research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 2-amino-1,3-di­bromo-6-oxo-5,6-di­hydro­pyrido[1,2-a]quinoxalin-11-ium bromide monohydrate

aDepartment of Chemistry, College of Science, Sultan Qaboos University, PO Box 36 Al-Khod 123, Muscat, Sultanate of , Oman, and bNational Taras Shevchenko University, Department of Chemistry, Volodymyrska str. 64, 01601 Kiev, Ukraine
*Correspondence e-mail: lyulya200288@mail.ru

Edited by G. Smith, Queensland University of Technology, Australia (Received 25 August 2015; accepted 29 September 2015; online 17 October 2015)

In the title hydrated salt, C12H8Br2N3O+·Br·H2O, which was synthesized by the reaction of the pyridine derivative Schiff base N1,N4-bis­(pyridine-2-yl­methyl­ene)benzene-1,4-di­amine with bromine, the asymmetric unit contains a 2-amino-1,3-di­bromo-6-oxo-5,6-di­hydro­pyrido[1,2-a]quinoxalin-11-ium cation, with a protonated pyridine moiety, a bromide anion and a water mol­ecule of solvation. The cation is non-planar with the di­bromo-substituted benzene ring, forming dihedral angles of 24.3 (4) and 11.5 (4)° with the fused pyridine and pyrazine ring moieties, respectively. In the crystal, the cations are linked through a centrosymmetric hydrogen-bonded cyclic R42(8) Br2(H2O)2 unit by N—H⋯Br, N—H⋯O and O—H⋯Br hydrogen bonds, forming one-dimensional ribbons extending along b, with the planes of the cations lying parallel to (100).

1. Chemical context

Quinoxaline and its derivatives are an important class of benzo-heterocycles (Kurasawa et al., 1988[Kurasawa, Y., Sakata, G. & Makino, K. (1988). Heterocycles, 27, 2481-2515.]; Cheeseman & Werstiuk, 1978[Cheeseman, G. W. H. & Werstiuk, E. S. G. (1978). Adv. Heterocycl. Chem. 22, 367-431.]), displaying a broad spectrum of biological activities (Seitz et al., 2002[Seitz, L. E., Suling, W. J. & Reynolds, R. C. (2002). J. Med. Chem. 45, 5604-5606.]; Toshima et al., 2002[Toshima, K., Takano, R., Ozawa, T. & Matsumura, S. (2002). Chem. Commun. pp. 212-213.]) which have made them important structures in combinatorial drug-discovery literature (Wu & Ede, 2001[Wu, Z. & Ede, N. J. (2001). Tetrahedron Lett. 42, 8115-8118.]; Lee et al., 1997[Lee, J., Murray, W. V. & Rivero, R. A. (1997). J. Org. Chem. 62, 3874-3879.]). These compounds have also found applications as dyes (Zaragoza et al., 1999[Zaragoza, F. & Stephensen, H. (1999). J. Org. Chem. 64, 2555-2557.]; Sonawane & Rangnekar, 2002[Sonawane, N. D. & Rangnekar, D. W. (2002). J. Heterocycl. Chem. 39, 303-308.]) and building blocks in the synthesis of organic semiconductors (Katoh et al., 2000[Katoh, A., Yoshida, T. & Ohkanda, J. (2000). Heterocycles, 52, 911-920.]; Dailey et al., 2001[Dailey, S., Feast, J. W., Peace, R. J., Sage, I. C., Till, S. & Wood, E. L. (2001). J. Mater. Chem. 11, 2238-2243.]) and they also serve as useful rigid subunits in macrocyclic receptors for mol­ecular recognition (Mizuno et al., 2002[Mizuno, T., Wei, W.-H., Eller, L. R. & Sessler, J. L. (2002). J. Am. Chem. Soc. 124, 1134-1135.]) and chemically controllable switches (Elwahy, 2000[Elwahy, A. H. M. (2000). Tetrahedron, 56, 897-907.]). The present work is a part of an ongoing structural study of Schiff bases and their utilization in the synthesis of new organic and polynuclear coordination compounds (Faizi & Sen, 2014[Faizi, M. S. H. & Sen, P. (2014). Acta Cryst. E70, m206-m207.]; Moroz et al., 2012[Moroz, Y. S., Demeshko, S., Haukka, M., Mokhir, A., Mitra, U., Stocker, M., Müller, P., Meyer, F. & Fritsky, I. O. (2012). Inorg. Chem. 51, 7445-7447.]). We report here the synthesis and crystal structure of 2-amino-1,3-di­bromo-6-oxo-5,6-di­hydro­pyrido[1,2-a]quinoxalin-11-ium bromide monohydrate (refcode ADOQBM). Previously, we have reported new methods for the preparation of substituted quinoxaline derivatives together with their crystallographic characterization. However, there are very few reported structures of compounds similar to the title compound, one being the doubly protonated dibromide salt 2-aza­niumyl-3-bromo-6-oxo-5,6-di­hydro­pyrido[1,2-a]quinoxalin-11-ium dibromide (Faizi et al., 2015[Faizi, M. S. H., Sharkina, N. O. & Iskenderov, T. S. (2015). Acta Cryst. E71, o17-o18.]).

The title singly protonated monobromide monohydrate salt, C12H8Br2N3O+·Br·H2O, was synthesized from the reaction the pyridine derivative Schiff base N1,N4–bis­(pyridine-2-yl­methyl­ene)benzene-1,4-di­amine (BPYBD) with mol­ecular bromine. The cyclization occurs by oxidation of BPYBD, reduction of mol­ecular bromine and finally hydrolysis of the imine bond which creates the charge at the pyridine nitro­gen atom in the quinoxaline ring system. The structure is reported herein.

[Scheme 1]

2. Structural commentary

The asymmetric unit of the title compound contains a discrete 2-amino-1,3-di­bromo-6-oxo-5,6-di­hydro­pyrido[1,2-a]quinoxalin-11-ium cation with a protonated pyridine moiety, and a bromide counter-anion and a water mol­ecule of solvation (Fig. 1[link]). The cation is non-planar compared to the previously reported structure (Faizi et al., 2015[Faizi, M. S. H., Sharkina, N. O. & Iskenderov, T. S. (2015). Acta Cryst. E71, o17-o18.]). The mean plane of the pyridine ring forms a dihedral angle of 24.2 (4)° with the benzene ring and 14.6 (4)° with the pyrazine ring of the fused system while the dihedral angle between the pyrazine and the benzene ring is 11.5 (4)°. A shorter C10—N3 distance of 1.367 (9) Å, compared to the usual aromatic C—Namine single bond distance of 1.43 (3) Å, might be due to the electron-withdrawing effect of the positively charged pyridine N atom, and the ortho-substituted bromine atom which decreases the C—Namine bond order. Other C—C and C—N bond distances are well within the limits expected for aromatic rings (Koner & Ray, 2008[Koner, R. R. & Ray, M. (2008). Inorg. Chem. 47, 9122-9124.]; Kanderal et al., 2005[Kanderal, O. M., Kozłowski, H., Dobosz, A., Świątek-Kozłowska, J., Meyer, F. & Fritsky, I. O. (2005). Dalton Trans. pp. 1428.]; Fritsky et al., 2006[Fritsky, I. O., Kozłowski, H., Kanderal, O. M., Haukka, M., Świątek-Kozłowska, J., Gumienna-Kontecka, E. & Meyer, F. (2006). Chem. Commun. pp. 4125-4127.]). Present also in the cations are intra­molecular N3—H⋯Br1 and N3—H⋯Br2 inter­actions [3.048 (7), 3.006 (7) Å, respectively, Table 1[link]].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H5⋯Br3i 0.86 2.49 3.332 (6) 166
N3—H3B⋯Br1 0.86 2.60 3.048 (7) 113
N3—H3B⋯Br3ii 0.86 2.84 3.581 (7) 145
N3—H3A⋯O1iii 0.86 2.17 2.977 (9) 155
N3—H3A⋯Br2 0.86 2.56 3.006 (7) 113
O2—H11⋯Br3iv 0.89 2.50 3.383 (6) 180
O2—H12⋯Br1v 0.88 2.61 3.309 (7) 137
Symmetry codes: (i) x, y+1, z-1; (ii) x, y, z-1; (iii) x, y-1, z; (iv) -x+1, -y, -z+1; (v) x, y, z+1.
[Figure 1]
Figure 1
The mol­ecular conformation and atom-numbering scheme for the title compound, with non-H atoms drawn as 40% probability displacement ellipsoids.

3. Supra­molecular features

In the crystal, the cations are linked through a centrosymmetric hydrogen-bonded cyclic R42(8) Br2(H2O)2 unit and N—H⋯Br, N—H⋯O and O—H⋯Br hydrogen bonds (Table 1[link]), forming broad one-dimensional ribbons extending along b (Fig. 2[link]). The planes of the cations lie parallel to (100). Fig. 3[link] shows the packing in the unit cell, viewed along the b axis, in which layers of quinoxalinium cations are embedded between ionic layers of anions and vice versa, forming an alternating hydro­carbon–ionic layer structure. No inter­molecular ππ inter­ations are evident in the hydro­carbon layer in the structure.

[Figure 2]
Figure 2
The one-dimensional hydrogen-bonded ribbon structure, viewed along the a-axis direction. Inter-species inter­actions are shown as dashed lines.
[Figure 3]
Figure 3
The layering of the ribbon structures, viewed along the b axis.

4. Database survey

There are very few examples of similar compounds in the literature, a search of the Cambridge Structural Database (Version 5.35, May 2014[Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662-671.]; Groom & Allen, 2014) revealing the structure of 2-aza­niumyl-3-bromo-6-oxo-5,6-di­hydro­pyrido[1,2-a]quinoxalin-11-ium dibromide (Faizi et al., 2015[Faizi, M. S. H., Sharkina, N. O. & Iskenderov, T. S. (2015). Acta Cryst. E71, o17-o18.]), in which the 2-amino-1,2-dibromide ring in the title compound is replaced by a 2-aza­niumyl-3-bromo ring. Other similar structures have been reported (Faizi & Sen, 2014[Faizi, M. S. H. & Sen, P. (2014). Acta Cryst. E70, m206-m207.]; Koner et al., 2008[Koner, R. R. & Ray, M. (2008). Inorg. Chem. 47, 9122-9124.]).

5. Synthesis and crystallization

Mol­ecular bromine (440 mg, 144.0 µL, 2.80 mmol) was added to a methano­lic solution (10 mL) of Schiff base, N1,N4-bis (pyridine-2-yl­methyl­ene)benzene-1,4-di­amine (BPYBD) (197 mg, 0.70 mmol). The color of the solution immediately changed from yellow to orange. The reaction mixture was stirred for 4 h at room temperature under a fume hood. The resulting yellow precipitate was recovered by filtration, washed several times with small portions of acetone and then with diethyl ether to give 200 mg (yield: 64%) of 2-amino-1,3-di­bromo-6-oxo-5,6-di­hydro­pyrido[1,2-a]quinoxalin-11-ium bromide monohydrate (ADOQBM). The crystal of the title compound suitable for X-ray analysis was obtained within three days by slow evaporation of a solution of the compound in methanol.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All N-bound H atoms were located in difference-Fourier maps and their positions were then held fixed. The isotropic displacement parameters were refined for these atoms. Aromatic H atoms were placed in calculated positions and treated as riding on their parent C atoms [C—H = 0.93 Å and Uiso(H) = 1.2 or 1.5Ueq(C)].

Table 2
Experimental details

Crystal data
Chemical formula C12H8Br2N3O+·Br·H2O
Mr 467.93
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 100
a, b, c (Å) 7.5069 (7), 9.7435 (10), 10.782 (1)
α, β, γ (°) 88.490 (7), 73.798 (7), 71.981 (7)
V3) 718.61 (12)
Z 2
Radiation type Mo Kα
μ (mm−1) 8.42
Crystal size (mm) 0.20 × 0.15 × 0.11
 
Data collection
Diffractometer Bruker SMART APEX CCD
Absorption correction Multi-scan (SADABS; Bruker, 2003[Bruker (2003). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.259, 0.365
No. of measured, independent and observed [I > 2σ(I)] reflections 8077, 2187, 1681
Rint 0.163
θmax (°) 23.8
(sin θ/λ)max−1) 0.568
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.155, 1.00
No. of reflections 2187
No. of parameters 181
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.18, −1.16
Computer programs: SMART and SAINT (Bruker, 2003[Bruker (2003). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]), SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and DIAMOND (Brandenberg & Putz, 2006[Brandenberg, K. & Putz, H. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]).

Supporting information


Computing details top

Data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenberg & Putz, 2006); software used to prepare material for publication: DIAMOND (Brandenberg & Putz, 2006).

2-Amino-1,3-dibromo-6-oxo-5,6-dihydropyrido[1,2-a]quinoxalin-11-ium bromide monohydrate top
Crystal data top
C12H8Br2N3O+·Br·H2OZ = 2
Mr = 467.93F(000) = 448
Triclinic, P1Dx = 2.163 Mg m3
a = 7.5069 (7) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.7435 (10) ÅCell parameters from 1023 reflections
c = 10.782 (1) Åθ = 1.5–23.5°
α = 88.490 (7)°µ = 8.42 mm1
β = 73.798 (7)°T = 100 K
γ = 71.981 (7)°Block, yellow
V = 718.61 (12) Å30.20 × 0.15 × 0.11 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
2187 independent reflections
Radiation source: fine-focus sealed tube1681 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.163
/w–scansθmax = 23.8°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
h = 88
Tmin = 0.259, Tmax = 0.365k = 1110
8077 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.155H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0902P)2]
where P = (Fo2 + 2Fc2)/3
2187 reflections(Δ/σ)max < 0.001
181 parametersΔρmax = 1.18 e Å3
0 restraintsΔρmin = 1.16 e Å3
Special details top

Experimental. The OH H-atom was located in difference Fourier map and refined with with Uiso(H) = 1.2Ueq(O). The N- and C-bound H-atoms were positioned geometrically and refined using a riding model: N—H = 0.86 Å and C—H = 0.93 Å with Uiso(H) = 1.2Ueq(parent atom).

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br30.26076 (12)0.03614 (8)0.73364 (8)0.0441 (3)
Br20.27561 (13)0.36785 (8)0.22264 (8)0.0446 (3)
Br10.30008 (13)0.45076 (9)0.29950 (8)0.0480 (3)
C30.1893 (12)0.8452 (10)0.4590 (8)0.048 (2)
H30.20410.87910.53420.058*
C10.1158 (12)0.6740 (8)0.3479 (7)0.0388 (19)
H10.06170.59980.34950.047*
N10.1941 (9)0.7217 (6)0.2309 (6)0.0316 (14)
C20.1146 (14)0.7316 (9)0.4612 (8)0.048 (2)
H20.06440.69530.53930.057*
C40.2417 (12)0.9077 (9)0.3430 (8)0.046 (2)
H40.28050.98980.34140.055*
C120.2134 (10)0.6506 (7)0.1102 (7)0.0306 (17)
N20.2314 (10)0.8738 (6)0.0112 (6)0.0377 (16)
H50.21900.92690.05280.045*
C70.2241 (11)0.7334 (7)0.0019 (7)0.0327 (18)
C110.2384 (11)0.5009 (7)0.0921 (7)0.0318 (18)
C90.2558 (11)0.5314 (8)0.1296 (8)0.0362 (19)
C100.2586 (10)0.4390 (7)0.0288 (7)0.0324 (18)
C80.2379 (11)0.6744 (7)0.1175 (8)0.0349 (18)
H60.23510.73130.18790.042*
C50.2364 (11)0.8482 (8)0.2307 (8)0.0353 (18)
C60.2565 (12)0.9308 (8)0.1142 (8)0.042 (2)
O10.2841 (12)1.0476 (6)0.1172 (7)0.071 (2)
N30.2950 (11)0.2940 (7)0.0508 (7)0.0457 (18)
H3A0.30640.23710.01090.055*
H3B0.30660.25970.12630.055*
O20.3545 (11)0.2190 (7)0.4635 (6)0.072 (2)
H120.34150.23380.54590.108*
H110.45500.15200.41200.108*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br30.0499 (5)0.0360 (5)0.0489 (5)0.0143 (4)0.0173 (4)0.0057 (4)
Br20.0516 (6)0.0273 (5)0.0573 (6)0.0140 (4)0.0184 (4)0.0127 (4)
Br10.0565 (6)0.0389 (5)0.0510 (6)0.0130 (4)0.0206 (4)0.0041 (4)
C30.044 (5)0.051 (6)0.051 (5)0.013 (4)0.017 (4)0.003 (4)
C10.046 (5)0.029 (4)0.043 (5)0.014 (4)0.012 (4)0.004 (4)
N10.033 (3)0.022 (3)0.045 (4)0.012 (3)0.016 (3)0.007 (3)
C20.061 (6)0.042 (5)0.040 (5)0.016 (5)0.017 (4)0.012 (4)
C40.052 (5)0.033 (4)0.060 (6)0.018 (4)0.021 (4)0.006 (4)
C120.032 (4)0.022 (4)0.040 (4)0.011 (3)0.010 (3)0.000 (3)
N20.052 (4)0.018 (3)0.044 (4)0.010 (3)0.016 (3)0.006 (3)
C70.036 (4)0.016 (4)0.047 (5)0.007 (3)0.015 (4)0.006 (3)
C110.033 (4)0.017 (4)0.051 (5)0.014 (3)0.014 (3)0.009 (3)
C90.037 (4)0.030 (4)0.048 (5)0.013 (4)0.018 (4)0.004 (4)
C100.029 (4)0.016 (4)0.053 (5)0.005 (3)0.017 (4)0.004 (4)
C80.038 (4)0.020 (4)0.045 (5)0.008 (3)0.009 (4)0.002 (3)
C50.036 (4)0.018 (4)0.049 (5)0.002 (3)0.014 (4)0.004 (3)
C60.053 (5)0.017 (4)0.057 (5)0.013 (4)0.016 (4)0.002 (4)
O10.115 (6)0.030 (3)0.086 (5)0.041 (4)0.038 (4)0.007 (3)
N30.069 (5)0.022 (3)0.052 (4)0.019 (3)0.022 (4)0.003 (3)
O20.077 (5)0.063 (4)0.064 (4)0.005 (4)0.020 (4)0.015 (4)
Geometric parameters (Å, º) top
Br2—C111.907 (7)N2—C61.338 (10)
Br1—C91.912 (8)N2—C71.393 (9)
C3—C21.384 (12)N2—H50.8600
C3—C41.387 (12)C7—C81.388 (11)
C3—H30.9300C11—C101.400 (11)
C1—C21.355 (11)C9—C81.364 (10)
C1—N11.370 (10)C9—C101.394 (11)
C1—H10.9300C10—N31.367 (9)
N1—C51.364 (9)C8—H60.9300
N1—C121.440 (9)C5—C61.471 (11)
C2—H20.9300C6—O11.222 (9)
C4—C51.373 (11)N3—H3A0.8600
C4—H40.9300N3—H3B0.8600
C12—C71.399 (10)O2—H120.8769
C12—C111.423 (9)O2—H110.8900
C2—C3—C4119.0 (8)C12—C7—N2120.3 (7)
C2—C3—H3120.5C10—C11—C12121.3 (7)
C4—C3—H3120.5C10—C11—Br2115.3 (5)
C2—C1—N1122.1 (8)C12—C11—Br2123.0 (6)
C2—C1—H1119.0C8—C9—C10124.3 (7)
N1—C1—H1119.0C8—C9—Br1117.2 (6)
C5—N1—C1118.1 (6)C10—C9—Br1118.3 (5)
C5—N1—C12119.7 (6)N3—C10—C11122.5 (7)
C1—N1—C12121.9 (6)N3—C10—C9121.0 (7)
C1—C2—C3118.9 (8)C11—C10—C9116.3 (6)
C1—C2—H2120.5C9—C8—C7118.8 (7)
C3—C2—H2120.5C9—C8—H6120.6
C5—C4—C3119.9 (8)C7—C8—H6120.6
C5—C4—H4120.1N1—C5—C4120.2 (7)
C3—C4—H4120.1N1—C5—C6120.8 (7)
C7—C12—C11118.4 (7)C4—C5—C6118.7 (7)
C7—C12—N1116.8 (6)O1—C6—N2123.8 (8)
C11—C12—N1124.6 (6)O1—C6—C5120.2 (8)
C6—N2—C7123.7 (6)N2—C6—C5115.9 (7)
C6—N2—H5118.2C10—N3—H3A120.0
C7—N2—H5118.2C10—N3—H3B120.0
C8—C7—C12120.5 (7)H3A—N3—H3B120.0
C8—C7—N2119.1 (7)H12—O2—H11123.0
C2—C1—N1—C513.0 (11)Br2—C11—C10—C9172.4 (6)
C2—C1—N1—C12173.4 (7)C8—C9—C10—N3173.9 (8)
N1—C1—C2—C32.1 (12)Br1—C9—C10—N31.0 (10)
C4—C3—C2—C17.5 (12)C8—C9—C10—C111.0 (12)
C2—C3—C4—C56.1 (13)Br1—C9—C10—C11175.9 (5)
C5—N1—C12—C716.6 (10)C10—C9—C8—C70.9 (12)
C1—N1—C12—C7156.8 (7)Br1—C9—C8—C7174.0 (6)
C5—N1—C12—C11157.9 (7)C12—C7—C8—C94.9 (11)
C1—N1—C12—C1128.7 (11)N2—C7—C8—C9171.8 (7)
C11—C12—C7—C86.7 (11)C1—N1—C5—C414.3 (10)
N1—C12—C7—C8178.4 (7)C12—N1—C5—C4172.0 (7)
C11—C12—C7—N2169.9 (7)C1—N1—C5—C6159.2 (7)
N1—C12—C7—N25.0 (11)C12—N1—C5—C614.4 (10)
C6—N2—C7—C8166.8 (7)C3—C4—C5—N15.0 (12)
C6—N2—C7—C129.8 (12)C3—C4—C5—C6168.7 (8)
C7—C12—C11—C104.7 (11)C7—N2—C6—O1171.7 (9)
N1—C12—C11—C10179.2 (7)C7—N2—C6—C512.2 (11)
C7—C12—C11—Br2168.1 (6)N1—C5—C6—O1176.1 (8)
N1—C12—C11—Br26.4 (11)C4—C5—C6—O12.5 (12)
C12—C11—C10—N3175.8 (7)N1—C5—C6—N20.1 (11)
Br2—C11—C10—N32.4 (10)C4—C5—C6—N2173.8 (7)
C12—C11—C10—C90.9 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H5···Br3i0.862.493.332 (6)166
N3—H3B···Br10.862.603.048 (7)113
N3—H3B···Br3ii0.862.843.581 (7)145
N3—H3A···O1iii0.862.172.977 (9)155
N3—H3A···Br20.862.563.006 (7)113
O2—H11···Br3iv0.892.503.383 (6)180
O2—H12···Br1v0.882.613.309 (7)137
O2—H12···Br30.882.833.393 (6)123
Symmetry codes: (i) x, y+1, z1; (ii) x, y, z1; (iii) x, y1, z; (iv) x+1, y, z+1; (v) x, y, z+1.
 

Acknowledgements

The authors are grateful to the Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, UP-208016, India, for X-ray data collection.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBrandenberg, K. & Putz, H. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2003). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCheeseman, G. W. H. & Werstiuk, E. S. G. (1978). Adv. Heterocycl. Chem. 22, 367–431.  CrossRef CAS Google Scholar
First citationDailey, S., Feast, J. W., Peace, R. J., Sage, I. C., Till, S. & Wood, E. L. (2001). J. Mater. Chem. 11, 2238–2243.  Web of Science CrossRef CAS Google Scholar
First citationElwahy, A. H. M. (2000). Tetrahedron, 56, 897–907.  Web of Science CrossRef CAS Google Scholar
First citationFaizi, M. S. H. & Sen, P. (2014). Acta Cryst. E70, m206–m207.  CSD CrossRef IUCr Journals Google Scholar
First citationFaizi, M. S. H., Sharkina, N. O. & Iskenderov, T. S. (2015). Acta Cryst. E71, o17–o18.  CSD CrossRef IUCr Journals Google Scholar
First citationFritsky, I. O., Kozłowski, H., Kanderal, O. M., Haukka, M., Świątek-Kozłowska, J., Gumienna-Kontecka, E. & Meyer, F. (2006). Chem. Commun. pp. 4125–4127.  Web of Science CSD CrossRef Google Scholar
First citationGroom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.  Web of Science CSD CrossRef CAS Google Scholar
First citationKanderal, O. M., Kozłowski, H., Dobosz, A., Świątek-Kozłowska, J., Meyer, F. & Fritsky, I. O. (2005). Dalton Trans. pp. 1428.  Google Scholar
First citationKatoh, A., Yoshida, T. & Ohkanda, J. (2000). Heterocycles, 52, 911–920.  CrossRef CAS Google Scholar
First citationKoner, R. R. & Ray, M. (2008). Inorg. Chem. 47, 9122–9124.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationKurasawa, Y., Sakata, G. & Makino, K. (1988). Heterocycles, 27, 2481–2515.  CrossRef Google Scholar
First citationLee, J., Murray, W. V. & Rivero, R. A. (1997). J. Org. Chem. 62, 3874–3879.  CrossRef CAS Web of Science Google Scholar
First citationMizuno, T., Wei, W.-H., Eller, L. R. & Sessler, J. L. (2002). J. Am. Chem. Soc. 124, 1134–1135.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMoroz, Y. S., Demeshko, S., Haukka, M., Mokhir, A., Mitra, U., Stocker, M., Müller, P., Meyer, F. & Fritsky, I. O. (2012). Inorg. Chem. 51, 7445–7447.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSeitz, L. E., Suling, W. J. & Reynolds, R. C. (2002). J. Med. Chem. 45, 5604–5606.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSonawane, N. D. & Rangnekar, D. W. (2002). J. Heterocycl. Chem. 39, 303–308.  CrossRef CAS Google Scholar
First citationToshima, K., Takano, R., Ozawa, T. & Matsumura, S. (2002). Chem. Commun. pp. 212–213.  Web of Science CrossRef Google Scholar
First citationWu, Z. & Ede, N. J. (2001). Tetrahedron Lett. 42, 8115–8118.  Web of Science CrossRef CAS Google Scholar
First citationZaragoza, F. & Stephensen, H. (1999). J. Org. Chem. 64, 2555–2557.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds