research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 5-hy­dr­oxy-5-propyl­barbituric acid

aUniversity of Innsbruck, Institute of Pharmacy, Innrain 52, 6020 Innsbruck, Austria
*Correspondence e-mail: thomas.gelbrich@uibk.ac.at

Edited by G. Smith, Queensland University of Technology, Australia (Received 8 September 2015; accepted 6 October 2015; online 14 October 2015)

Mol­ecules of the title compound, C7H10N2O4, systematic name 5-hy­droxy-5-propyl­pyrimidine-2,4,6(1H,3H,5H)-trione, form a hydrogen-bonded framework which is based on three independent hydrogen bonds, N—H⋯O(carbon­yl), N—H⋯O(hy­droxy) and O—H⋯O(carbon­yl). This framework has the topology of the 5-connected nov net. Each mol­ecule is linked to five other mol­ecules via six hydrogen bonds, and the descriptor of the hydrogen-bonded structure is F65[44.66-nov]. The crystal packing is isostructural with that of the previously reported 5-hy­droxy-5-ethyl analogue.

1. Chemical context

As part of a systematic investigation of solid-state properties of derivatives of barbituric acid (Gelbrich et al., 2015[Gelbrich, T., Meischberger, I. & Griesser, U. J. (2015). Acta Cryst. C71, 204-210.]; Zencirci et al., 2014[Zencirci, N., Griesser, U. J., Gelbrich, T., Kahlenberg, V., Jetti, R. K. R., Apperley, D. C. & Harris, R. K. (2014). J. Phys. Chem. B, 118, 3267-3280.]; Rossi et al., 2012[Rossi, D., Gelbrich, T., Kahlenberg, V. & Griesser, U. J. (2012). CrystEngComm, 14, 2494-2506.]), we are studying the polymorphism of a group of 5-monosubstituted barbituric acids. The title compound is an oxidation product of 5-propyl­barbituric acid, formed during a crystallization experiment and the structure is reported herein. The analogous oxidation product of 5-ethyl­barbituric acid was previously reported by Gatehouse & Craven (1971[Gatehouse, B. M. & Craven, B. M. (1971). Acta Cryst. B27, 1337-1344.]).

[Scheme 1]

2. Structural commentary

The mol­ecule of the title compound (Fig. 1[link]) displays a pyrim­idine ring (N1/C2/N3/C4/C5/C6) in a C5-envelope conformation. The ring puckering parameters calculated with PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) are θ = 134.4 (3), Φ = 52.2 (5)° and Q = 0.2420 (14) Å. The distance of C5 from the mean plane defined by the other four ring atoms [maximum deviation: N3; −0.033 (1) Å] is −0.342 (2) Å. At ring atom C5 the propyl substituent adopts a trans conformation, and the corresponding torsion angle C5—C8—C9—C10 is −164.80 (13)°. The C5—C8—C9—C10 fragment is twisted significantly out of the plane defined by atoms C8, C5 and C2, which bis­ects the pyrimidine­trione fragment into two approximately sym­met­rical halves, resulting in a pseudo-torsion angle C2⋯C5—C8—C9 of −125.69 (11)°. Closer inspection suggests that this particular geometry may help to prevent unfavourably close intra­molecular contacts between the O7 hy­droxy group and the CH2 group at C9, and may be also facilitate the participation of the hy­droxy group in complex inter­molecular hydrogen-bonding inter­actions.

[Figure 1]
Figure 1
Asymmetric unit with displacement ellipsoids drawn at the 50% probability level and hydrogen atoms drawn as spheres of arbitrary size.

3. Supra­molecular features

One NH group and one carbonyl group of the mol­ecule are engaged in a centrosymmetric two-point inter­action, N3—H3⋯O4ii (Table 1[link]), resulting in an R22(8) ring (Etter et al., 1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]; Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). This kind of ring is a ubiquitous feature in crystal structures of barbiturates (Gelbrich et al., 2011[Gelbrich, T., Rossi, D., Häfele, C. A. & Griesser, U. J. (2011). CrystEngComm, 13, 5502-5509.]). The other NH group is bonded to the hy­droxy group of a second mol­ecule via a 21 operation, N1—H1⋯O7i, and this inter­action is accompanied by a short O6⋯C4i contact [2.8654 (18) Å]. Additionally, the hy­droxy group donates a hydrogen bond to the C2 carbonyl group of another mol­ecule related by glide symmetry (O7—H7⋯O2iii). Altogether, six hydrogen bonds connect each mol­ecule to five other mol­ecules. In addition to the aforementioned R22(8) rings, the resulting hydrogen-bonded framework structure also displays rings composed of four and six mol­ecules (Fig. 2[link]). This 5-connected framework has the topology of the nov structure (Blatov et al., 2004[Blatov, V. A., Carlucci, L., Ciani, G. & Proserpio, D. M. (2004). CrystEngComm, 6, 378-395.]). Fig. 3[link] shows a graph of the hydrogen-bonded structure (HBS) according to the methodology proposed by Hursthouse et al. (2015[Hursthouse, M. B., Hughes, D. S., Gelbrich, T. & Threlfall, T. L. (2015). Chem. Cent. J. 9, 1.]). The short descriptor according to Hursthouse et al. (2015[Hursthouse, M. B., Hughes, D. S., Gelbrich, T. & Threlfall, T. L. (2015). Chem. Cent. J. 9, 1.]) for this HBS is F65[44.66-nov].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O7i 0.87 (1) 2.03 (1) 2.8683 (17) 164 (2)
N3—H3⋯O4ii 0.86 (1) 2.00 (1) 2.8451 (16) 170 (2)
O7—H7⋯O2iii 0.84 (2) 1.98 (2) 2.8055 (15) 169 (2)
Symmetry codes: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x+1, -y+2, -z+1; (iii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].
[Figure 2]
Figure 2
Layer fragment of the H-bonded framework which contains rings connecting four and six mol­ecules in addition to R22(8) rings. Hydrogen bonds are drawn as dashed lines. H and O atoms engaged in hydrogen bonding are drawn as balls and all the other H atoms are omitted for clarity.
[Figure 3]
Figure 3
The N—H⋯O(carbonyl), N—H⋯O(hy­droxy) and O—H⋯O(carbonyl) bonded F65[44.66-nov] structure of title compound. Mol­ecules are represented as nodes and their hydrogen-bond connections as links between them.

4. Database survey

The Cambridge Structural Database (Version 5.36; Groom & Allen, 2014[Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662-671.]) contains the crystal structure of 5,5-di­hydroxy­barbituric acid (Singh, 1965[Singh, C. (1965). Acta Cryst. 19, 759-767.]; Harrowfield et al., 1989[Harrowfield, J. M., Skelton, B. W., Soudi, A. A. & White, A. H. (1989). Aust. J. Chem. 42, 1795-1798.]; CSD refcode ALXANM01) and those of a monohydrate (Lewis & Tocher, 2004[Lewis, T. C. & Tocher, D. A. (2004a). Acta Cryst. E60, o1689-o1690.]; PAGYUS), a trihydrate (Lewis & Tocher, 2004b[Lewis, T. C. & Tocher, D. A. (2004b). Acta Cryst. E60, o1748-o1750.]; HBARBT01) and a 1,4-dioxane hemisolvate (Gelbrich et al., 2010[Gelbrich, T., Rossi, D. & Griesser, U. J. (2010). Acta Cryst. E66, o1219.]; NUQYII) of the same compound. Two-point connections based on N—H⋯O=C bonds which result in characteristic R22(8) rings are found in each of these compounds.

The title structure displays just one such inter­action which involves the carbonyl group at ring position 4 (Fig. 4[link]). One such connection, albeit via the C2 carbonyl group, also exists in the 5,5-di­hydroxy­barbituric acid structure. Here it forms part of the C-4 ladder motif which is known from 5,5-disubstituted derivatives of barbituric acid (Gelbrich et al., 2011[Gelbrich, T., Rossi, D., Häfele, C. A. & Griesser, U. J. (2011). CrystEngComm, 13, 5502-5509.]).

[Figure 4]
Figure 4
An illustration of the similar packing of mol­ecules in the title compound (left) and its ethyl analogue (right). Each structure is viewed along its [010] direction. H atoms in alkyl groups are omitted for clarity.

The monohydrate and 1,4-dioxane hemisolvate each contain two two-point N—H⋯O=C connections per mol­ecule, in the first case via the topologically equivalent C4 and C6 carbonyl groups and in the second via the C4 and C2 carbonyl groups, resulting in the looped chain motifs C-2 and C-1 (Gelbrich et al., 2011[Gelbrich, T., Rossi, D., Häfele, C. A. & Griesser, U. J. (2011). CrystEngComm, 13, 5502-5509.]), respectively, which are frequently encountered in barbiturates. C-2 chains are also found in the structure of the trihydrate. The mol­ecular conformation of 5-hy­droxy-5-ethyl­barbituric acid (Gatehouse & Craven, 1971[Gatehouse, B. M. & Craven, B. M. (1971). Acta Cryst. B27, 1337-1344.]; HEBARB) is similar to that of the title structure with respect to the pseudo-torsion angle of 124.3°, which is structurally analogous to the C2⋯C5—C8—C9 angle discussed above. A comparison with the program XPac (for details, see below) indicated that these two compounds are indeed isostructural. Geometrical differences between the two mol­ecular packing arrangements are small (Fig. 4[link]), which is reflected in a calculated XPac dissimilarity index of just 5.4. This close packing similarity is remarkable insofar as the substitution of a propyl with an ethyl group alters the mol­ecular shape considerably and leads to an 11% decrease in the volume of the unit cell. The unit-cell parameters of the two isostructures correspond directly with one another. The a and b axes of the ethyl analogue (determined at room temperature) are 6.1% and 6.5% shorter than those of the title compound. Simultaneously, the c axis of the ethyl analogue is 1.5% longer and the β angle is enlarged by 1.0°.

5. Synthesis and crystallization

A glass slide with a sample of 5-propyl­barbituric acid embedded in paraffin oil was placed on a hot bench. The sample was melted and left to crystallize. Within a few days, the original crystals had partially converted and cube-shaped single crystals of the title compound had formed.

6. Refinement

Crystal data, data collection and structure refinement details are summarised in Table 2[link]. The data collection was carried out in the manner described by Coles & Gale (2012[Coles, S. J. & Gale, P. A. (2012). Chem. Sci. 3, 683-689.]). All H atoms were identified in difference maps. Methyl H atoms were idealized and included as rigid groups allowed to rotate but not tip (C—H = 0.98 Å). H atoms bonded to secondary CH2 carbon atoms were positioned geometrically (C—H = 0.99 Å). Hydrogen atoms bonded to N atoms were refined with restrained distances [N—H = 0.86 (1) Å]. The hydrogen atom of the hy­droxy group was refined freely and the Uiso parameters of all hydrogen atoms were also refined freely.

Table 2
Experimental details

Crystal data
Chemical formula C7H10N2O4
Mr 186.17
Crystal system, space group Monoclinic, P21/n
Temperature (K) 100
a, b, c (Å) 10.7862 (8), 6.7093 (5), 11.7365 (6)
β (°) 98.632 (6)
V3) 839.72 (10)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.12
Crystal size (mm) 0.05 × 0.05 × 0.05
 
Data collection
Diffractometer Rigaku Saturn724+
Absorption correction Multi-scan (CrysAlis PRO; Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England.])
Tmin, Tmax 0.809, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 5354, 1724, 1354
Rint 0.034
(sin θ/λ)max−1) 0.625
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.095, 1.05
No. of reflections 1724
No. of parameters 138
No. of restraints 2
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.29, −0.20
Computer programs: CrystalClear-SM Expert (Rigaku, 2012[Rigaku (2012). CrystalClear-SM Expert. Rigaku/MSC Inc., The Woodlands, Texas, USA.]), CrysAlis PRO (Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014/6 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]8) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

7. Analysis of structural features

The topology of the HBS was determined and classified with the programs ADS and IsoTest of the TOPOS package (Blatov, 2006[Blatov, V. A. (2006). IUCr Comput. Comm. Newsl. 7, 4-38.]) in the manner described by Baburin & Blatov (2007[Baburin, I. A. & Blatov, V. A. (2007). Acta Cryst. B63, 791-802.]). The topology graph for the HBS (Fig. 3[link]) is based on a net drawn with the IsoCryst program of the TOPOS package. The HBS of the title structure was defined by the three inter­actions N—H⋯O(carbon­yl), N—H⋯O(hy­droxy) and O—H⋯O(carbon­yl) listed in Table 1[link]. The mol­ecular packing in the title compound and its ethyl analogue were compared using the program XPac (Gelbrich & Hursthouse, 2005[Gelbrich, T. & Hursthouse, M. B. (2005). CrystEngComm, 7, 324-336.]). The underlying calculations were based on a comparison of sets of inter­molecular geometrical parameters generated from all non-H atomic positions of the title compound, except for the methyl carbon atom, and all 12 non-H atomic positions of the ethyl analogue. A match of two complete clusters consisting of a central mol­ecule and 17 coordinating mol­ecules was obtained with a dissimilarity index (Gelbrich et al., 2012[Gelbrich, T., Threlfall, T. L. & Hursthouse, M. B. (2012). CrystEngComm, 14, 5454-5464.]) of 5.4, indicating isostructurality of the two compounds with a high degree of packing similarity.

Supporting information


Computing details top

Data collection: CrystalClear-SM Expert (Rigaku, 2012); cell refinement: CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis PRO (Agilent, 2014); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014/6 (Sheldrick, 2015b); molecular graphics: XP in SHELXTL (Sheldrick, 20088) and Mercury (Macrae et al., 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

5-Hydroxy-5-propylpyrimidine-2,4,6(1H,3H),5H)-trione top
Crystal data top
C7H10N2O4F(000) = 392
Mr = 186.17Dx = 1.473 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 10.7862 (8) ÅCell parameters from 3013 reflections
b = 6.7093 (5) Åθ = 2.4–27.5°
c = 11.7365 (6) ŵ = 0.12 mm1
β = 98.632 (6)°T = 100 K
V = 839.72 (10) Å3Cube, colourless
Z = 40.05 × 0.05 × 0.05 mm
Data collection top
Rigaku Saturn724+
diffractometer
1724 independent reflections
Radiation source: Sealed Tube1354 reflections with I > 2σ(I)
Graphite Monochromator monochromatorRint = 0.034
Detector resolution: 28.5714 pixels mm-1θmax = 26.4°, θmin = 2.4°
profile data from ω–scansh = 1213
Absorption correction: multi-scan
(CrysAlisPro; Agilent, 2014)
k = 88
Tmin = 0.809, Tmax = 1.000l = 1414
5354 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: mixed
wR(F2) = 0.095H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0498P)2 + 0.1441P]
where P = (Fo2 + 2Fc2)/3
1724 reflections(Δ/σ)max < 0.001
138 parametersΔρmax = 0.29 e Å3
2 restraintsΔρmin = 0.20 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.75066 (12)0.60615 (19)0.37252 (9)0.0154 (3)
H10.8189 (12)0.536 (3)0.3792 (16)0.033 (5)*
O20.78456 (10)0.66277 (16)0.56534 (8)0.0201 (3)
C20.72112 (13)0.6895 (2)0.47207 (11)0.0147 (3)
N30.61584 (11)0.80699 (19)0.46014 (9)0.0150 (3)
H30.5995 (14)0.870 (2)0.5200 (10)0.020 (4)*
O40.47047 (9)0.99725 (16)0.35153 (8)0.0180 (3)
C40.54700 (13)0.8640 (2)0.35743 (11)0.0139 (3)
C50.56139 (13)0.7360 (2)0.25307 (11)0.0140 (3)
O60.73523 (10)0.58567 (18)0.17883 (8)0.0220 (3)
C60.68995 (13)0.6406 (2)0.26184 (11)0.0153 (3)
O70.54144 (10)0.85117 (16)0.15172 (8)0.0161 (3)
H70.465 (2)0.864 (3)0.1270 (16)0.040 (6)*
C80.46287 (14)0.5674 (2)0.25253 (11)0.0158 (3)
H8A0.48490.48580.32290.021 (4)*
H8B0.37990.62840.25570.016 (4)*
C90.45248 (15)0.4312 (2)0.14778 (13)0.0225 (4)
H9A0.45260.51280.07750.035 (5)*
H9B0.52620.34170.15530.033 (5)*
C100.33380 (15)0.3070 (3)0.13545 (13)0.0247 (4)
H10A0.33830.21390.20030.034 (5)*
H10B0.32530.23190.06310.036 (5)*
H10C0.26110.39480.13500.044 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0131 (7)0.0172 (7)0.0154 (6)0.0033 (6)0.0002 (5)0.0013 (5)
O20.0199 (6)0.0225 (6)0.0159 (5)0.0037 (5)0.0043 (4)0.0010 (4)
C20.0132 (8)0.0136 (8)0.0168 (7)0.0009 (6)0.0004 (5)0.0002 (5)
N30.0160 (7)0.0173 (7)0.0114 (6)0.0039 (5)0.0011 (5)0.0022 (5)
O40.0170 (6)0.0205 (6)0.0161 (5)0.0058 (5)0.0005 (4)0.0001 (4)
C40.0110 (8)0.0155 (8)0.0151 (7)0.0018 (6)0.0016 (5)0.0005 (5)
C50.0127 (8)0.0169 (8)0.0117 (6)0.0010 (6)0.0003 (5)0.0009 (5)
O60.0173 (6)0.0323 (7)0.0168 (5)0.0046 (5)0.0042 (4)0.0025 (5)
C60.0143 (8)0.0161 (8)0.0152 (7)0.0040 (6)0.0009 (5)0.0003 (5)
O70.0143 (6)0.0202 (6)0.0128 (5)0.0006 (5)0.0009 (4)0.0031 (4)
C80.0134 (8)0.0178 (8)0.0161 (6)0.0004 (6)0.0021 (5)0.0014 (6)
C90.0226 (9)0.0200 (9)0.0256 (8)0.0019 (7)0.0061 (6)0.0065 (7)
C100.0262 (10)0.0202 (9)0.0264 (8)0.0030 (7)0.0002 (6)0.0003 (7)
Geometric parameters (Å, º) top
N1—C21.3754 (18)O6—C61.2110 (17)
N1—C61.3836 (16)O7—H70.84 (2)
N1—H10.866 (9)C8—C91.5226 (19)
O2—C21.2141 (16)C8—H8A0.9900
C2—N31.3720 (19)C8—H8B0.9900
N3—C41.3719 (17)C9—C101.516 (2)
N3—H30.860 (9)C9—H9A0.9900
O4—C41.2117 (17)C9—H9B0.9900
C4—C51.5228 (19)C10—H10A0.9800
C5—O71.4076 (16)C10—H10B0.9800
C5—C61.517 (2)C10—H10C0.9800
C5—C81.551 (2)
C2—N1—C6126.31 (13)N1—C6—C5115.68 (12)
C2—N1—H1116.4 (12)C5—O7—H7111.6 (14)
C6—N1—H1116.8 (12)C9—C8—C5114.10 (12)
O2—C2—N3121.52 (13)C9—C8—H8A108.7
O2—C2—N1122.33 (14)C5—C8—H8A108.7
N3—C2—N1116.15 (11)C9—C8—H8B108.7
C2—N3—C4125.47 (12)C5—C8—H8B108.7
C2—N3—H3117.8 (10)H8A—C8—H8B107.6
C4—N3—H3115.6 (11)C10—C9—C8111.45 (13)
O4—C4—N3122.02 (12)C10—C9—H9A109.3
O4—C4—C5121.39 (11)C8—C9—H9A109.3
N3—C4—C5116.26 (13)C10—C9—H9B109.3
O7—C5—C6108.13 (11)C8—C9—H9B109.3
O7—C5—C4110.43 (12)H9A—C9—H9B108.0
C6—C5—C4112.70 (11)C9—C10—H10A109.5
O7—C5—C8112.27 (11)C9—C10—H10B109.5
C6—C5—C8108.15 (12)H10A—C10—H10B109.5
C4—C5—C8105.19 (11)C9—C10—H10C109.5
O6—C6—N1120.87 (14)H10A—C10—H10C109.5
O6—C6—C5123.30 (12)H10B—C10—H10C109.5
C6—N1—C2—O2174.59 (14)C2—N1—C6—C516.4 (2)
C6—N1—C2—N34.9 (2)O7—C5—C6—O634.5 (2)
O2—C2—N3—C4172.08 (14)C4—C5—C6—O6156.87 (14)
N1—C2—N3—C47.4 (2)C8—C5—C6—O687.29 (17)
C2—N3—C4—O4165.40 (14)O7—C5—C6—N1149.92 (12)
C2—N3—C4—C521.1 (2)C4—C5—C6—N127.56 (18)
O4—C4—C5—O735.46 (19)C8—C5—C6—N188.28 (15)
N3—C4—C5—O7151.01 (12)O7—C5—C8—C954.47 (16)
O4—C4—C5—C6156.51 (14)C6—C5—C8—C964.75 (14)
N3—C4—C5—C629.96 (18)C4—C5—C8—C9174.60 (12)
O4—C4—C5—C885.88 (16)C5—C8—C9—C10164.80 (13)
N3—C4—C5—C887.64 (14)C2—C5—C8—C9125.69 (11)
C2—N1—C6—O6167.92 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O7i0.87 (1)2.03 (1)2.8683 (17)164 (2)
N3—H3···O4ii0.86 (1)2.00 (1)2.8451 (16)170 (2)
O7—H7···O2iii0.84 (2)1.98 (2)2.8055 (15)169 (2)
Symmetry codes: (i) x+3/2, y1/2, z+1/2; (ii) x+1, y+2, z+1; (iii) x1/2, y+3/2, z1/2.
 

Acknowledgements

We thank Professor Simon Coles (Southampton) for access to the diffractometer used in this study.

References

First citationAgilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBaburin, I. A. & Blatov, V. A. (2007). Acta Cryst. B63, 791–802.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBlatov, V. A. (2006). IUCr Comput. Comm. Newsl. 7, 4–38.  Google Scholar
First citationBlatov, V. A., Carlucci, L., Ciani, G. & Proserpio, D. M. (2004). CrystEngComm, 6, 378–395.  Web of Science CrossRef Google Scholar
First citationColes, S. J. & Gale, P. A. (2012). Chem. Sci. 3, 683–689.  Web of Science CSD CrossRef CAS Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGatehouse, B. M. & Craven, B. M. (1971). Acta Cryst. B27, 1337–1344.  CSD CrossRef IUCr Journals Web of Science Google Scholar
First citationGelbrich, T. & Hursthouse, M. B. (2005). CrystEngComm, 7, 324–336.  Web of Science CrossRef CAS Google Scholar
First citationGelbrich, T., Meischberger, I. & Griesser, U. J. (2015). Acta Cryst. C71, 204–210.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGelbrich, T., Rossi, D. & Griesser, U. J. (2010). Acta Cryst. E66, o1219.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGelbrich, T., Rossi, D., Häfele, C. A. & Griesser, U. J. (2011). CrystEngComm, 13, 5502–5509.  Web of Science CSD CrossRef CAS Google Scholar
First citationGelbrich, T., Threlfall, T. L. & Hursthouse, M. B. (2012). CrystEngComm, 14, 5454–5464.  Web of Science CSD CrossRef CAS Google Scholar
First citationGroom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.  Web of Science CSD CrossRef CAS Google Scholar
First citationHarrowfield, J. M., Skelton, B. W., Soudi, A. A. & White, A. H. (1989). Aust. J. Chem. 42, 1795–1798.  CSD CrossRef CAS Google Scholar
First citationHursthouse, M. B., Hughes, D. S., Gelbrich, T. & Threlfall, T. L. (2015). Chem. Cent. J. 9, 1.  Web of Science CrossRef PubMed Google Scholar
First citationLewis, T. C. & Tocher, D. A. (2004a). Acta Cryst. E60, o1689–o1690.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLewis, T. C. & Tocher, D. A. (2004b). Acta Cryst. E60, o1748–o1750.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRigaku (2012). CrystalClear-SM Expert. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationRossi, D., Gelbrich, T., Kahlenberg, V. & Griesser, U. J. (2012). CrystEngComm, 14, 2494–2506.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSingh, C. (1965). Acta Cryst. 19, 759–767.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZencirci, N., Griesser, U. J., Gelbrich, T., Kahlenberg, V., Jetti, R. K. R., Apperley, D. C. & Harris, R. K. (2014). J. Phys. Chem. B, 118, 3267–3280.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds