organic compounds
H-indazole
of 3-chloro-1-methyl-5-nitro-1aLaboratoire de Chimie Organique et Analytique, Université Sultan Moulay Slimane, Faculté des Sciences et Techniques, Béni-Mellal, BP 523, Morocco, and bLaboratoire de Chimie du Solide Appliquée, Faculté des Sciences, Université Mohammed V, Avenue Ibn Battouta, BP 1014, Rabat, Morocco
*Correspondence e-mail: assoman_k@yahoo.fr
The molecule of the title compound, C8H6ClN3O2, is built up from fused five- and six-membered rings connected to a chlorine atom and to nitro and methyl groups. The indazole system is essentially planar with the largest deviation from the mean plane being 0.007 (2) Å. No classical hydrogen bonds are observed in the structure. Two molecules form a dimer organised by a symmetry centre via a close contact between a nitro-O atom and the chlorine atom [at 3.066 (2) Å this is shorter than the sum of their van der Waals radii].
Keywords: crystal structure; indazole derivative; Cl⋯O short contact.
CCDC reference: 1429148
1. Related literature
For biological activities such as as antimicrobial, anticancer, antiinflammatory, antiplatelet and selective 5-HT6 antagonists of the title compound and derivatives, see: Schmidt et al. (2008); Shafakat Ali et al. (2012); Abbassi et al. (2014); Plescia et al. (2010); Lee et al. (2001); Liu et al. (2011).
2. Experimental
2.1. Crystal data
|
2.3. Refinement
|
Data collection: APEX2 (Bruker, 2009); cell SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: ORTEP-3 (Burnett & Johnson, 1996; Farrugia, 2012); software used to prepare material for publication: publCIF (Westrip, 2010).
Supporting information
CCDC reference: 1429148
https://doi.org/10.1107/S2056989015018411/zp2019sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989015018411/zp2019Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989015018411/zp2019Isup3.cml
To a solution of 3-chloro-5-nitroindazole (6.13 mmol) in acetone (15 ml) was added potassium hydroxide (6.8 mmol). After 15 mn at 298 K, methyl iodide (12.26 mmol) was added dropwise. Upon disappearance of the starting material as indicated by TLC, the resulting mixture was evaporated. The crude material was dissolved with EtOAc (50 ml), washed with water and brine, dried over MgSO4 and the solvent was evaporated in vacuo. The resulting residue was purified by
(EtOAc/hexane 2/8). The title compound was recrystallized from ethanol at room temperature giving colourless crystals (m.p. 471 K, yield: 70%).H atoms were located in a difference map and treated as riding with C–H = 0.96 Å and C–H = 0.93 Å for methyl and aromatic, respectively. All hydrogen with Uiso(H) = 1.5 Ueq for methyl and Uiso(H) = 1.2 Ueq for aromatic.
Indazole derivatives are a versatile class of compounds that have found use in biology, catalysis, and medicinal chemistry. They exhibit a variety of biological activities such as anti-microbial, anti-cancer, anti-inflammatory, anti- platelet, and selective 5-HT6 antagonists (Schmidt et al., 2008, Shafakat Ali et al., 2012, Abbassi et al., 2014, Plescia et al., 2010, Lee et al., 2001, Liu et al., 2011).
The two fused five- and six-membered rings (N2N3 C1 to C7) part of the molecule are almost planar, with a maximum deviation of -0.007 (2) Å at C1 atom (Fig.1). The chlorine atom and the nitro group linked to the indazole ring are nearly coplanar with the largest deviation from the mean plane being -0.070 (2) Å at O1. No classic hydrogen bonds are observed in the structure.
For biological activities such as as antimicrobial, anticancer, antiinflammatory, antiplatelet and selective 5-HT6 antagonists of the title compound and derivatives, see: Schmidt et al. (2008); Shafakat Ali et al. (2012); Abbassi et al. (2014); Plescia et al. (2010); Lee et al. (2001); Liu et al. (2011).
Data collection: APEX2 (Bruker, 2009); cell
SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: ORTEP-3 (Burnett & Johnson, 1996; Farrugia, 2012); software used to prepare material for publication: publCIF (Westrip, 2010).Fig. 1. Plot of the molecule of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small circles. |
C8H6ClN3O2 | Dx = 1.618 Mg m−3 |
Mr = 211.61 | Melting point: 471 K |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 3.8273 (2) Å | Cell parameters from 2243 reflections |
b = 14.678 (6) Å | θ = 2.6–28.7° |
c = 15.549 (6) Å | µ = 0.41 mm−1 |
β = 96.130 (9)° | T = 296 K |
V = 868.5 (6) Å3 | Block, colourless |
Z = 4 | 0.31 × 0.27 × 0.21 mm |
F(000) = 432 |
Bruker X8 APEX Diffractometer | 2243 independent reflections |
Radiation source: fine-focus sealed tube | 1963 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.028 |
φ and ω scans | θmax = 28.7°, θmin = 2.6° |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | h = −5→5 |
Tmin = 0.654, Tmax = 0.747 | k = −19→19 |
19793 measured reflections | l = −20→20 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.043 | H-atom parameters constrained |
wR(F2) = 0.115 | w = 1/[σ2(Fo2) + (0.0484P)2 + 0.5276P] where P = (Fo2 + 2Fc2)/3 |
S = 1.10 | (Δ/σ)max < 0.001 |
2243 reflections | Δρmax = 0.36 e Å−3 |
127 parameters | Δρmin = −0.27 e Å−3 |
C8H6ClN3O2 | V = 868.5 (6) Å3 |
Mr = 211.61 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 3.8273 (2) Å | µ = 0.41 mm−1 |
b = 14.678 (6) Å | T = 296 K |
c = 15.549 (6) Å | 0.31 × 0.27 × 0.21 mm |
β = 96.130 (9)° |
Bruker X8 APEX Diffractometer | 2243 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | 1963 reflections with I > 2σ(I) |
Tmin = 0.654, Tmax = 0.747 | Rint = 0.028 |
19793 measured reflections |
R[F2 > 2σ(F2)] = 0.043 | 0 restraints |
wR(F2) = 0.115 | H-atom parameters constrained |
S = 1.10 | Δρmax = 0.36 e Å−3 |
2243 reflections | Δρmin = −0.27 e Å−3 |
127 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.39641 (14) | 0.41233 (3) | 0.10469 (3) | 0.04683 (17) | |
N3 | 0.7340 (4) | 0.56202 (10) | 0.29223 (9) | 0.0345 (3) | |
N2 | 0.6938 (4) | 0.48003 (10) | 0.25083 (10) | 0.0358 (3) | |
N1 | 0.0460 (5) | 0.79442 (11) | 0.05310 (10) | 0.0416 (4) | |
O2 | −0.0907 (5) | 0.75957 (11) | −0.01323 (11) | 0.0671 (5) | |
O1 | 0.0360 (6) | 0.87596 (11) | 0.06625 (11) | 0.0669 (5) | |
C3 | 0.4260 (4) | 0.59119 (11) | 0.16618 (10) | 0.0283 (3) | |
C4 | 0.5778 (4) | 0.63052 (11) | 0.24420 (10) | 0.0299 (3) | |
C2 | 0.2473 (4) | 0.64453 (11) | 0.10193 (10) | 0.0301 (3) | |
H2 | 0.1459 | 0.6196 | 0.0502 | 0.036* | |
C1 | 0.2289 (5) | 0.73599 (12) | 0.11912 (11) | 0.0325 (3) | |
C7 | 0.5114 (4) | 0.49799 (12) | 0.17658 (11) | 0.0320 (3) | |
C5 | 0.5521 (5) | 0.72408 (12) | 0.26022 (11) | 0.0373 (4) | |
H5 | 0.6498 | 0.7497 | 0.3120 | 0.045* | |
C6 | 0.3773 (5) | 0.77622 (12) | 0.19662 (12) | 0.0381 (4) | |
H6 | 0.3564 | 0.8387 | 0.2047 | 0.046* | |
C9 | 0.9194 (5) | 0.56629 (15) | 0.37845 (12) | 0.0442 (5) | |
H9A | 1.0018 | 0.5066 | 0.3957 | 0.066* | |
H9B | 1.1160 | 0.6069 | 0.3785 | 0.066* | |
H9C | 0.7634 | 0.5882 | 0.4182 | 0.066* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0591 (3) | 0.0334 (2) | 0.0457 (3) | 0.00152 (19) | −0.0049 (2) | −0.01074 (18) |
N3 | 0.0347 (8) | 0.0374 (8) | 0.0308 (7) | −0.0012 (6) | 0.0006 (6) | −0.0012 (6) |
N2 | 0.0367 (8) | 0.0345 (7) | 0.0360 (7) | 0.0011 (6) | 0.0033 (6) | −0.0012 (6) |
N1 | 0.0497 (9) | 0.0357 (8) | 0.0405 (8) | 0.0048 (7) | 0.0095 (7) | 0.0062 (6) |
O2 | 0.0955 (14) | 0.0476 (9) | 0.0513 (9) | 0.0052 (9) | −0.0246 (9) | 0.0045 (7) |
O1 | 0.1054 (15) | 0.0352 (8) | 0.0589 (10) | 0.0147 (9) | 0.0037 (9) | 0.0054 (7) |
C3 | 0.0266 (8) | 0.0304 (8) | 0.0285 (7) | −0.0028 (6) | 0.0056 (6) | −0.0032 (6) |
C4 | 0.0270 (8) | 0.0348 (8) | 0.0284 (7) | −0.0043 (6) | 0.0051 (6) | −0.0020 (6) |
C2 | 0.0310 (8) | 0.0321 (8) | 0.0276 (7) | −0.0024 (6) | 0.0048 (6) | −0.0014 (6) |
C1 | 0.0342 (9) | 0.0315 (8) | 0.0328 (8) | −0.0001 (7) | 0.0084 (7) | 0.0029 (6) |
C7 | 0.0317 (8) | 0.0314 (8) | 0.0331 (8) | −0.0018 (6) | 0.0047 (6) | −0.0039 (6) |
C5 | 0.0430 (10) | 0.0359 (9) | 0.0330 (8) | −0.0069 (7) | 0.0044 (7) | −0.0093 (7) |
C6 | 0.0463 (10) | 0.0283 (8) | 0.0407 (9) | −0.0028 (7) | 0.0100 (8) | −0.0058 (7) |
C9 | 0.0422 (10) | 0.0559 (12) | 0.0326 (9) | −0.0021 (9) | −0.0055 (8) | −0.0008 (8) |
Cl1—C7 | 1.7086 (18) | C4—C5 | 1.401 (2) |
N3—C4 | 1.353 (2) | C2—C1 | 1.372 (2) |
N3—N2 | 1.366 (2) | C2—H2 | 0.9300 |
N3—C9 | 1.450 (2) | C1—C6 | 1.406 (3) |
N2—C7 | 1.311 (2) | C5—C6 | 1.367 (3) |
N1—O1 | 1.215 (2) | C5—H5 | 0.9300 |
N1—O2 | 1.218 (2) | C6—H6 | 0.9300 |
N1—C1 | 1.458 (2) | C9—H9A | 0.9600 |
C3—C2 | 1.390 (2) | C9—H9B | 0.9600 |
C3—C4 | 1.411 (2) | C9—H9C | 0.9600 |
C3—C7 | 1.412 (2) | ||
C4—N3—N2 | 111.95 (14) | C2—C1—N1 | 117.97 (16) |
C4—N3—C9 | 128.47 (16) | C6—C1—N1 | 118.43 (16) |
N2—N3—C9 | 119.56 (16) | N2—C7—C3 | 113.01 (15) |
C7—N2—N3 | 105.10 (14) | N2—C7—Cl1 | 120.27 (14) |
O1—N1—O2 | 122.53 (18) | C3—C7—Cl1 | 126.72 (13) |
O1—N1—C1 | 118.81 (17) | C6—C5—C4 | 117.27 (16) |
O2—N1—C1 | 118.66 (16) | C6—C5—H5 | 121.4 |
C2—C3—C4 | 120.87 (15) | C4—C5—H5 | 121.4 |
C2—C3—C7 | 135.89 (15) | C5—C6—C1 | 120.43 (16) |
C4—C3—C7 | 103.23 (14) | C5—C6—H6 | 119.8 |
N3—C4—C5 | 131.73 (16) | C1—C6—H6 | 119.8 |
N3—C4—C3 | 106.71 (15) | N3—C9—H9A | 109.5 |
C5—C4—C3 | 121.56 (16) | N3—C9—H9B | 109.5 |
C1—C2—C3 | 116.26 (15) | H9A—C9—H9B | 109.5 |
C1—C2—H2 | 121.9 | N3—C9—H9C | 109.5 |
C3—C2—H2 | 121.9 | H9A—C9—H9C | 109.5 |
C2—C1—C6 | 123.60 (16) | H9B—C9—H9C | 109.5 |
Experimental details
Crystal data | |
Chemical formula | C8H6ClN3O2 |
Mr | 211.61 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 296 |
a, b, c (Å) | 3.8273 (2), 14.678 (6), 15.549 (6) |
β (°) | 96.130 (9) |
V (Å3) | 868.5 (6) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.41 |
Crystal size (mm) | 0.31 × 0.27 × 0.21 |
Data collection | |
Diffractometer | Bruker X8 APEX Diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2009) |
Tmin, Tmax | 0.654, 0.747 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 19793, 2243, 1963 |
Rint | 0.028 |
(sin θ/λ)max (Å−1) | 0.676 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.043, 0.115, 1.10 |
No. of reflections | 2243 |
No. of parameters | 127 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.36, −0.27 |
Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS2013 (Sheldrick, 2008), SHELXL2013 (Sheldrick, 2015), ORTEP-3 (Burnett & Johnson, 1996; Farrugia, 2012), publCIF (Westrip, 2010).
Acknowledgements
The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements and the University Sultan Moulay Slimane, Beni-Mellal, Morocco, for financial support.
References
Abbassi, N., Rakib, E. M., Chicha, H., Bouissane, L., Hannioui, A., Aiello, C., Gangemi, R., Castagnola, P., Rosano, C. & Viale, M. (2014). Arch. Pharm. Chem. Life Sci. 347, 423–431. Web of Science CrossRef CAS Google Scholar
Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA. Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Lee, F., Lien, J. C., Huang, L., Huang, T., Tsai, S. C., Teng, C. M., Wu, C. C., Cheng, F. C. & Kuo, S. C. (2001). J. Med. Chem. 44, 3746–3749. Web of Science CrossRef PubMed CAS Google Scholar
Liu, K. G., Robichaud, A. J., Greenfield, A. A., Lo, J. R., Grosanu, C., Mattes, J. F., Cai, Y., Zhang, G. M., Zhang, J. Y., Kowal, D. M., Smith, D. L., Di, L., Kerns, E. H., Schechter, L. E. & Comery, T. A. (2011). Bioorg. Med. Chem. 19, 650–662. Web of Science CrossRef PubMed Google Scholar
Plescia, S., Raffa, D., Plescia, F., Casula, G., Maggio, B., Daidone, G., Raimondi, M. V., Cusimano, M. G., Bombieri, G. & Meneghetti, F. (2010). ARKIVOC, x, 163–177. CrossRef Google Scholar
Schmidt, A., Beutler, A. & Snovydovych, B. (2008). Eur. J. Org. Chem. pp. 4073–4095. Web of Science CrossRef Google Scholar
Shafakat Ali, N. ali, Zakir, S., Patel, M. & Farooqui, M. (2012). Eur. J. Med. Chem. 50, 39–43. Web of Science PubMed Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Indazole derivatives are a versatile class of compounds that have found use in biology, catalysis, and medicinal chemistry. They exhibit a variety of biological activities such as anti-microbial, anti-cancer, anti-inflammatory, anti- platelet, and selective 5-HT6 antagonists (Schmidt et al., 2008, Shafakat Ali et al., 2012, Abbassi et al., 2014, Plescia et al., 2010, Lee et al., 2001, Liu et al., 2011).
The two fused five- and six-membered rings (N2N3 C1 to C7) part of the molecule are almost planar, with a maximum deviation of -0.007 (2) Å at C1 atom (Fig.1). The chlorine atom and the nitro group linked to the indazole ring are nearly coplanar with the largest deviation from the mean plane being -0.070 (2) Å at O1. No classic hydrogen bonds are observed in the structure.