1—C6—H6119.8
N3—C4—C3106.71 (15)N3—C9—H9A109.5
C5—C4—C3121.56 (16)N3—C9—H9B109.5
C1—C2—C3116.26 (15)H9A—C9—H9B109.5
C1—C2—H2121.9N3—C9—H9C109.5
C3—C2—H2121.9H9A—C9—H9C109.5
C2—C1—C6123.60 (16)H9B—C9—H9C109.5

Experimental details

Crystal data
Chemical formulaC8H6ClN3O2
Mr211.61
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)3.8273 (2), 14.678 (6), 15.549 (6)
β (°) 96.130 (9)
V3)868.5 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.41
Crystal size (mm)0.31 × 0.27 × 0.21
Data collection
DiffractometerBruker X8 APEX Diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.654, 0.747
No. of measured, independent and
observed [I > 2σ(I)] reflections
19793, 2243, 1963
Rint0.028
(sin θ/λ)max1)0.676
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.115, 1.10
No. of reflections2243
No. of parameters127
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.36, 0.27

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS2013 (Sheldrick, 2008), SHELXL2013 (Sheldrick, 2015), ORTEP-3 (Burnett & Johnson, 1996; Farrugia, 2012), publCIF (Westrip, 2010).

 

Acknowledgements

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements and the University Sultan Moulay Slimane, Beni-Mellal, Morocco, for financial support.

References

First citationAbbassi, N., Rakib, E. M., Chicha, H., Bouissane, L., Hannioui, A., Aiello, C., Gangemi, R., Castagnola, P., Rosano, C. & Viale, M. (2014). Arch. Pharm. Chem. Life Sci. 347, 423–431.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationLee, F., Lien, J. C., Huang, L., Huang, T., Tsai, S. C., Teng, C. M., Wu, C. C., Cheng, F. C. & Kuo, S. C. (2001). J. Med. Chem. 44, 3746–3749.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLiu, K. G., Robichaud, A. J., Greenfield, A. A., Lo, J. R., Grosanu, C., Mattes, J. F., Cai, Y., Zhang, G. M., Zhang, J. Y., Kowal, D. M., Smith, D. L., Di, L., Kerns, E. H., Schechter, L. E. & Comery, T. A. (2011). Bioorg. Med. Chem. 19, 650–662.  Web of Science CrossRef PubMed Google Scholar
First citationPlescia, S., Raffa, D., Plescia, F., Casula, G., Maggio, B., Daidone, G., Raimondi, M. V., Cusimano, M. G., Bombieri, G. & Meneghetti, F. (2010). ARKIVOC, x, 163–177.  CrossRef Google Scholar
First citationSchmidt, A., Beutler, A. & Snovydovych, B. (2008). Eur. J. Org. Chem. pp. 4073–4095.  Web of Science CrossRef Google Scholar
First citationShafakat Ali, N. ali, Zakir, S., Patel, M. & Farooqui, M. (2012). Eur. J. Med. Chem. 50, 39–43.  Web of Science PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds