research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of (N-methyl-N-phenyl­amino)(N-methyl-N-phenyl­carbamoyl)sulfide and the corresponding disulfane

aDepartment of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA, and bDepartment of Chemistry, Saint Michael's College, Colchester, VT 05439, USA
*Correspondence e-mail: barany@umn.edu

Edited by G. Smith, Queensland University of Technology, Australia (Received 21 August 2015; accepted 30 September 2015; online 24 October 2015)

The title compounds, (N-methyl-N-phenyl­amino)(N-methyl-N-phenyl­car­bam­oyl)sulfide, C15H16N2OS, (I), and (N-methyl-N-phenyl­amino)­(N-methyl-N-phenyl­carbamo­yl)disulfane, C15H16N2OS2, (II), are stable derivatives of (chloro­carbon­yl)sulfenyl chloride and (chloro­carbon­yl)disulfanyl chloride, respectively. The torsion angle about the S—S bond in (II) is −92.62 (6)°, which is close to the theoretical value of 90°. In the crystal of (II), non-classical inter­molecular C—H⋯O hydrogen bonds form centrosymmetric cyclic dimers [graph set R22(10)], while inter-dimer C—H⋯S inter­actions generate chains extending along the b axis.

1. Chemical context

As part of a multifaceted program in synthetic and mechanistic organosulfur chemistry (Barany et al., 1983[Barany, G., Schroll, A. L., Mott, A. W. & Halsrud, D. A. (1983). J. Org. Chem. 48, 4750-4761.]; Barany & Mott, 1984[Barany, G. & Mott, A. W. (1984). J. Org. Chem. 49, 1043-1051.]; Schroll & Barany, 1986[Schroll, A. L. & Barany, G. (1986). J. Org. Chem. 51, 1866-1881.]; Schrader et al., 2011[Schrader, A. M., Schroll, A. L. & Barany, G. (2011). J. Org. Chem. 76, 7882-7892.], and references cited therein), we frequently encounter challenging-to-characterize compounds with one or more reactive acid chloride and/or sulfenyl chloride moieties. These are converted to the corresponding stable carbamoyl and/or sulfenamide derivatives, which are often crystalline, through their reliable, rapid, and high-yield reactions with N-methyl­aniline.

[Scheme 1]

The present paper reports the structures of two such derivatives, i.e. (N-methyl-N-phenyl­amino)(N-methyl-N-phenyl­car­bamoyl)sulfide (I)[link] and (N-methyl-N-phenyl­amino)(N-methyl-N-phenyl­carbamo­yl)­disulfane (II)[link], as determined by X-ray crystallography. The title compounds are derived respectively from (chloro­carbon­yl)sulfenyl chloride and (chloro­carbon­yl)disulfanyl chloride, which are noxious, distillable liquids. They are the first two members of a general family of compounds with the structure Ph(Me)N(C=O)SnN(Me)Ph, in which the higher members (n = 3–6) were found, but not isolated in crystalline form, as components in the reactions of in situ generated (2-propoxydi­chloro­meth­yl)(chloro­carbon­yl)polysulfanes with N-methyl­aniline (Schroll & Barany, 1986[Schroll, A. L. & Barany, G. (1986). J. Org. Chem. 51, 1866-1881.]).

2. Structural commentary

The title compounds differ by the number of sulfur atoms: one in (I)[link] (Fig. 1[link]) versus two in (II)[link] (Fig. 2[link]), and by the resulting relative orientations of the Ph(Me)N(C=O)S and N(Me)Ph moieties. Otherwise, they share similar bond lengths and angles across all analogous bonds (Table 1[link]). Furthermore, the mol­ecular parameters are all within expected ranges. The S—S bond of (II)[link] is 2.0625 (5) Å, which is comparable to the bond length in elemental sulfur, S8 (2.07 Å), but slightly longer than the 2.03 Å found for bis­(N-methyl-N-phenyl­carbamo­yl)di­sul­fane ([Ph(Me)N(C=O)S]2) (III) (Schroll et al., 2012[Schroll, A. L., Pink, M. & Barany, G. (2012). Acta Cryst. E68, o1550.]). In compound (III) (Fig. 3[link]), the slight shortening of the S—S bond was attributed to a partial double-bond character imparted by the adjacent carbonyl groups. Because (II)[link] is essentially (III) minus one carbonyl group, it is not surprising for the S—S bond length in (II)[link] to be closer to that in S8. The torsion angle about the S—S bond in (II)[link] is −92.62 (6)°, which is comparable to the theoretical optimum of 90° (Pauling, 1949[Pauling, L. (1949). Proc. Natl Acad. Sci. USA, 35, 495-499.]; Torrico-Vallejos et al., 2010[Torrico-Vallejos, S., Erben, M. F., Boese, R. & Della Védova, C. O. (2010). New J. Chem. 34, 1365-1372.]).

Table 1
Selected geometric parameters for compounds (I)[link] and (II)[link] (Å, °)

Note that when S is not numbered, it is S1 for compound (I)[link] and S2 for compound (II)[link]. To specify certain torsion angles, the last atom in the linear structure differs between the two compounds, so X is used in place of an atom label.

  (I) (II)
N1—C8 1.351 (3) 1.357 (2)
S—N2 1.678 (2) 1.666 (1)
S1—C8 1.824 (2) 1.827 (1)
S1—S2 2.0625 (5)
     
C9—N2—S 115.90 (14) 116.23 (8)
C10—N2—S 118.74 (12) 118.86 (8)
C10—N2—C9 118.37 (17) 118.17 (11)
     
C1—N1—C8—S1 3.3 (2) 9.16 (15)
N1—C8—S1—X 172.19 (14) −165.53 (8)
C8—S1—S2—N2 −92.62 (6)
C10—N2—S—X 77.3 (2) −72.86 (10)
[Figure 1]
Figure 1
The mol­ecular conformation of compound (I)[link], showing 50% probability displacement ellipsoids with all non-H atoms labeled and numbered.
[Figure 2]
Figure 2
The mol­ecular conformation of compound (II)[link], showing 50% probability displacement ellipsoids with all non-hydrogen atoms labeled and numbered.
[Figure 3]
Figure 3
Structures of selected comparison compounds, bis­(N-methyl-N-phenyl­carbamo­yl)disulfane, (III), and bis­(N-methyl-N-phenyl­amino)­tris­ulfane, (IV)

3. Supra­molecular features

The unit cell of (I)[link] contains two mol­ecules related by a twofold screw axis (Fig. 4[link]). There are no inter­molecular contacts in the crystal structure of (I)[link]. In the crystal of (II)[link] non-classical inter­molecular C7—H⋯O1 hydrogen bonds (Table 2[link]) form centrosymmetric cyclic dimers [graph set R22(10)]. Chains of mol­ecules extending along the b axis result from inter-dimer C2—H⋯S1 inter­actions (Fig. 5[link]).

Table 2
Hydrogen-bond geometry (Å, °) for (II)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2A⋯S1i 0.95 2.84 3.766 (1) 165
C7—H7B⋯O1ii 0.98 2.60 3.532 (2) 160
Symmetry codes: (i) x, y-1, z; (ii) -x, -y, -z.
[Figure 4]
Figure 4
Crystal packing of (I)[link]. H atoms are not shown.
[Figure 5]
Figure 5
Crystal packing of (II)[link]. Only H atoms involved in inter­molecular C2—H⋯S1 and C7—H⋯O1=C8 non-classical hydrogen bonds are shown.

4. Database survey

A search for similar structures in the Cambridge Structural Database (CSD; Version 5.36, update of November 2014; Groom & Allen, 2014[Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662-671.]) gave bis­(N-methyl-N-phenyl­car­bam­o­yl)di­sulfane (III), published previously from our research (Schroll et al., 2012[Schroll, A. L., Pink, M. & Barany, G. (2012). Acta Cryst. E68, o1550.]), as well as two similar bis(car­bamoyl)disulfanes (Bereman et al., 1983[Bereman, R. D., Baird, D. M., Bordner, J. & Dorfman, J. R. (1983). Polyhedron, 2, 25-30.]; Li et al., 2006[Li, F., Yin, H.-D., Hong, M., Zhai, J. & Wang, D.-Q. (2006). Acta Cryst. E62, m1417-m1418.]). Structures containing a similar sulfenamide moiety were absent from the CSD, although two structures reported N—S bonds connected to `imido' [(RC=O)2N] moieties (Farrell et al., 2002[Farrell, D. M. M., Glidewell, C., Low, J. N., Skakle, J. M. S. & Zakaria, C. M. (2002). Acta Cryst. B58, 289-299.]; Ul-Haque & Behforouz, 1976[Ul-Haque, M. & Behforouz, M. (1976). J. Chem. Soc. Perkin Trans. 2, pp. 1459-1462.]). A very recent report from our research describes bis­(N-methyl-N-phenyl­amino)­tris­ulfane (IV) (Fig. 3[link]) (Barany et al., 2015[Barany, G., Henley, M. J., Polski, L. A., Schroll, A. L. & Young, V. G. (2015). Acta Cryst. E71, 836-839.]), an N-methyl­anilide which contains two `sulfenamide' ends [whereas (III) contains two `carbamo­yl' ends]. Not surprisingly, many geometric parameters of (III) and (IV) superimpose onto the corresponding portions of (I)[link] and (II)[link]. For example, the sulfenamide N2—S bond lengths of (I)[link] [1.6784 (15) Å] and (II)[link] [1.6660 (11) Å] are close to that of (IV) [average N—S bond length of 1.657 Å] and the carbamoyl N1—C8 and S1—C8 bond lengths of (I)[link] [1.351 (3) and 1.824 (2) Å, respectively] and (II)[link] [1.357 (2) and 1.827 (1) Å, respectively] are similar to that of (III) [1.345 (3) and 1.825 (2) Å, respectively]. In addition, the torsion angles about the N1—C8 bond of (I)[link] [3.3 (2)°] and (II)[link] [9.16 (15)°] are similar to that of (III) [−6.4 (3)°] and the torsion angle about the N2—S bond in (I)[link] [77.3 (2)°] and (II)[link] [−72.86 (10)] are similar but slightly smaller than that of (IV) (average angle 80.3°).

5. Synthesis and crystallization

The title compound (I)[link] was prepared on scales of up to 0.1 mol by addition of a 0.5 M solution of (chloro­carbon­yl)sulfenyl chloride in CHCl3 to an equal volume of a 2 M solution of N-methyl­aniline in CHCl3 at 273 K, followed by stirring for 30 min at 298 K (Barany et al., 1983[Barany, G., Schroll, A. L., Mott, A. W. & Halsrud, D. A. (1983). J. Org. Chem. 48, 4750-4761.]). Workup by washing with equal volumes of 1 N aqueous HCl (3×) and brine (once), drying (MgSO4), filtering, and concentrating in vacuo gave the product as an oil (nominally qu­anti­tative), and recrystallization from hot hexa­nes (30 mL g−1) gave a white solid (typically 65–80% recovery), m.p. 338–340 K, which was stable for several decades when stored under ambient conditions. 1H NMR (300 MHz; CDCl3): δ 7.43–7.48 (m, 3H), 7.37 (dd, J = 1.9, 7.9 Hz, 2H), 7.23–7.29 (m, 2H), 7.12 (dd, J = 1.0, 8.8 Hz, 2H), 6.86 (t, J = 7.2 Hz, 1H), 3.41 (s, 3H), 3.31 (s, 3H). X-ray quality crystals were obtained by dissolving (I)[link] (100 mg) in minimal CHCl3 (200 µL) and then adding hexane (2 mL), followed by slow evaporation of the solvent at 298 K over two days.

To prepare compound (II)[link], a solution of (chloro­carbon­yl)disulfanyl chloride (Schroll & Barany, 1986[Schroll, A. L. & Barany, G. (1986). J. Org. Chem. 51, 1866-1881.]) (814 mg, 5.0 mmol) in CH2Cl2 (15 mL) was added over 10 min to a stirred solution of N-methyl­aniline (2.2 mL, 20 mmol) in CH2Cl2 (11 mL) at 273 K. The homogeneous reaction mixture was allowed to warm to 298 K, stirred an additional 30 min, and standard extractive workup [compare to procedure above for (I)] gave the product as a brown oil (1.44 g, 94% crude yield). The crude product was purified by flash column chromatography, eluting with hexa­ne–ethyl acetate (8:1), to provide a yellow oil (1.37 g), which after storing under hexa­nes at 253 K overnight produced the title product as an off-white solid (757 mg, 2.5 mmol, 50%), m.p. 326–327 K (lit. 325–327 K; Barany & Mott, 1984[Barany, G. & Mott, A. W. (1984). J. Org. Chem. 49, 1043-1051.]). 1H NMR (300 MHz; CDCl3): δ 7.36–7.41 (m, 3H), 7.2–7.3 (m, 6H), 6.9–7.0 (m, 1H), 3.40 (s, 3H), 3.37 (s, 3H). X-ray quality crystals were prepared by dissolving (II)[link] (23 mg) in CH2Cl2 (100 µL) and then adding heptane (200 µL), followed by slow evaporation of the solvent at 278 K over 11 days.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. Hydrogen atoms were included at calculated positions [C—H(aromatic) = 0.95 Å or C—H(meth­yl) = 0.98 Å] and treated as riding, with UisoH = 1.2UeqC(aromatic) or 1.5UeqC(meth­yl). With (I)[link], although of no importance in this achiral mol­ecule, the Flack absolute structure factor (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.]) was determined as 0.05 (3) for 1450 Friedel pairs.

Table 3
Experimental details

  (I) (II)
Crystal data
Chemical formula C15H16N2OS C15H16N2OS2
Mr 272.36 304.42
Crystal system, space group Monoclinic, P21 Monoclinic, P21/c
Temperature (K) 173 123
a, b, c (Å) 9.0682 (7), 6.8402 (5), 11.4686 (9) 16.0414 (17), 5.5023 (6), 17.2986 (19)
β (°) 103.349 (1) 105.564 (1)
V3) 692.16 (9) 1470.9 (3)
Z 2 4
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.23 0.36
Crystal size (mm) 0.40 × 0.35 × 0.12 0.41 × 0.18 × 0.12
 
Data collection
Diffractometer Bruker SMART APEXII Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2002[Bruker (2002). APEX2, SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2002[Bruker (2002). APEX2, SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.687, 0.746 0.699, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 8061, 3145, 2961 16044, 3355, 3033
Rint 0.022 0.024
(sin θ/λ)max−1) 0.648 0.649
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.067, 1.05 0.028, 0.070, 1.06
No. of reflections 3145 3355
No. of parameters 174 183
No. of restraints 1 0
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.19, −0.15 0.32, −0.22
Absolute structure Flack x determined using 1285 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.05 (3)
Computer programs: APEX2 and SAINT (Bruker, 2002[Bruker (2002). APEX2, SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]).

Supporting information


Computing details top

For both compounds, data collection: APEX2 (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

(I) (N-Methyl-N-phenylamino)(N-methyl-N-phenylcarbamoyl)sulfide top
Crystal data top
C15H16N2OSF(000) = 288
Mr = 272.36Dx = 1.307 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 9.0682 (7) ÅCell parameters from 2915 reflections
b = 6.8402 (5) Åθ = 2.3–27.4°
c = 11.4686 (9) ŵ = 0.23 mm1
β = 103.349 (1)°T = 173 K
V = 692.16 (9) Å3Plate, colourless
Z = 20.40 × 0.35 × 0.12 mm
Data collection top
Bruker SMART APEXII
diffractometer
2961 reflections with I > 2σ(I)
φ and ω scansRint = 0.022
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
θmax = 27.4°, θmin = 1.8°
Tmin = 0.687, Tmax = 0.746h = 1111
8061 measured reflectionsk = 88
3145 independent reflectionsl = 1414
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.027 w = 1/[σ2(Fo2) + (0.0297P)2 + 0.1164P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.067(Δ/σ)max < 0.001
S = 1.05Δρmax = 0.19 e Å3
3145 reflectionsΔρmin = 0.15 e Å3
174 parametersAbsolute structure: Flack x determined using 1285 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
1 restraintAbsolute structure parameter: 0.05 (3)
Special details top

Geometry. All e.s.d.'s are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.32124 (5)0.41906 (8)0.67886 (4)0.02848 (13)
O10.41605 (17)0.0518 (2)0.71103 (13)0.0314 (3)
N10.2797 (2)0.1212 (3)0.52292 (15)0.0265 (4)
N20.39549 (17)0.4094 (3)0.82703 (13)0.0264 (3)
C10.2020 (2)0.2644 (3)0.43921 (17)0.0248 (4)
C20.2834 (2)0.3936 (4)0.38553 (17)0.0289 (5)
H2A0.39100.39380.40800.035*
C30.2080 (3)0.5227 (3)0.2990 (2)0.0352 (5)
H3A0.26370.61140.26190.042*
C40.0517 (3)0.5218 (4)0.2669 (2)0.0383 (6)
H4A0.00010.61090.20790.046*
C50.0302 (2)0.3922 (4)0.31988 (19)0.0391 (6)
H5A0.13780.39260.29720.047*
C60.0446 (2)0.2620 (4)0.40601 (19)0.0317 (5)
H6A0.01120.17190.44200.038*
C70.2839 (2)0.0795 (4)0.47987 (18)0.0317 (4)
H7A0.31680.16750.54830.048*
H7B0.35530.08770.42760.048*
H7C0.18260.11760.43480.048*
C80.3469 (2)0.1659 (3)0.63758 (18)0.0247 (4)
C90.3038 (3)0.3084 (4)0.8984 (2)0.0330 (5)
H9A0.33800.34670.98270.050*
H9B0.31510.16680.89110.050*
H9C0.19700.34430.86910.050*
C100.5557 (2)0.4074 (4)0.86869 (15)0.0248 (4)
C110.6441 (3)0.5337 (4)0.81829 (18)0.0317 (5)
H11A0.59710.61770.75450.038*
C120.8000 (3)0.5379 (4)0.8604 (2)0.0364 (5)
H12A0.85920.62380.82480.044*
C130.8703 (2)0.4179 (5)0.95412 (18)0.0363 (5)
H13A0.97740.42000.98250.044*
C140.7824 (3)0.2954 (4)1.0056 (2)0.0357 (5)
H14A0.82970.21391.07060.043*
C150.6264 (3)0.2891 (3)0.9641 (2)0.0306 (5)
H15A0.56760.20411.00080.037*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0321 (2)0.0234 (2)0.0263 (2)0.0027 (2)0.00070 (17)0.0012 (2)
O10.0339 (8)0.0284 (8)0.0284 (8)0.0061 (6)0.0002 (6)0.0003 (7)
N10.0291 (9)0.0245 (9)0.0240 (8)0.0005 (7)0.0019 (7)0.0019 (7)
N20.0278 (8)0.0279 (8)0.0232 (7)0.0030 (9)0.0053 (6)0.0007 (9)
C10.0266 (10)0.0259 (10)0.0207 (10)0.0016 (8)0.0031 (8)0.0037 (8)
C20.0283 (10)0.0291 (13)0.0273 (9)0.0012 (9)0.0021 (8)0.0029 (9)
C30.0461 (13)0.0285 (12)0.0294 (11)0.0029 (10)0.0054 (10)0.0002 (9)
C40.0475 (14)0.0365 (13)0.0268 (11)0.0149 (11)0.0002 (10)0.0002 (10)
C50.0275 (10)0.0534 (17)0.0340 (11)0.0107 (12)0.0024 (8)0.0059 (12)
C60.0253 (10)0.0419 (13)0.0285 (11)0.0011 (9)0.0075 (8)0.0026 (9)
C70.0364 (10)0.0276 (9)0.0309 (10)0.0006 (12)0.0073 (8)0.0040 (12)
C80.0222 (9)0.0231 (10)0.0287 (10)0.0003 (8)0.0059 (8)0.0021 (8)
C90.0323 (11)0.0330 (12)0.0355 (12)0.0054 (10)0.0115 (9)0.0031 (10)
C100.0292 (9)0.0252 (9)0.0197 (8)0.0028 (10)0.0049 (7)0.0053 (9)
C110.0363 (11)0.0364 (12)0.0218 (10)0.0061 (10)0.0055 (9)0.0016 (9)
C120.0351 (12)0.0457 (14)0.0302 (11)0.0135 (11)0.0115 (10)0.0034 (10)
C130.0286 (10)0.0442 (12)0.0348 (10)0.0034 (13)0.0045 (8)0.0094 (14)
C140.0363 (12)0.0343 (11)0.0322 (12)0.0010 (10)0.0007 (9)0.0006 (10)
C150.0345 (11)0.0261 (10)0.0307 (11)0.0027 (10)0.0069 (9)0.0017 (9)
Geometric parameters (Å, º) top
S1—N21.6784 (15)C6—H6A0.9500
S1—C81.824 (2)C7—H7A0.9800
O1—C81.212 (3)C7—H7B0.9800
N1—C81.351 (3)C7—H7C0.9800
N1—C11.437 (3)C9—H9A0.9800
N1—C71.462 (3)C9—H9B0.9800
N2—C101.421 (2)C9—H9C0.9800
N2—C91.467 (3)C10—C111.392 (3)
C1—C21.383 (3)C10—C151.393 (3)
C1—C61.390 (3)C11—C121.385 (3)
C2—C31.385 (3)C11—H11A0.9500
C2—H2A0.9500C12—C131.385 (4)
C3—C41.380 (3)C12—H12A0.9500
C3—H3A0.9500C13—C141.379 (4)
C4—C51.384 (4)C13—H13A0.9500
C4—H4A0.9500C14—C151.385 (3)
C5—C61.386 (3)C14—H14A0.9500
C5—H5A0.9500C15—H15A0.9500
N2—S1—C8100.36 (10)H7A—C7—H7C109.5
C8—N1—C1122.48 (18)H7B—C7—H7C109.5
C8—N1—C7120.04 (17)O1—C8—N1125.12 (19)
C1—N1—C7117.48 (16)O1—C8—S1120.52 (16)
C10—N2—C9118.37 (17)N1—C8—S1114.34 (15)
C10—N2—S1118.74 (12)N2—C9—H9A109.5
C9—N2—S1115.90 (14)N2—C9—H9B109.5
C2—C1—C6120.34 (19)H9A—C9—H9B109.5
C2—C1—N1120.23 (18)N2—C9—H9C109.5
C6—C1—N1119.25 (19)H9A—C9—H9C109.5
C1—C2—C3120.05 (19)H9B—C9—H9C109.5
C1—C2—H2A120.0C11—C10—C15118.84 (18)
C3—C2—H2A120.0C11—C10—N2119.8 (2)
C4—C3—C2119.7 (2)C15—C10—N2121.28 (19)
C4—C3—H3A120.2C12—C11—C10120.5 (2)
C2—C3—H3A120.2C12—C11—H11A119.8
C3—C4—C5120.5 (2)C10—C11—H11A119.8
C3—C4—H4A119.7C11—C12—C13120.6 (2)
C5—C4—H4A119.7C11—C12—H12A119.7
C4—C5—C6120.1 (2)C13—C12—H12A119.7
C4—C5—H5A120.0C14—C13—C12118.91 (19)
C6—C5—H5A120.0C14—C13—H13A120.5
C5—C6—C1119.4 (2)C12—C13—H13A120.5
C5—C6—H6A120.3C13—C14—C15121.1 (2)
C1—C6—H6A120.3C13—C14—H14A119.4
N1—C7—H7A109.5C15—C14—H14A119.4
N1—C7—H7B109.5C14—C15—C10120.0 (2)
H7A—C7—H7B109.5C14—C15—H15A120.0
N1—C7—H7C109.5C10—C15—H15A120.0
C8—S1—N2—C1077.3 (2)C1—N1—C8—S13.3 (2)
C8—S1—N2—C973.05 (18)C7—N1—C8—S1176.52 (14)
C8—N1—C1—C278.2 (3)N2—S1—C8—O16.02 (19)
C7—N1—C1—C2101.9 (2)N2—S1—C8—N1172.19 (14)
C8—N1—C1—C6106.6 (2)C9—N2—C10—C11166.6 (2)
C7—N1—C1—C673.2 (2)S1—N2—C10—C1143.8 (3)
C6—C1—C2—C30.6 (3)C9—N2—C10—C159.7 (3)
N1—C1—C2—C3175.69 (19)S1—N2—C10—C15139.90 (19)
C1—C2—C3—C40.1 (3)C15—C10—C11—C121.6 (3)
C2—C3—C4—C50.4 (3)N2—C10—C11—C12178.0 (2)
C3—C4—C5—C60.0 (4)C10—C11—C12—C130.6 (4)
C4—C5—C6—C10.6 (3)C11—C12—C13—C140.6 (4)
C2—C1—C6—C50.9 (3)C12—C13—C14—C150.8 (4)
N1—C1—C6—C5176.1 (2)C13—C14—C15—C100.2 (4)
C1—N1—C8—O1178.6 (2)C11—C10—C15—C141.4 (3)
C7—N1—C8—O11.6 (3)N2—C10—C15—C14177.7 (2)
(II) (N-Methyl-N-phenylamino)(N-methyl-N-phenylcarbamoyl)disulfane top
Crystal data top
C15H16N2OS2F(000) = 640
Mr = 304.42Dx = 1.375 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 16.0414 (17) ÅCell parameters from 2950 reflections
b = 5.5023 (6) Åθ = 3.1–27.5°
c = 17.2986 (19) ŵ = 0.36 mm1
β = 105.564 (1)°T = 123 K
V = 1470.9 (3) Å3Block, colorless
Z = 40.41 × 0.18 × 0.12 mm
Data collection top
Bruker APEXII CCD
diffractometer
3033 reflections with I > 2σ(I)
Radiation source: sealed tubeRint = 0.024
φ and ω scansθmax = 27.5°, θmin = 1.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 2020
Tmin = 0.699, Tmax = 0.746k = 77
16044 measured reflectionsl = 2222
3355 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.028H-atom parameters constrained
wR(F2) = 0.070 w = 1/[σ2(Fo2) + (0.0301P)2 + 0.7728P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
3355 reflectionsΔρmax = 0.32 e Å3
183 parametersΔρmin = 0.22 e Å3
Special details top

Geometry. All e.s.d.'s are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.24264 (2)0.27366 (6)0.12829 (2)0.01720 (9)
S20.27516 (2)0.52421 (6)0.05260 (2)0.01821 (9)
O10.15803 (6)0.07736 (18)0.01294 (5)0.0215 (2)
N10.12052 (7)0.0673 (2)0.09646 (6)0.0173 (2)
N20.36329 (7)0.4255 (2)0.02877 (6)0.0184 (2)
C10.12310 (8)0.0405 (2)0.18005 (7)0.0160 (2)
C20.16345 (8)0.2156 (2)0.23508 (8)0.0199 (3)
H2A0.19070.35120.21820.024*
C30.16379 (9)0.1914 (3)0.31517 (8)0.0232 (3)
H3A0.19070.31190.35300.028*
C40.12493 (9)0.0083 (3)0.33984 (8)0.0227 (3)
H4A0.12660.02680.39480.027*
C50.08363 (9)0.1808 (3)0.28448 (8)0.0239 (3)
H5A0.05650.31660.30150.029*
C60.08171 (8)0.1558 (2)0.20413 (8)0.0209 (3)
H6A0.05230.27210.16590.025*
C70.06129 (8)0.2499 (2)0.05015 (8)0.0204 (3)
H7A0.06260.24310.00610.031*
H7B0.00240.21680.05370.031*
H7C0.07920.41180.07190.031*
C80.16585 (8)0.0771 (2)0.05874 (7)0.0163 (2)
C90.34991 (9)0.2336 (3)0.03205 (8)0.0233 (3)
H9A0.39680.23840.05850.035*
H9B0.29430.25890.07200.035*
H9C0.34970.07500.00630.035*
C100.44464 (8)0.4352 (2)0.08806 (7)0.0168 (2)
C110.50700 (9)0.2568 (2)0.09139 (8)0.0219 (3)
H11A0.49510.12500.05460.026*
C120.58679 (9)0.2706 (3)0.14843 (9)0.0256 (3)
H12A0.62910.14850.15000.031*
C130.60500 (9)0.4600 (3)0.20266 (8)0.0242 (3)
H13A0.65940.46860.24160.029*
C140.54283 (9)0.6379 (3)0.19970 (8)0.0228 (3)
H14A0.55480.76830.23710.027*
C150.46357 (9)0.6273 (2)0.14279 (8)0.0202 (3)
H15A0.42190.75120.14100.024*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.01726 (16)0.01986 (16)0.01529 (15)0.00238 (11)0.00576 (12)0.00051 (11)
S20.01769 (16)0.01601 (16)0.02234 (16)0.00171 (11)0.00784 (12)0.00252 (12)
O10.0234 (5)0.0262 (5)0.0148 (4)0.0021 (4)0.0049 (4)0.0012 (4)
N10.0179 (5)0.0187 (5)0.0158 (5)0.0033 (4)0.0055 (4)0.0012 (4)
N20.0170 (5)0.0226 (6)0.0175 (5)0.0012 (4)0.0079 (4)0.0021 (4)
C10.0150 (6)0.0183 (6)0.0159 (6)0.0029 (5)0.0063 (4)0.0013 (5)
C20.0203 (6)0.0192 (6)0.0208 (6)0.0021 (5)0.0066 (5)0.0011 (5)
C30.0234 (7)0.0254 (7)0.0192 (6)0.0008 (5)0.0030 (5)0.0033 (5)
C40.0231 (7)0.0293 (7)0.0177 (6)0.0064 (5)0.0088 (5)0.0050 (5)
C50.0269 (7)0.0203 (7)0.0299 (7)0.0006 (5)0.0168 (6)0.0042 (5)
C60.0211 (6)0.0193 (6)0.0251 (7)0.0025 (5)0.0110 (5)0.0037 (5)
C70.0197 (6)0.0204 (6)0.0198 (6)0.0034 (5)0.0031 (5)0.0009 (5)
C80.0144 (6)0.0161 (6)0.0181 (6)0.0020 (5)0.0039 (5)0.0013 (5)
C90.0211 (6)0.0322 (8)0.0173 (6)0.0031 (5)0.0064 (5)0.0068 (5)
C100.0177 (6)0.0185 (6)0.0165 (6)0.0035 (5)0.0087 (5)0.0004 (5)
C110.0235 (7)0.0204 (7)0.0225 (6)0.0008 (5)0.0074 (5)0.0064 (5)
C120.0212 (7)0.0255 (7)0.0295 (7)0.0026 (5)0.0056 (6)0.0049 (6)
C130.0198 (6)0.0292 (7)0.0228 (7)0.0040 (5)0.0042 (5)0.0027 (6)
C140.0264 (7)0.0220 (7)0.0218 (6)0.0060 (5)0.0098 (5)0.0069 (5)
C150.0226 (6)0.0177 (6)0.0230 (6)0.0014 (5)0.0106 (5)0.0023 (5)
Geometric parameters (Å, º) top
S1—C81.8273 (13)C6—H6A0.9500
S1—S22.0625 (5)C7—H7A0.9800
S2—N21.6660 (11)C7—H7B0.9800
O1—C81.2123 (15)C7—H7C0.9800
N1—C81.3569 (16)C9—H9A0.9800
N1—C11.4429 (15)C9—H9B0.9800
N1—C71.4646 (16)C9—H9C0.9800
N2—C101.4281 (16)C10—C111.3917 (18)
N2—C91.4656 (16)C10—C151.3967 (18)
C1—C21.3865 (18)C11—C121.3929 (19)
C1—C61.3888 (18)C11—H11A0.9500
C2—C31.3905 (18)C12—C131.3800 (19)
C2—H2A0.9500C12—H12A0.9500
C3—C41.386 (2)C13—C141.388 (2)
C3—H3A0.9500C13—H13A0.9500
C4—C51.384 (2)C14—C151.3847 (19)
C4—H4A0.9500C14—H14A0.9500
C5—C61.3888 (18)C15—H15A0.9500
C5—H5A0.9500
C8—S1—S2102.60 (4)H7A—C7—H7C109.5
N2—S2—S1108.37 (4)H7B—C7—H7C109.5
C8—N1—C1123.17 (10)O1—C8—N1124.80 (12)
C8—N1—C7119.43 (10)O1—C8—S1122.64 (10)
C1—N1—C7117.28 (10)N1—C8—S1112.55 (9)
C10—N2—C9118.17 (11)N2—C9—H9A109.5
C10—N2—S2118.86 (8)N2—C9—H9B109.5
C9—N2—S2116.23 (8)H9A—C9—H9B109.5
C2—C1—C6120.47 (11)N2—C9—H9C109.5
C2—C1—N1119.97 (11)H9A—C9—H9C109.5
C6—C1—N1119.51 (11)H9B—C9—H9C109.5
C1—C2—C3119.60 (12)C11—C10—C15118.84 (12)
C1—C2—H2A120.2C11—C10—N2120.77 (11)
C3—C2—H2A120.2C15—C10—N2120.38 (12)
C4—C3—C2120.05 (13)C10—C11—C12120.30 (12)
C4—C3—H3A120.0C10—C11—H11A119.8
C2—C3—H3A120.0C12—C11—H11A119.8
C5—C4—C3120.12 (12)C13—C12—C11120.62 (13)
C5—C4—H4A119.9C13—C12—H12A119.7
C3—C4—H4A119.9C11—C12—H12A119.7
C4—C5—C6120.16 (12)C12—C13—C14119.24 (13)
C4—C5—H5A119.9C12—C13—H13A120.4
C6—C5—H5A119.9C14—C13—H13A120.4
C1—C6—C5119.55 (12)C15—C14—C13120.65 (12)
C1—C6—H6A120.2C15—C14—H14A119.7
C5—C6—H6A120.2C13—C14—H14A119.7
N1—C7—H7A109.5C14—C15—C10120.34 (12)
N1—C7—H7B109.5C14—C15—H15A119.8
H7A—C7—H7B109.5C10—C15—H15A119.8
N1—C7—H7C109.5
S1—S2—N2—C1072.86 (10)C7—N1—C8—S1175.04 (9)
S1—S2—N2—C977.90 (9)C8—S1—S2—N292.62 (6)
C8—N1—C1—C2110.35 (14)S2—S1—C8—O115.13 (12)
C7—N1—C1—C273.77 (15)S2—S1—C8—N1165.53 (8)
C8—N1—C1—C672.46 (16)C9—N2—C10—C114.59 (17)
C7—N1—C1—C6103.41 (14)S2—N2—C10—C11145.60 (11)
C6—C1—C2—C31.25 (19)C9—N2—C10—C15174.12 (11)
N1—C1—C2—C3178.41 (12)S2—N2—C10—C1535.69 (15)
C1—C2—C3—C40.8 (2)C15—C10—C11—C120.02 (19)
C2—C3—C4—C51.8 (2)N2—C10—C11—C12178.70 (12)
C3—C4—C5—C60.6 (2)C10—C11—C12—C130.4 (2)
C2—C1—C6—C52.36 (19)C11—C12—C13—C140.2 (2)
N1—C1—C6—C5179.54 (12)C12—C13—C14—C150.4 (2)
C4—C5—C6—C11.4 (2)C13—C14—C15—C100.8 (2)
C1—N1—C8—O1171.52 (12)C11—C10—C15—C140.56 (19)
C7—N1—C8—O14.27 (19)N2—C10—C15—C14179.29 (11)
C1—N1—C8—S19.16 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2A···S1i0.952.843.766 (1)165
C7—H7B···O1ii0.982.603.532 (2)160
Symmetry codes: (i) x, y1, z; (ii) x, y, z.
Selected geometric parameters for compounds (I) and (II) (Å, °) top
Note that when S is not numbered, it is S1 for compound (I) and S2 for compound (II). To specify certain torsion angles, the last atom in the linear structure differs between the two compounds, so X is used in place of an atom label.
(I)(II)
N1—C81.351 (3)1.357 (2)
S—N21.678 (2)1.666 (1)
S1—C81.824 (2)1.827 (1)
S1—S22.0625 (5)
C9—N2—S115.90 (14)116.23 (8)
C10—N2—S118.74 (12)118.86 (8)
C10—N2—C9118.37 (17)118.17 (11)
C1—N1—C8—S13.3 (2)9.16 (15)
N1—C8—S1—X172.19 (14)-165.53 (8)
C8—S1—S2—N2-92.62 (6)
C10—N2—S—X77.3 (2)-72.86 (10)
 

Acknowledgements

We thank Barbara L. Goldenberg for outstanding assistance in the preparation of this manuscript and Dominique Chavatte-Kallender, Phillip T. Goldblatt, David A. Halsrud, Kenneth P. Morris, and Andrew W. Mott for preparing (I)[link] and (II)[link] over the years.

References

First citationBarany, G., Henley, M. J., Polski, L. A., Schroll, A. L. & Young, V. G. (2015). Acta Cryst. E71, 836–839.  CSD CrossRef IUCr Journals Google Scholar
First citationBarany, G. & Mott, A. W. (1984). J. Org. Chem. 49, 1043–1051.  CrossRef CAS Web of Science Google Scholar
First citationBarany, G., Schroll, A. L., Mott, A. W. & Halsrud, D. A. (1983). J. Org. Chem. 48, 4750–4761.  CrossRef CAS Web of Science Google Scholar
First citationBereman, R. D., Baird, D. M., Bordner, J. & Dorfman, J. R. (1983). Polyhedron, 2, 25–30.  CSD CrossRef CAS Web of Science Google Scholar
First citationBruker (2002). APEX2, SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrell, D. M. M., Glidewell, C., Low, J. N., Skakle, J. M. S. & Zakaria, C. M. (2002). Acta Cryst. B58, 289–299.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.  Web of Science CSD CrossRef CAS Google Scholar
First citationLi, F., Yin, H.-D., Hong, M., Zhai, J. & Wang, D.-Q. (2006). Acta Cryst. E62, m1417–m1418.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPauling, L. (1949). Proc. Natl Acad. Sci. USA, 35, 495–499.  CrossRef PubMed CAS Web of Science Google Scholar
First citationSchrader, A. M., Schroll, A. L. & Barany, G. (2011). J. Org. Chem. 76, 7882–7892.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSchroll, A. L. & Barany, G. (1986). J. Org. Chem. 51, 1866–1881.  CrossRef CAS Web of Science Google Scholar
First citationSchroll, A. L., Pink, M. & Barany, G. (2012). Acta Cryst. E68, o1550.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTorrico-Vallejos, S., Erben, M. F., Boese, R. & Della Védova, C. O. (2010). New J. Chem. 34, 1365–1372.  CAS Google Scholar
First citationUl-Haque, M. & Behforouz, M. (1976). J. Chem. Soc. Perkin Trans. 2, pp. 1459–1462.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds