organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of (4-hy­dr­oxy­piperidin-1-yl)(4-methyl­phen­yl)methanone

aPG and Research Department of Physics, Queen Mary's College, Chennai-4, Tamilnadu, India, bDepartment of Chemistry, Madras Christian College, Chennai-59, India, cSCRI, Anna Hospital Campus, Chennai-106, Tamilnadu, India, and dAnna Siddha Medical College, Chennai-106, Tamilnadu, India
*Correspondence e-mail: guqmc@yahoo.com

Edited by G. Smith, Queensland University of Technology, Australia (Received 28 August 2015; accepted 30 September 2015; online 3 October 2015)

In the title compound, C13H17NO2, the dihedral angle between the planes of the piperidine and benzene rings is 51.7 (2)°. The bond-angle sum around the N atom [359.8 (3)°] indicates sp2 hybridization of the atom. In the crystal, O—H⋯O hydrogen bonds link the mol­ecules, forming chains along [001].

1. Related literature

For the biological activity of piperdine derivatives, see: Pissamitski et al. (2007[Pissarnitski, D. A., Asberom, T., Bara, T. A., Buevich, A. V., Clader, J. W., Greenlee, W. J., Guzik, H. S., Josien, H. B., Li, W., McEwan, M., McKittrick, B. A., Nechuta, T. L., Parker, E. M., Sinning, L., Smith, E. M., Song, L., Vaccaro, H. A., Voigt, J. H., Zhang, L., Zhang, Q. & Zhao, Z. (2007). Bioorg. Med. Chem. Lett. 17, 57-62.]); Katritzky et al. (1995[Katritzky, A. R. (1995). In Comprehensive Heterocyclic Chemistry, Vol. 5, pp. 20-24. Academic. Press: New York.]); Dimmock et al. (2001[Dimmock, J. R., Padmanilayam, M. P., Puthucode, R. N., Nazarali, A. J., Motaganahalli, N. L., Zello, G. A., Quail, J. W., Oloo, E. O., Kraatz, H. B., Prisciak, J. S., Allen, T. M., Santos, C. L., Balzarini, J., De Clercq, E. & Manavathu, E. K. (2001). J. Med. Chem. 44, 586-593.]); Watson et al. (2000[Watson, P. S., Jiang, B. & Scott, B. (2000). Org. Lett. 2, 3679-3681.]); Thomas et al. (1998[Thomas, J. B., Fall, M. J., Cooper, J. B., Rothman, R. B., Mascarella, S. W., Xu, H., Partilla, J. S., Dersch, C. M., McCullough, K. B., Cantrell, B. E., Zimmerman, D. M. & Carroll, F. I. (1998). J. Med. Chem. 41, 5188-5197.]); Sambath et al. (2004[Sampath, N., Aravindhan, S., Ponnuswamy, M. N. & Nethaji, M. (2004). Acta Cryst. E60, o2105-o2106.]). For related structures, see: Revathi et al. (2015[Revathi, B. K., Reuben Jonathan, D., Sathya, S., Prathebha, K. & Usha, G. (2015). Acta Cryst. E71, o359-o360.]); Prathebha et al. (2015[Prathebha, K., Reuben Jonathan, D., Revathi, B. K., Sathya, S. & Usha, G. (2015). Acta Cryst. E71, o39-o40.]). For the synthesis, see: Revathi et al. (2015[Revathi, B. K., Reuben Jonathan, D., Sathya, S., Prathebha, K. & Usha, G. (2015). Acta Cryst. E71, o359-o360.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C13H17NO2

  • Mr = 219.28

  • Orthorhombic, P c a 21

  • a = 23.933 (5) Å

  • b = 6.3317 (12) Å

  • c = 8.0269 (14) Å

  • V = 1216.3 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 K

  • 0.24 × 0.22 × 0.22 mm

2.2. Data collection

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.981, Tmax = 0.985

  • 10595 measured reflections

  • 3454 independent reflections

  • 1668 reflections with I > 2σ(I)

  • Rint = 0.039

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.066

  • wR(F2) = 0.208

  • S = 1.04

  • 3454 reflections

  • 145 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2A⋯O1i 0.82 1.97 2.741 (4) 156
Symmetry code: (i) x, y, z-1.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP (Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The piperidine ring is one of the most recognizable structural entities among heterocyclic molecules (Katritzky, 1995). A piperidine series of gamma-secretase inhibitors have been evaluated for treatment of Alzheimer's disease (AD) (Pissamitski et al., 2007). Some piperidines were found to possess high profile biological activities, including cytotoxic and anticancer properties (Dimmock et al., 2001). The piperidine ring is a feature of oral anaesthetics and narcotic analgesics (Watson et al., 2000); Thomas et al., 1998). Piperidine derivatives are used clinically to prevent post-operative vomiting, to speed up gastric emptying before anaesthesia, to facilitate radiological investigations and to correct a variety of disturbances of gastrointestinal functions (Sambath et al., 2004).

The title compound, C13H17NO2, has been synthesized and the structure (Fig. 1) is reported herein. In this compound, The C—C distances in the piperidine ring and the benzene ring are in the range 1.497 (6)–1.515 (5) Å and 1.357 (6)–1.386 (5) Å, respectively and are comparable with literature values. The C—N distances in the piperidine ring are 1.455 (5) Å and 1.462 (5) Å] and are in good agreement with values in a similar reported structure (Revathi et al., 2015). The C7—O1 distance is 1.238 (5) Å, indicating double bond character and is comparable with the value reported previously (Prathebha et al., 2015). The dihedral angle between piperidine and benzene rings is 51.7 (2)°. The bond angle sum around the N1 atom are 359.8 (3)° indicating an sp2 hybridization of the atoms. The C8—N1—C7—O1 torsion angle [-9.0 (6)°] indicates that the keto group is in a syn-periplanar (-sp) orientation with respect to the piperidine ring which adopts a chair conformation, with puckering parameters of q2 = 0.016 (4) Å, φ2 = 168.41° q3 = -0.560 (4) Å, QT = 0.561 (4) Å and θ2 = 178.38 (4)°.

The crystal packing is stabilized by a single intermolecular O2—H···O1i hydrogen bond (Table 1), forming one-dimensional chains which extend along [001] (Fig. 2). Present also in the structure is a short intramolecular C8—H···O1 interaction [2.740 (5) Å].

Related literature top

For the biological activity of piperdine derivatives, see: Pissamitski et al. (2007); Katritzky et al. (1995); Dimmock et al. (2001); Watson et al. (2000); Thomas et al. (1998); Sambath et al. (2004). For related structures, see: Revathi et al. (2015); Prathebha et al. (2015). For the synthesis, see: Revathi et al. (2015).

Experimental top

The title compound was synthesized using a published procedure (Revathi et al., 2015). In a 250 ml round-bottomed flask, 120 mL of ethyl methyl ketone was added to 4-hydroxypiperdine (0.02 mol) and stirred at room temperature. After 5 min, triethylamine (0.04 mol) was added and the mixture was stirred for 15 min. 4-Methyl benzoyl chloride (0.04 mol) was then added and the reaction mixture was stirred at room temperature for ca. 2 h. A white precipitate of triethylammonium chloride was formed, which was removed by filtration and the filtrate was evaporated to give the crude product. This was recrystallized twice from ethyl methyl ketone giving colourless block-like crystals of the title compound (yield: 82%).

Refinement top

H atoms were positioned geometrically and treated as riding on their parent atoms and refined with C—H distances of 0.93–0.98 Å and an O—H distance of 0.82 Å, with Uiso(H) = 1.5 Ueq(C-methyl and O), Uiso(H)= 1.2Ueq(C, O) for other H atoms. One reflection (2 0 0) was considered to be affected by the beamstop and was omitted. The value of the absolute structure factor (Flack, 1983), although not of particular relevance but meaningless in this structure, was determined as 0(3) for 1610 Friedel pairs.

Structure description top

The piperidine ring is one of the most recognizable structural entities among heterocyclic molecules (Katritzky, 1995). A piperidine series of gamma-secretase inhibitors have been evaluated for treatment of Alzheimer's disease (AD) (Pissamitski et al., 2007). Some piperidines were found to possess high profile biological activities, including cytotoxic and anticancer properties (Dimmock et al., 2001). The piperidine ring is a feature of oral anaesthetics and narcotic analgesics (Watson et al., 2000); Thomas et al., 1998). Piperidine derivatives are used clinically to prevent post-operative vomiting, to speed up gastric emptying before anaesthesia, to facilitate radiological investigations and to correct a variety of disturbances of gastrointestinal functions (Sambath et al., 2004).

The title compound, C13H17NO2, has been synthesized and the structure (Fig. 1) is reported herein. In this compound, The C—C distances in the piperidine ring and the benzene ring are in the range 1.497 (6)–1.515 (5) Å and 1.357 (6)–1.386 (5) Å, respectively and are comparable with literature values. The C—N distances in the piperidine ring are 1.455 (5) Å and 1.462 (5) Å] and are in good agreement with values in a similar reported structure (Revathi et al., 2015). The C7—O1 distance is 1.238 (5) Å, indicating double bond character and is comparable with the value reported previously (Prathebha et al., 2015). The dihedral angle between piperidine and benzene rings is 51.7 (2)°. The bond angle sum around the N1 atom are 359.8 (3)° indicating an sp2 hybridization of the atoms. The C8—N1—C7—O1 torsion angle [-9.0 (6)°] indicates that the keto group is in a syn-periplanar (-sp) orientation with respect to the piperidine ring which adopts a chair conformation, with puckering parameters of q2 = 0.016 (4) Å, φ2 = 168.41° q3 = -0.560 (4) Å, QT = 0.561 (4) Å and θ2 = 178.38 (4)°.

The crystal packing is stabilized by a single intermolecular O2—H···O1i hydrogen bond (Table 1), forming one-dimensional chains which extend along [001] (Fig. 2). Present also in the structure is a short intramolecular C8—H···O1 interaction [2.740 (5) Å].

For the biological activity of piperdine derivatives, see: Pissamitski et al. (2007); Katritzky et al. (1995); Dimmock et al. (2001); Watson et al. (2000); Thomas et al. (1998); Sambath et al. (2004). For related structures, see: Revathi et al. (2015); Prathebha et al. (2015). For the synthesis, see: Revathi et al. (2015).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure and atom numbering scheme for the title compound, with displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. The crystal packing in the unit cell viewed along b. The dashed lines indicate hydrogen bonds.
(4-Hydroxypiperidin-1-yl)(4-methylphenyl)methanone top
Crystal data top
C13H17NO2F(000) = 472
Mr = 219.28Dx = 1.197 Mg m3
Orthorhombic, Pca21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2acθ = 1.7–29.8°
a = 23.933 (5) ŵ = 0.08 mm1
b = 6.3317 (12) ÅT = 293 K
c = 8.0269 (14) ÅBlock, colourless
V = 1216.3 (4) Å30.24 × 0.22 × 0.22 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3454 independent reflections
Radiation source: fine-focus sealed tube1668 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
ω and φ scansθmax = 29.8°, θmin = 3.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 3330
Tmin = 0.981, Tmax = 0.985k = 88
10595 measured reflectionsl = 1011
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.066Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.208H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.121P)2 + 0.297P]
where P = (Fo2 + 2Fc2)/3
3454 reflections(Δ/σ)max < 0.001
145 parametersΔρmax = 0.28 e Å3
1 restraintΔρmin = 0.22 e Å3
Crystal data top
C13H17NO2V = 1216.3 (4) Å3
Mr = 219.28Z = 4
Orthorhombic, Pca21Mo Kα radiation
a = 23.933 (5) ŵ = 0.08 mm1
b = 6.3317 (12) ÅT = 293 K
c = 8.0269 (14) Å0.24 × 0.22 × 0.22 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3454 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
1668 reflections with I > 2σ(I)
Tmin = 0.981, Tmax = 0.985Rint = 0.039
10595 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0661 restraint
wR(F2) = 0.208H-atom parameters constrained
S = 1.04Δρmax = 0.28 e Å3
3454 reflectionsΔρmin = 0.22 e Å3
145 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O20.42250 (13)0.9019 (5)0.2011 (4)0.0766 (9)
H2A0.41370.83900.11580.115*
N10.43269 (12)0.5768 (5)0.6446 (4)0.0502 (8)
O10.42609 (13)0.6719 (6)0.9120 (3)0.0885 (11)
C100.44267 (16)0.7574 (6)0.3187 (5)0.0533 (9)
H100.47590.68700.27370.064*
C40.35949 (13)0.4254 (6)0.8163 (4)0.0482 (8)
C10.26666 (15)0.1641 (8)0.8753 (5)0.0628 (11)
C120.41754 (16)0.4528 (6)0.4989 (5)0.0545 (9)
H12A0.38770.35580.52790.065*
H12B0.44950.37010.46320.065*
C70.40802 (15)0.5691 (6)0.7925 (4)0.0505 (9)
C110.39864 (16)0.5930 (6)0.3578 (4)0.0524 (9)
H11A0.36400.66270.38830.063*
H11B0.39160.50770.25960.063*
C60.26126 (15)0.3547 (9)0.7954 (6)0.0758 (13)
H60.22610.39760.75990.091*
C50.30623 (16)0.4839 (7)0.7665 (6)0.0669 (11)
H50.30090.61250.71280.080*
C20.31909 (18)0.1055 (7)0.9206 (6)0.0742 (13)
H20.32450.02610.96940.089*
C80.47699 (16)0.7294 (7)0.6096 (5)0.0598 (10)
H8A0.51070.65570.57580.072*
H8B0.48530.80990.70940.072*
C30.36470 (16)0.2363 (7)0.8960 (6)0.0679 (12)
H30.39960.19430.93460.082*
C90.45847 (17)0.8752 (5)0.4737 (5)0.0527 (9)
H9A0.48840.97320.44820.063*
H9B0.42660.95660.51210.063*
C130.2170 (2)0.0223 (10)0.9085 (8)0.0951 (16)
H13A0.18360.08850.86740.143*
H13B0.21350.00111.02620.143*
H13C0.22230.11050.85300.143*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O20.097 (2)0.0792 (19)0.0541 (17)0.0001 (17)0.0073 (14)0.0175 (16)
N10.0614 (17)0.0478 (18)0.0413 (15)0.0129 (14)0.0013 (12)0.0037 (14)
O10.105 (2)0.117 (3)0.0441 (16)0.045 (2)0.0064 (15)0.0106 (18)
C100.0621 (19)0.056 (2)0.0418 (18)0.0096 (18)0.0032 (15)0.0054 (18)
C40.056 (2)0.056 (2)0.0323 (15)0.0001 (16)0.0009 (13)0.0075 (17)
C10.062 (2)0.079 (3)0.0472 (19)0.016 (2)0.0102 (17)0.005 (2)
C120.061 (2)0.046 (2)0.056 (2)0.0113 (17)0.0065 (16)0.002 (2)
C70.0619 (19)0.050 (2)0.0396 (18)0.0035 (16)0.0048 (16)0.0088 (17)
C110.061 (2)0.055 (2)0.0422 (17)0.0058 (17)0.0002 (14)0.0092 (18)
C60.0438 (19)0.100 (3)0.084 (3)0.006 (2)0.003 (2)0.005 (3)
C50.064 (2)0.060 (2)0.077 (3)0.0036 (19)0.003 (2)0.021 (2)
C20.075 (3)0.064 (3)0.083 (3)0.020 (2)0.012 (2)0.032 (3)
C80.064 (2)0.067 (3)0.048 (2)0.0260 (19)0.0126 (16)0.010 (2)
C30.059 (2)0.061 (3)0.084 (3)0.0081 (19)0.019 (2)0.028 (2)
C90.076 (2)0.0356 (18)0.0470 (18)0.0178 (18)0.0010 (16)0.0040 (18)
C130.078 (3)0.121 (4)0.087 (3)0.041 (3)0.016 (3)0.019 (3)
Geometric parameters (Å, º) top
O2—C101.401 (5)C12—H12B0.9700
O2—H2A0.8200C11—H11A0.9700
N1—C71.327 (5)C11—H11B0.9700
N1—C121.454 (5)C6—C51.372 (6)
N1—C81.462 (4)C6—H60.9300
O1—C71.237 (5)C5—H50.9300
C10—C91.500 (5)C2—C31.385 (5)
C10—C111.514 (5)C2—H20.9300
C10—H100.9800C8—C91.496 (5)
C4—C31.363 (6)C8—H8A0.9700
C4—C51.386 (5)C8—H8B0.9700
C4—C71.487 (5)C3—H30.9300
C1—C21.358 (6)C9—H9A0.9700
C1—C61.373 (7)C9—H9B0.9700
C1—C131.514 (6)C13—H13A0.9600
C12—C111.509 (5)C13—H13B0.9600
C12—H12A0.9700C13—H13C0.9600
C10—O2—H2A109.5C5—C6—C1122.0 (4)
C7—N1—C12126.1 (3)C5—C6—H6119.0
C7—N1—C8121.3 (3)C1—C6—H6119.0
C12—N1—C8112.6 (3)C6—C5—C4120.9 (4)
O2—C10—C9108.7 (3)C6—C5—H5119.6
O2—C10—C11110.4 (3)C4—C5—H5119.6
C9—C10—C11110.2 (3)C1—C2—C3121.8 (4)
O2—C10—H10109.1C1—C2—H2119.1
C9—C10—H10109.1C3—C2—H2119.1
C11—C10—H10109.1N1—C8—C9109.4 (3)
C3—C4—C5117.0 (3)N1—C8—H8A109.8
C3—C4—C7121.7 (3)C9—C8—H8A109.8
C5—C4—C7121.2 (3)N1—C8—H8B109.8
C2—C1—C6116.9 (3)C9—C8—H8B109.8
C2—C1—C13121.1 (4)H8A—C8—H8B108.2
C6—C1—C13122.0 (4)C4—C3—C2121.3 (4)
N1—C12—C11111.1 (3)C4—C3—H3119.3
N1—C12—H12A109.4C2—C3—H3119.3
C11—C12—H12A109.4C8—C9—C10111.9 (3)
N1—C12—H12B109.4C8—C9—H9A109.2
C11—C12—H12B109.4C10—C9—H9A109.2
H12A—C12—H12B108.0C8—C9—H9B109.2
O1—C7—N1121.2 (3)C10—C9—H9B109.2
O1—C7—C4119.7 (3)H9A—C9—H9B107.9
N1—C7—C4119.0 (3)C1—C13—H13A109.5
C12—C11—C10110.6 (3)C1—C13—H13B109.5
C12—C11—H11A109.5H13A—C13—H13B109.5
C10—C11—H11A109.5C1—C13—H13C109.5
C12—C11—H11B109.5H13A—C13—H13C109.5
C10—C11—H11B109.5H13B—C13—H13C109.5
H11A—C11—H11B108.1
C7—N1—C12—C11117.5 (4)C13—C1—C6—C5179.5 (5)
C8—N1—C12—C1158.2 (4)C1—C6—C5—C40.5 (7)
C12—N1—C7—O1175.6 (4)C3—C4—C5—C60.6 (6)
C8—N1—C7—O19.0 (6)C7—C4—C5—C6177.1 (4)
C12—N1—C7—C41.3 (6)C6—C1—C2—C33.5 (7)
C8—N1—C7—C4174.1 (3)C13—C1—C2—C3177.9 (5)
C3—C4—C7—O174.8 (5)C7—N1—C8—C9117.4 (4)
C5—C4—C7—O1101.5 (5)C12—N1—C8—C958.6 (4)
C3—C4—C7—N1102.2 (4)C5—C4—C3—C22.2 (7)
C5—C4—C7—N181.6 (5)C7—C4—C3—C2178.7 (4)
N1—C12—C11—C1054.7 (4)C1—C2—C3—C43.8 (8)
O2—C10—C11—C12173.3 (3)N1—C8—C9—C1057.0 (4)
C9—C10—C11—C1253.1 (4)O2—C10—C9—C8176.3 (3)
C2—C1—C6—C51.9 (7)C11—C10—C9—C855.1 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O1i0.821.972.741 (4)156
C8—H8B···O10.972.332.740 (5)105
Symmetry code: (i) x, y, z1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O1i0.821.972.741 (4)156
Symmetry code: (i) x, y, z1.
 

Acknowledgements

The authors thank the SAIF, IIT, Madras, for providing the X-ray data collection facility.

References

First citationBruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDimmock, J. R., Padmanilayam, M. P., Puthucode, R. N., Nazarali, A. J., Motaganahalli, N. L., Zello, G. A., Quail, J. W., Oloo, E. O., Kraatz, H. B., Prisciak, J. S., Allen, T. M., Santos, C. L., Balzarini, J., De Clercq, E. & Manavathu, E. K. (2001). J. Med. Chem. 44, 586–593.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKatritzky, A. R. (1995). In Comprehensive Heterocyclic Chemistry, Vol. 5, pp. 20–24. Academic. Press: New York.  Google Scholar
First citationPissarnitski, D. A., Asberom, T., Bara, T. A., Buevich, A. V., Clader, J. W., Greenlee, W. J., Guzik, H. S., Josien, H. B., Li, W., McEwan, M., McKittrick, B. A., Nechuta, T. L., Parker, E. M., Sinning, L., Smith, E. M., Song, L., Vaccaro, H. A., Voigt, J. H., Zhang, L., Zhang, Q. & Zhao, Z. (2007). Bioorg. Med. Chem. Lett. 17, 57–62.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPrathebha, K., Reuben Jonathan, D., Revathi, B. K., Sathya, S. & Usha, G. (2015). Acta Cryst. E71, o39–o40.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRevathi, B. K., Reuben Jonathan, D., Sathya, S., Prathebha, K. & Usha, G. (2015). Acta Cryst. E71, o359–o360.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSampath, N., Aravindhan, S., Ponnuswamy, M. N. & Nethaji, M. (2004). Acta Cryst. E60, o2105–o2106.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationThomas, J. B., Fall, M. J., Cooper, J. B., Rothman, R. B., Mascarella, S. W., Xu, H., Partilla, J. S., Dersch, C. M., McCullough, K. B., Cantrell, B. E., Zimmerman, D. M. & Carroll, F. I. (1998). J. Med. Chem. 41, 5188–5197.  Web of Science CrossRef CAS PubMed Google Scholar
First citationWatson, P. S., Jiang, B. & Scott, B. (2000). Org. Lett. 2, 3679–3681.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds