research communications
a]quinoxalin-11-ium bromide monohydrate
of 2-amino-1,3-dibromo-6-oxo-5,6-dihydropyrido[1,2-aDepartment of Chemistry, College of Science, Sultan Qaboos University, PO Box 36 Al-Khod 123, Muscat, Sultanate of , Oman, and bNational Taras Shevchenko University, Department of Chemistry, Volodymyrska str. 64, 01601 Kiev, Ukraine
*Correspondence e-mail: lyulya200288@mail.ru
In the title hydrated salt, C12H8Br2N3O+·Br−·H2O, which was synthesized by the reaction of the pyridine derivative Schiff base N1,N4-bis(pyridine-2-ylmethylene)benzene-1,4-diamine with bromine, the contains a 2-amino-1,3-dibromo-6-oxo-5,6-dihydropyrido[1,2-a]quinoxalin-11-ium cation, with a protonated pyridine moiety, a bromide anion and a water molecule of solvation. The cation is non-planar with the dibromo-substituted benzene ring, forming dihedral angles of 24.3 (4) and 11.5 (4)° with the fused pyridine and pyrazine ring moieties, respectively. In the crystal, the cations are linked through a centrosymmetric hydrogen-bonded cyclic R42(8) Br2(H2O)2 unit by N—H⋯Br, N—H⋯O and O—H⋯Br hydrogen bonds, forming one-dimensional ribbons extending along b, with the planes of the cations lying parallel to (100).
CCDC reference: 1428593
1. Chemical context
Quinoxaline and its derivatives are an important class of benzo-heterocycles (Kurasawa et al., 1988; Cheeseman & Werstiuk, 1978), displaying a broad spectrum of biological activities (Seitz et al., 2002; Toshima et al., 2002) which have made them important structures in combinatorial drug-discovery literature (Wu & Ede, 2001; Lee et al., 1997). These compounds have also found applications as dyes (Zaragoza et al., 1999; Sonawane & Rangnekar, 2002) and building blocks in the synthesis of organic semiconductors (Katoh et al., 2000; Dailey et al., 2001) and they also serve as useful rigid subunits in macrocyclic receptors for molecular recognition (Mizuno et al., 2002) and chemically controllable switches (Elwahy, 2000). The present work is a part of an ongoing structural study of and their utilization in the synthesis of new organic and polynuclear coordination compounds (Faizi & Sen, 2014; Moroz et al., 2012). We report here the synthesis and of 2-amino-1,3-dibromo-6-oxo-5,6-dihydropyrido[1,2-a]quinoxalin-11-ium bromide monohydrate (refcode ADOQBM). Previously, we have reported new methods for the preparation of substituted quinoxaline derivatives together with their crystallographic characterization. However, there are very few reported structures of compounds similar to the title compound, one being the doubly protonated dibromide salt 2-azaniumyl-3-bromo-6-oxo-5,6-dihydropyrido[1,2-a]quinoxalin-11-ium dibromide (Faizi et al., 2015).
The title singly protonated monobromide monohydrate salt, C12H8Br2N3O+·Br−·H2O, was synthesized from the reaction the pyridine derivative Schiff base N1,N4–bis(pyridine-2-ylmethylene)benzene-1,4-diamine (BPYBD) with molecular bromine. The occurs by oxidation of BPYBD, reduction of molecular bromine and finally hydrolysis of the imine bond which creates the charge at the pyridine nitrogen atom in the quinoxaline ring system. The structure is reported herein.
2. Structural commentary
The a]quinoxalin-11-ium cation with a protonated pyridine moiety, and a bromide counter-anion and a water molecule of solvation (Fig. 1). The cation is non-planar compared to the previously reported structure (Faizi et al., 2015). The mean plane of the pyridine ring forms a dihedral angle of 24.2 (4)° with the benzene ring and 14.6 (4)° with the pyrazine ring of the fused system while the dihedral angle between the pyrazine and the benzene ring is 11.5 (4)°. A shorter C10—N3 distance of 1.367 (9) Å, compared to the usual aromatic C—Namine single bond distance of 1.43 (3) Å, might be due to the electron-withdrawing effect of the positively charged pyridine N atom, and the ortho-substituted bromine atom which decreases the C—Namine bond order. Other C—C and C—N bond distances are well within the limits expected for aromatic rings (Koner & Ray, 2008; Kanderal et al., 2005; Fritsky et al., 2006). Present also in the cations are intramolecular N3—H⋯Br1 and N3—H⋯Br2 interactions [3.048 (7), 3.006 (7) Å, respectively, Table 1].
of the title compound contains a discrete 2-amino-1,3-dibromo-6-oxo-5,6-dihydropyrido[1,2-3. Supramolecular features
In the crystal, the cations are linked through a centrosymmetric hydrogen-bonded cyclic R42(8) Br2(H2O)2 unit and N—H⋯Br, N—H⋯O and O—H⋯Br hydrogen bonds (Table 1), forming broad one-dimensional ribbons extending along b (Fig. 2). The planes of the cations lie parallel to (100). Fig. 3 shows the packing in the viewed along the b axis, in which layers of quinoxalinium cations are embedded between ionic layers of anions and vice versa, forming an alternating hydrocarbon–ionic layer structure. No intermolecular π–π interations are evident in the hydrocarbon layer in the structure.
4. Database survey
There are very few examples of similar compounds in the literature, a search of the Cambridge Structural Database (Version 5.35, May 2014; Groom & Allen, 2014) revealing the structure of 2-azaniumyl-3-bromo-6-oxo-5,6-dihydropyrido[1,2-a]quinoxalin-11-ium dibromide (Faizi et al., 2015), in which the 2-amino-1,2-dibromide ring in the title compound is replaced by a 2-azaniumyl-3-bromo ring. Other similar structures have been reported (Faizi & Sen, 2014; Koner et al., 2008).
5. Synthesis and crystallization
Molecular bromine (440 mg, 144.0 µL, 2.80 mmol) was added to a methanolic solution (10 mL) of Schiff base, N1,N4-bis (pyridine-2-ylmethylene)benzene-1,4-diamine (BPYBD) (197 mg, 0.70 mmol). The color of the solution immediately changed from yellow to orange. The reaction mixture was stirred for 4 h at room temperature under a fume hood. The resulting yellow precipitate was recovered by filtration, washed several times with small portions of acetone and then with diethyl ether to give 200 mg (yield: 64%) of 2-amino-1,3-dibromo-6-oxo-5,6-dihydropyrido[1,2-a]quinoxalin-11-ium bromide monohydrate (ADOQBM). The crystal of the title compound suitable for X-ray analysis was obtained within three days by slow evaporation of a solution of the compound in methanol.
6. Refinement
Crystal data, data collection and structure . All N-bound H atoms were located in difference-Fourier maps and their positions were then held fixed. The isotropic displacement parameters were refined for these atoms. Aromatic H atoms were placed in calculated positions and treated as riding on their parent C atoms [C—H = 0.93 Å and Uiso(H) = 1.2 or 1.5Ueq(C)].
details are summarized in Table 2
|
Supporting information
CCDC reference: 1428593
https://doi.org/10.1107/S2056989015018253/zs2343sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989015018253/zs2343Isup2.hkl
Data collection: SMART (Bruker, 2003); cell
SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenberg & Putz, 2006); software used to prepare material for publication: DIAMOND (Brandenberg & Putz, 2006).C12H8Br2N3O+·Br−·H2O | Z = 2 |
Mr = 467.93 | F(000) = 448 |
Triclinic, P1 | Dx = 2.163 Mg m−3 |
a = 7.5069 (7) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 9.7435 (10) Å | Cell parameters from 1023 reflections |
c = 10.782 (1) Å | θ = 1.5–23.5° |
α = 88.490 (7)° | µ = 8.42 mm−1 |
β = 73.798 (7)° | T = 100 K |
γ = 71.981 (7)° | Block, yellow |
V = 718.61 (12) Å3 | 0.20 × 0.15 × 0.11 mm |
Bruker SMART APEX CCD diffractometer | 2187 independent reflections |
Radiation source: fine-focus sealed tube | 1681 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.163 |
/w–scans | θmax = 23.8°, θmin = 2.0° |
Absorption correction: multi-scan (SADABS; Bruker, 2003) | h = −8→8 |
Tmin = 0.259, Tmax = 0.365 | k = −11→10 |
8077 measured reflections | l = −12→12 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.059 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.155 | H-atom parameters constrained |
S = 1.00 | w = 1/[σ2(Fo2) + (0.0902P)2] where P = (Fo2 + 2Fc2)/3 |
2187 reflections | (Δ/σ)max < 0.001 |
181 parameters | Δρmax = 1.18 e Å−3 |
0 restraints | Δρmin = −1.16 e Å−3 |
Experimental. The OH H-atom was located in difference Fourier map and refined with with Uiso(H) = 1.2Ueq(O). The N- and C-bound H-atoms were positioned geometrically and refined using a riding model: N—H = 0.86 Å and C—H = 0.93 Å with Uiso(H) = 1.2Ueq(parent atom). |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Br3 | 0.26076 (12) | 0.03614 (8) | 0.73364 (8) | 0.0441 (3) | |
Br2 | 0.27561 (13) | 0.36785 (8) | 0.22264 (8) | 0.0446 (3) | |
Br1 | 0.30008 (13) | 0.45076 (9) | −0.29950 (8) | 0.0480 (3) | |
C3 | 0.1893 (12) | 0.8452 (10) | 0.4590 (8) | 0.048 (2) | |
H3 | 0.2041 | 0.8791 | 0.5342 | 0.058* | |
C1 | 0.1158 (12) | 0.6740 (8) | 0.3479 (7) | 0.0388 (19) | |
H1 | 0.0617 | 0.5998 | 0.3495 | 0.047* | |
N1 | 0.1941 (9) | 0.7217 (6) | 0.2309 (6) | 0.0316 (14) | |
C2 | 0.1146 (14) | 0.7316 (9) | 0.4612 (8) | 0.048 (2) | |
H2 | 0.0644 | 0.6953 | 0.5393 | 0.057* | |
C4 | 0.2417 (12) | 0.9077 (9) | 0.3430 (8) | 0.046 (2) | |
H4 | 0.2805 | 0.9898 | 0.3414 | 0.055* | |
C12 | 0.2134 (10) | 0.6506 (7) | 0.1102 (7) | 0.0306 (17) | |
N2 | 0.2314 (10) | 0.8738 (6) | 0.0112 (6) | 0.0377 (16) | |
H5 | 0.2190 | 0.9269 | −0.0528 | 0.045* | |
C7 | 0.2241 (11) | 0.7334 (7) | 0.0019 (7) | 0.0327 (18) | |
C11 | 0.2384 (11) | 0.5009 (7) | 0.0921 (7) | 0.0318 (18) | |
C9 | 0.2558 (11) | 0.5314 (8) | −0.1296 (8) | 0.0362 (19) | |
C10 | 0.2586 (10) | 0.4390 (7) | −0.0288 (7) | 0.0324 (18) | |
C8 | 0.2379 (11) | 0.6744 (7) | −0.1175 (8) | 0.0349 (18) | |
H6 | 0.2351 | 0.7313 | −0.1879 | 0.042* | |
C5 | 0.2364 (11) | 0.8482 (8) | 0.2307 (8) | 0.0353 (18) | |
C6 | 0.2565 (12) | 0.9308 (8) | 0.1142 (8) | 0.042 (2) | |
O1 | 0.2841 (12) | 1.0476 (6) | 0.1172 (7) | 0.071 (2) | |
N3 | 0.2950 (11) | 0.2940 (7) | −0.0508 (7) | 0.0457 (18) | |
H3A | 0.3064 | 0.2371 | 0.0109 | 0.055* | |
H3B | 0.3066 | 0.2597 | −0.1263 | 0.055* | |
O2 | 0.3545 (11) | 0.2190 (7) | 0.4635 (6) | 0.072 (2) | |
H12 | 0.3415 | 0.2338 | 0.5459 | 0.108* | |
H11 | 0.4550 | 0.1520 | 0.4120 | 0.108* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br3 | 0.0499 (5) | 0.0360 (5) | 0.0489 (5) | −0.0143 (4) | −0.0173 (4) | 0.0057 (4) |
Br2 | 0.0516 (6) | 0.0273 (5) | 0.0573 (6) | −0.0140 (4) | −0.0184 (4) | 0.0127 (4) |
Br1 | 0.0565 (6) | 0.0389 (5) | 0.0510 (6) | −0.0130 (4) | −0.0206 (4) | −0.0041 (4) |
C3 | 0.044 (5) | 0.051 (6) | 0.051 (5) | −0.013 (4) | −0.017 (4) | −0.003 (4) |
C1 | 0.046 (5) | 0.029 (4) | 0.043 (5) | −0.014 (4) | −0.012 (4) | 0.004 (4) |
N1 | 0.033 (3) | 0.022 (3) | 0.045 (4) | −0.012 (3) | −0.016 (3) | 0.007 (3) |
C2 | 0.061 (6) | 0.042 (5) | 0.040 (5) | −0.016 (5) | −0.017 (4) | 0.012 (4) |
C4 | 0.052 (5) | 0.033 (4) | 0.060 (6) | −0.018 (4) | −0.021 (4) | −0.006 (4) |
C12 | 0.032 (4) | 0.022 (4) | 0.040 (4) | −0.011 (3) | −0.010 (3) | 0.000 (3) |
N2 | 0.052 (4) | 0.018 (3) | 0.044 (4) | −0.010 (3) | −0.016 (3) | 0.006 (3) |
C7 | 0.036 (4) | 0.016 (4) | 0.047 (5) | −0.007 (3) | −0.015 (4) | 0.006 (3) |
C11 | 0.033 (4) | 0.017 (4) | 0.051 (5) | −0.014 (3) | −0.014 (3) | 0.009 (3) |
C9 | 0.037 (4) | 0.030 (4) | 0.048 (5) | −0.013 (4) | −0.018 (4) | −0.004 (4) |
C10 | 0.029 (4) | 0.016 (4) | 0.053 (5) | −0.005 (3) | −0.017 (4) | 0.004 (4) |
C8 | 0.038 (4) | 0.020 (4) | 0.045 (5) | −0.008 (3) | −0.009 (4) | 0.002 (3) |
C5 | 0.036 (4) | 0.018 (4) | 0.049 (5) | −0.002 (3) | −0.014 (4) | −0.004 (3) |
C6 | 0.053 (5) | 0.017 (4) | 0.057 (5) | −0.013 (4) | −0.016 (4) | 0.002 (4) |
O1 | 0.115 (6) | 0.030 (3) | 0.086 (5) | −0.041 (4) | −0.038 (4) | 0.007 (3) |
N3 | 0.069 (5) | 0.022 (3) | 0.052 (4) | −0.019 (3) | −0.022 (4) | 0.003 (3) |
O2 | 0.077 (5) | 0.063 (4) | 0.064 (4) | −0.005 (4) | −0.020 (4) | 0.015 (4) |
Br2—C11 | 1.907 (7) | N2—C6 | 1.338 (10) |
Br1—C9 | 1.912 (8) | N2—C7 | 1.393 (9) |
C3—C2 | 1.384 (12) | N2—H5 | 0.8600 |
C3—C4 | 1.387 (12) | C7—C8 | 1.388 (11) |
C3—H3 | 0.9300 | C11—C10 | 1.400 (11) |
C1—C2 | 1.355 (11) | C9—C8 | 1.364 (10) |
C1—N1 | 1.370 (10) | C9—C10 | 1.394 (11) |
C1—H1 | 0.9300 | C10—N3 | 1.367 (9) |
N1—C5 | 1.364 (9) | C8—H6 | 0.9300 |
N1—C12 | 1.440 (9) | C5—C6 | 1.471 (11) |
C2—H2 | 0.9300 | C6—O1 | 1.222 (9) |
C4—C5 | 1.373 (11) | N3—H3A | 0.8600 |
C4—H4 | 0.9300 | N3—H3B | 0.8600 |
C12—C7 | 1.399 (10) | O2—H12 | 0.8769 |
C12—C11 | 1.423 (9) | O2—H11 | 0.8900 |
C2—C3—C4 | 119.0 (8) | C12—C7—N2 | 120.3 (7) |
C2—C3—H3 | 120.5 | C10—C11—C12 | 121.3 (7) |
C4—C3—H3 | 120.5 | C10—C11—Br2 | 115.3 (5) |
C2—C1—N1 | 122.1 (8) | C12—C11—Br2 | 123.0 (6) |
C2—C1—H1 | 119.0 | C8—C9—C10 | 124.3 (7) |
N1—C1—H1 | 119.0 | C8—C9—Br1 | 117.2 (6) |
C5—N1—C1 | 118.1 (6) | C10—C9—Br1 | 118.3 (5) |
C5—N1—C12 | 119.7 (6) | N3—C10—C11 | 122.5 (7) |
C1—N1—C12 | 121.9 (6) | N3—C10—C9 | 121.0 (7) |
C1—C2—C3 | 118.9 (8) | C11—C10—C9 | 116.3 (6) |
C1—C2—H2 | 120.5 | C9—C8—C7 | 118.8 (7) |
C3—C2—H2 | 120.5 | C9—C8—H6 | 120.6 |
C5—C4—C3 | 119.9 (8) | C7—C8—H6 | 120.6 |
C5—C4—H4 | 120.1 | N1—C5—C4 | 120.2 (7) |
C3—C4—H4 | 120.1 | N1—C5—C6 | 120.8 (7) |
C7—C12—C11 | 118.4 (7) | C4—C5—C6 | 118.7 (7) |
C7—C12—N1 | 116.8 (6) | O1—C6—N2 | 123.8 (8) |
C11—C12—N1 | 124.6 (6) | O1—C6—C5 | 120.2 (8) |
C6—N2—C7 | 123.7 (6) | N2—C6—C5 | 115.9 (7) |
C6—N2—H5 | 118.2 | C10—N3—H3A | 120.0 |
C7—N2—H5 | 118.2 | C10—N3—H3B | 120.0 |
C8—C7—C12 | 120.5 (7) | H3A—N3—H3B | 120.0 |
C8—C7—N2 | 119.1 (7) | H12—O2—H11 | 123.0 |
C2—C1—N1—C5 | −13.0 (11) | Br2—C11—C10—C9 | −172.4 (6) |
C2—C1—N1—C12 | 173.4 (7) | C8—C9—C10—N3 | −173.9 (8) |
N1—C1—C2—C3 | 2.1 (12) | Br1—C9—C10—N3 | 1.0 (10) |
C4—C3—C2—C1 | 7.5 (12) | C8—C9—C10—C11 | 1.0 (12) |
C2—C3—C4—C5 | −6.1 (13) | Br1—C9—C10—C11 | 175.9 (5) |
C5—N1—C12—C7 | −16.6 (10) | C10—C9—C8—C7 | 0.9 (12) |
C1—N1—C12—C7 | 156.8 (7) | Br1—C9—C8—C7 | −174.0 (6) |
C5—N1—C12—C11 | 157.9 (7) | C12—C7—C8—C9 | −4.9 (11) |
C1—N1—C12—C11 | −28.7 (11) | N2—C7—C8—C9 | 171.8 (7) |
C11—C12—C7—C8 | 6.7 (11) | C1—N1—C5—C4 | 14.3 (10) |
N1—C12—C7—C8 | −178.4 (7) | C12—N1—C5—C4 | −172.0 (7) |
C11—C12—C7—N2 | −169.9 (7) | C1—N1—C5—C6 | −159.2 (7) |
N1—C12—C7—N2 | 5.0 (11) | C12—N1—C5—C6 | 14.4 (10) |
C6—N2—C7—C8 | −166.8 (7) | C3—C4—C5—N1 | −5.0 (12) |
C6—N2—C7—C12 | 9.8 (12) | C3—C4—C5—C6 | 168.7 (8) |
C7—C12—C11—C10 | −4.7 (11) | C7—N2—C6—O1 | 171.7 (9) |
N1—C12—C11—C10 | −179.2 (7) | C7—N2—C6—C5 | −12.2 (11) |
C7—C12—C11—Br2 | 168.1 (6) | N1—C5—C6—O1 | 176.1 (8) |
N1—C12—C11—Br2 | −6.4 (11) | C4—C5—C6—O1 | 2.5 (12) |
C12—C11—C10—N3 | 175.8 (7) | N1—C5—C6—N2 | −0.1 (11) |
Br2—C11—C10—N3 | 2.4 (10) | C4—C5—C6—N2 | −173.8 (7) |
C12—C11—C10—C9 | 0.9 (11) |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H5···Br3i | 0.86 | 2.49 | 3.332 (6) | 166 |
N3—H3B···Br1 | 0.86 | 2.60 | 3.048 (7) | 113 |
N3—H3B···Br3ii | 0.86 | 2.84 | 3.581 (7) | 145 |
N3—H3A···O1iii | 0.86 | 2.17 | 2.977 (9) | 155 |
N3—H3A···Br2 | 0.86 | 2.56 | 3.006 (7) | 113 |
O2—H11···Br3iv | 0.89 | 2.50 | 3.383 (6) | 180 |
O2—H12···Br1v | 0.88 | 2.61 | 3.309 (7) | 137 |
O2—H12···Br3 | 0.88 | 2.83 | 3.393 (6) | 123 |
Symmetry codes: (i) x, y+1, z−1; (ii) x, y, z−1; (iii) x, y−1, z; (iv) −x+1, −y, −z+1; (v) x, y, z+1. |
Acknowledgements
The authors are grateful to the Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, UP-208016, India, for X-ray data collection.
References
Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119. Web of Science CrossRef CAS IUCr Journals Google Scholar
Brandenberg, K. & Putz, H. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2003). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cheeseman, G. W. H. & Werstiuk, E. S. G. (1978). Adv. Heterocycl. Chem. 22, 367–431. CrossRef CAS Google Scholar
Dailey, S., Feast, J. W., Peace, R. J., Sage, I. C., Till, S. & Wood, E. L. (2001). J. Mater. Chem. 11, 2238–2243. Web of Science CrossRef CAS Google Scholar
Elwahy, A. H. M. (2000). Tetrahedron, 56, 897–907. Web of Science CrossRef CAS Google Scholar
Faizi, M. S. H. & Sen, P. (2014). Acta Cryst. E70, m206–m207. CSD CrossRef IUCr Journals Google Scholar
Faizi, M. S. H., Sharkina, N. O. & Iskenderov, T. S. (2015). Acta Cryst. E71, o17–o18. CSD CrossRef IUCr Journals Google Scholar
Fritsky, I. O., Kozłowski, H., Kanderal, O. M., Haukka, M., Świątek-Kozłowska, J., Gumienna-Kontecka, E. & Meyer, F. (2006). Chem. Commun. pp. 4125–4127. Web of Science CSD CrossRef Google Scholar
Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671. Web of Science CSD CrossRef CAS Google Scholar
Kanderal, O. M., Kozłowski, H., Dobosz, A., Świątek-Kozłowska, J., Meyer, F. & Fritsky, I. O. (2005). Dalton Trans. pp. 1428. Google Scholar
Katoh, A., Yoshida, T. & Ohkanda, J. (2000). Heterocycles, 52, 911–920. CrossRef CAS Google Scholar
Koner, R. R. & Ray, M. (2008). Inorg. Chem. 47, 9122–9124. Web of Science CSD CrossRef PubMed CAS Google Scholar
Kurasawa, Y., Sakata, G. & Makino, K. (1988). Heterocycles, 27, 2481–2515. CrossRef Google Scholar
Lee, J., Murray, W. V. & Rivero, R. A. (1997). J. Org. Chem. 62, 3874–3879. CrossRef CAS Web of Science Google Scholar
Mizuno, T., Wei, W.-H., Eller, L. R. & Sessler, J. L. (2002). J. Am. Chem. Soc. 124, 1134–1135. Web of Science CrossRef PubMed CAS Google Scholar
Moroz, Y. S., Demeshko, S., Haukka, M., Mokhir, A., Mitra, U., Stocker, M., Müller, P., Meyer, F. & Fritsky, I. O. (2012). Inorg. Chem. 51, 7445–7447. Web of Science CSD CrossRef CAS PubMed Google Scholar
Seitz, L. E., Suling, W. J. & Reynolds, R. C. (2002). J. Med. Chem. 45, 5604–5606. Web of Science CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sonawane, N. D. & Rangnekar, D. W. (2002). J. Heterocycl. Chem. 39, 303–308. CrossRef CAS Google Scholar
Toshima, K., Takano, R., Ozawa, T. & Matsumura, S. (2002). Chem. Commun. pp. 212–213. Web of Science CrossRef Google Scholar
Wu, Z. & Ede, N. J. (2001). Tetrahedron Lett. 42, 8115–8118. Web of Science CrossRef CAS Google Scholar
Zaragoza, F. & Stephensen, H. (1999). J. Org. Chem. 64, 2555–2557. Web of Science CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.