research communications
of the butylparaben–isonicotinamide (1/1)
aStrathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, Scotland
*Correspondence e-mail: alastair.florence@strath.ac.uk
The title 1:1 11H14O3·C6H6N2O [systematic name: butyl 4-hydroxybenzoate–isonicotinamide (1/1)], crystallizes with one molecule of butylparaben (BPN) and one molecule of isonicotinamide (ISN) in the In the crystal, BPN and ISN molecules form hydrogen-bonded (O—H⋯N and N—H⋯O) dimers of paired BPN and ISN molecules. These dimers are further connected to each other via N—H⋯O=C hydrogen bonds, creating ribbons in [011] which further stack along the a axis to form a layered structure with short C⋯C contacts of 3.285 (3) Å. Packing interactions within the were assessed using PIXEL calculations.
CKeywords: crystal structure; butylparaben; isonicotinamide; co-crystal; hydrogen bonding.
CCDC reference: 1440986
1. Chemical context
Butylparaben (butyl 4-hydroxybenzoate, BPN), a naturally derived preservative, is widely used in pharmaceutical products and cosmetics (Charnock & Finsrud, 2007), and generally considered to be safe (Hossaini et al., 2000). The solubility of BPN has been reported in various solvents (Yang & Rasmuson, 2010; 2012; 2013). Isonicotinamide (ISN) is a widely used coformer (Aakeröy et al., 2003) and is known to form hydrogen-bonded co-crystals with phenolic compounds (Vishweshwar et al., 2003; McKellar et al., 2014). The sample of butyl paraben–isonicotinamide (BPIN) co-crystals was isolated during an experimental screening of BPN. The sample was identified as a novel form using multi-sample foil transmission X-ray powder (Florence et al., 2003). A suitable sample for single crystal X-ray was obtained from slow evaporation of 1:1 molar solution of BPN with ISN in ethanol at room temperature.
2. Structural commentary
The title ). In the solid state, the BPN molecule exhibits a planar conformation with a fully extended trans zigzag butyl ester group.
crystallizes with one molecule of BPN and a molecule of ISN in the (Fig. 13. Supramolecular features
The via O—H⋯N hydrogen bonds (Fig. 2a). These BPN–ISN–ISN–BPN dimers are further connected to each other via N—H⋯O=C hydrogen-bonds extending the structure to form ribbons in [011]; see Fig. 2b and Table 1. These ribbons further stack along a axis to produce a layered structure (Fig. 3) which is stabilized by various van der Waals interactions and exhibits short C⋯C contacts of 3.285 (3) Å. PIXEL (Gavezzotti, 2002; 2003) calculations revealed that the largest contribution to crystal stabilization comes from the dispersion energy (Ed, −98.5 kJ mol−1). The next greatest contribution comes from electrostatic (Coulombic) energy, (EC, −67.3 kJ mol−1) and then from polarization energy (Ep, −32.2 kJ mol−1).
is defined by hydrogen-bonded BPN–ISN–ISN–BPN dimers of paired BPN⋯ISN molecules connected4. Database survey
The crystal structures of BPN (CSD refcode: UDOMIL) (Yang & Rasmuson, 2013) and its clathrate hydrate (CSD refcode: VOFKIL) have been reported in the literature (de Vries & Caira, 2008). In UDOMIL, the BPN molecule exhibits a planar conformation except for the terminal ethyl moiety of butyl ester group which is in a cis orientation with respect to the ester group.
5. Synthesis and crystallization
Plate shaped crystals were grown from the saturated 1:1 molar solution of BPN with ISN in ethanol by isothermal solvent evaporation at 298 K.
6. Refinement
Crystal data, data collection and structure . The N and O bound H atoms were located in a difference Fourier map and isotropically refined. The C-bound H atoms were placed in calculated positions and refined as riding atoms: C—H = 0.95–0.99 Å with Uiso(H) = 1.5Ueq(C) for methyl H atoms and = 1.2Ueq(C) for other H atoms.
details are summarized in Table 2Supporting information
CCDC reference: 1440986
10.1107/S2056989015023518/cv5494sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S2056989015023518/cv5494Isup2.hkl
Supporting information file. DOI: 10.1107/S2056989015023518/cv5494Isup3.cml
Data collection: APEX2 (Bruker, 2007); cell
SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2008) and ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: enCIFer (Allen et al., 2004) and publCIF (Westrip, 2010).C11H14O3·C6H6N2O | Z = 2 |
Mr = 316.35 | F(000) = 336 |
Triclinic, P1 | Dx = 1.316 Mg m−3 |
a = 5.6257 (6) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 9.8661 (11) Å | Cell parameters from 4038 reflections |
c = 14.3979 (15) Å | θ = 2.5–26.4° |
α = 90.834 (7)° | µ = 0.09 mm−1 |
β = 91.431 (7)° | T = 150 K |
γ = 91.645 (7)° | Plate, colourless |
V = 798.47 (15) Å3 | 0.45 × 0.36 × 0.21 mm |
Bruker APEXII CCD diffractometer | 3225 independent reflections |
Radiation source: fine-focus sealed tube | 2344 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.039 |
φ and ω scans | θmax = 26.5°, θmin = 2.1° |
Absorption correction: multi-scan (SADABS; Bruker, 2007) | h = −6→7 |
Tmin = 0.625, Tmax = 0.745 | k = −12→12 |
10444 measured reflections | l = −18→18 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.045 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.116 | w = 1/[σ2(Fo2) + (0.0482P)2 + 0.3682P] where P = (Fo2 + 2Fc2)/3 |
S = 1.05 | (Δ/σ)max = 0.001 |
3225 reflections | Δρmax = 0.26 e Å−3 |
221 parameters | Δρmin = −0.27 e Å−3 |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
H1N | −0.623 (3) | 1.480 (2) | 1.4226 (13) | 0.019 (5)* | |
H2N | −0.626 (4) | 1.399 (2) | 1.3256 (16) | 0.035 (6)* | |
H3O | 0.140 (5) | 0.939 (3) | 1.1807 (17) | 0.054 (7)* | |
O4 | 0.1197 (2) | 0.47988 (13) | 0.82145 (8) | 0.0227 (3) | |
O1 | −0.2641 (2) | 1.38157 (14) | 1.49057 (9) | 0.0275 (3) | |
N1 | −0.5594 (3) | 1.41555 (17) | 1.38514 (11) | 0.0238 (4) | |
O2 | 0.2637 (2) | 0.88155 (15) | 1.16227 (9) | 0.0308 (4) | |
N2 | −0.0392 (3) | 1.05682 (16) | 1.24155 (10) | 0.0234 (4) | |
O3 | −0.2134 (2) | 0.59634 (14) | 0.80166 (9) | 0.0297 (3) | |
C13 | −0.0315 (3) | 0.57543 (19) | 0.84578 (12) | 0.0207 (4) | |
C7 | 0.2633 (3) | 0.63083 (19) | 0.97609 (12) | 0.0220 (4) | |
H8 | 0.3619 | 0.5641 | 0.9542 | 0.026* | |
C6 | −0.3631 (3) | 1.35566 (18) | 1.41440 (12) | 0.0194 (4) | |
C12 | 0.0462 (3) | 0.65243 (18) | 0.93023 (12) | 0.0190 (4) | |
C14 | 0.0586 (3) | 0.40447 (19) | 0.73615 (12) | 0.0223 (4) | |
H15A | 0.0438 | 0.4660 | 0.6845 | 0.027* | |
H15B | −0.0918 | 0.3552 | 0.7423 | 0.027* | |
C8 | 0.3330 (3) | 0.7076 (2) | 1.05364 (13) | 0.0239 (4) | |
H9 | 0.4775 | 0.6920 | 1.0839 | 0.029* | |
C2 | −0.0520 (3) | 1.18936 (19) | 1.38204 (13) | 0.0234 (4) | |
H2 | 0.0162 | 1.2121 | 1.4399 | 0.028* | |
C10 | −0.0302 (3) | 0.83018 (19) | 1.04128 (12) | 0.0229 (4) | |
H11 | −0.1290 | 0.8969 | 1.0631 | 0.027* | |
C16 | 0.2264 (3) | 0.2420 (2) | 0.62252 (13) | 0.0242 (4) | |
H17A | 0.0722 | 0.1955 | 0.6171 | 0.029* | |
H17B | 0.2306 | 0.3126 | 0.5764 | 0.029* | |
C5 | −0.3533 (3) | 1.21153 (19) | 1.26476 (12) | 0.0213 (4) | |
H6 | −0.4918 | 1.2498 | 1.2420 | 0.026* | |
C15 | 0.2548 (3) | 0.30708 (19) | 0.71924 (12) | 0.0220 (4) | |
H16A | 0.2511 | 0.2370 | 0.7658 | 0.026* | |
H16B | 0.4075 | 0.3551 | 0.7248 | 0.026* | |
C1 | −0.2580 (3) | 1.25031 (18) | 1.35125 (12) | 0.0185 (4) | |
C9 | 0.1866 (3) | 0.80852 (19) | 1.08652 (12) | 0.0221 (4) | |
C11 | −0.0986 (3) | 0.75279 (19) | 0.96404 (12) | 0.0223 (4) | |
H12 | −0.2437 | 0.7680 | 0.9342 | 0.027* | |
C3 | 0.0504 (3) | 1.0945 (2) | 1.32551 (13) | 0.0251 (4) | |
H3 | 0.1888 | 1.0544 | 1.3467 | 0.030* | |
C4 | −0.2387 (3) | 1.11486 (19) | 1.21283 (13) | 0.0240 (4) | |
H5 | −0.3042 | 1.0892 | 1.1551 | 0.029* | |
C17 | 0.4194 (4) | 0.1414 (2) | 0.60224 (14) | 0.0314 (5) | |
H18A | 0.5725 | 0.1869 | 0.6068 | 0.047* | |
H18B | 0.3946 | 0.1042 | 0.5407 | 0.047* | |
H18C | 0.4130 | 0.0696 | 0.6465 | 0.047* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O4 | 0.0233 (7) | 0.0256 (7) | 0.0192 (7) | 0.0096 (6) | −0.0068 (5) | −0.0082 (5) |
O1 | 0.0308 (7) | 0.0313 (8) | 0.0203 (7) | 0.0134 (6) | −0.0072 (6) | −0.0097 (6) |
N1 | 0.0260 (9) | 0.0268 (9) | 0.0185 (8) | 0.0106 (7) | −0.0047 (7) | −0.0089 (7) |
O2 | 0.0272 (7) | 0.0367 (8) | 0.0279 (7) | 0.0099 (6) | −0.0072 (6) | −0.0183 (6) |
N2 | 0.0251 (8) | 0.0230 (8) | 0.0223 (8) | 0.0055 (7) | 0.0000 (6) | −0.0049 (7) |
O3 | 0.0284 (7) | 0.0376 (8) | 0.0229 (7) | 0.0145 (6) | −0.0098 (6) | −0.0089 (6) |
C13 | 0.0215 (9) | 0.0228 (10) | 0.0181 (9) | 0.0066 (8) | −0.0013 (7) | −0.0014 (8) |
C7 | 0.0227 (9) | 0.0230 (10) | 0.0205 (9) | 0.0081 (8) | −0.0021 (7) | −0.0043 (8) |
C6 | 0.0209 (9) | 0.0199 (9) | 0.0173 (9) | 0.0022 (8) | −0.0009 (7) | −0.0019 (7) |
C12 | 0.0211 (9) | 0.0195 (9) | 0.0164 (9) | 0.0033 (7) | −0.0010 (7) | −0.0006 (7) |
C14 | 0.0257 (10) | 0.0252 (10) | 0.0157 (9) | 0.0049 (8) | −0.0061 (7) | −0.0061 (8) |
C8 | 0.0190 (9) | 0.0311 (11) | 0.0215 (9) | 0.0076 (8) | −0.0060 (7) | −0.0061 (8) |
C2 | 0.0234 (9) | 0.0270 (10) | 0.0195 (9) | 0.0037 (8) | −0.0046 (7) | −0.0050 (8) |
C10 | 0.0226 (9) | 0.0241 (10) | 0.0222 (9) | 0.0090 (8) | 0.0014 (7) | −0.0035 (8) |
C16 | 0.0281 (10) | 0.0246 (10) | 0.0199 (9) | 0.0060 (8) | −0.0034 (8) | −0.0053 (8) |
C5 | 0.0234 (9) | 0.0230 (10) | 0.0176 (9) | 0.0068 (8) | −0.0040 (7) | −0.0013 (8) |
C15 | 0.0233 (9) | 0.0232 (10) | 0.0194 (9) | 0.0062 (8) | −0.0042 (7) | −0.0027 (8) |
C1 | 0.0200 (9) | 0.0176 (9) | 0.0179 (9) | 0.0017 (7) | 0.0009 (7) | −0.0015 (7) |
C9 | 0.0239 (10) | 0.0239 (10) | 0.0184 (9) | 0.0031 (8) | −0.0009 (7) | −0.0067 (8) |
C11 | 0.0196 (9) | 0.0276 (10) | 0.0199 (9) | 0.0079 (8) | −0.0037 (7) | −0.0010 (8) |
C3 | 0.0225 (9) | 0.0263 (10) | 0.0265 (10) | 0.0095 (8) | −0.0033 (8) | −0.0059 (8) |
C4 | 0.0277 (10) | 0.0269 (11) | 0.0173 (9) | 0.0055 (8) | −0.0029 (7) | −0.0058 (8) |
C17 | 0.0348 (11) | 0.0310 (11) | 0.0287 (11) | 0.0096 (9) | 0.0016 (9) | −0.0062 (9) |
O4—C13 | 1.336 (2) | C12—C11 | 1.391 (2) |
O4—C14 | 1.455 (2) | C14—C15 | 1.506 (2) |
O1—C6 | 1.238 (2) | C8—C9 | 1.395 (2) |
N1—C6 | 1.330 (2) | C2—C3 | 1.379 (2) |
O2—C9 | 1.354 (2) | C2—C1 | 1.387 (2) |
N2—C4 | 1.334 (2) | C10—C11 | 1.380 (3) |
N2—C3 | 1.341 (2) | C10—C9 | 1.392 (3) |
O3—C13 | 1.215 (2) | C16—C17 | 1.523 (3) |
C13—C12 | 1.475 (2) | C16—C15 | 1.528 (2) |
C7—C8 | 1.382 (3) | C5—C4 | 1.387 (2) |
C7—C12 | 1.397 (2) | C5—C1 | 1.388 (2) |
C6—C1 | 1.514 (2) | ||
C13—O4—C14 | 115.95 (13) | C3—C2—C1 | 118.97 (17) |
C4—N2—C3 | 117.20 (15) | C11—C10—C9 | 120.08 (16) |
O3—C13—O4 | 122.73 (16) | C17—C16—C15 | 112.76 (15) |
O3—C13—C12 | 123.99 (16) | C4—C5—C1 | 118.94 (16) |
O4—C13—C12 | 113.28 (14) | C14—C15—C16 | 110.66 (15) |
C8—C7—C12 | 120.73 (16) | C2—C1—C5 | 118.09 (16) |
O1—C6—N1 | 123.13 (16) | C2—C1—C6 | 117.54 (16) |
O1—C6—C1 | 118.87 (15) | C5—C1—C6 | 124.37 (15) |
N1—C6—C1 | 117.99 (16) | O2—C9—C10 | 122.75 (16) |
C11—C12—C7 | 118.73 (16) | O2—C9—C8 | 117.70 (16) |
C11—C12—C13 | 118.87 (15) | C10—C9—C8 | 119.55 (16) |
C7—C12—C13 | 122.38 (15) | C10—C11—C12 | 120.95 (17) |
O4—C14—C15 | 107.55 (14) | N2—C3—C2 | 123.48 (17) |
C7—C8—C9 | 119.96 (17) | N2—C4—C5 | 123.31 (17) |
C14—O4—C13—O3 | 2.3 (3) | O1—C6—C1—C2 | −1.0 (3) |
C14—O4—C13—C12 | −177.25 (15) | N1—C6—C1—C2 | 179.41 (18) |
C8—C7—C12—C11 | 0.0 (3) | O1—C6—C1—C5 | 179.42 (18) |
C8—C7—C12—C13 | 178.19 (18) | N1—C6—C1—C5 | −0.2 (3) |
O3—C13—C12—C11 | 2.0 (3) | C11—C10—C9—O2 | 179.70 (18) |
O4—C13—C12—C11 | −178.52 (16) | C11—C10—C9—C8 | −0.4 (3) |
O3—C13—C12—C7 | −176.20 (19) | C7—C8—C9—O2 | −179.54 (17) |
O4—C13—C12—C7 | 3.3 (3) | C7—C8—C9—C10 | 0.6 (3) |
C13—O4—C14—C15 | 177.62 (16) | C9—C10—C11—C12 | 0.1 (3) |
C12—C7—C8—C9 | −0.4 (3) | C7—C12—C11—C10 | 0.1 (3) |
O4—C14—C15—C16 | −170.00 (15) | C13—C12—C11—C10 | −178.09 (17) |
C17—C16—C15—C14 | −179.45 (17) | C4—N2—C3—C2 | −0.4 (3) |
C3—C2—C1—C5 | 0.6 (3) | C1—C2—C3—N2 | −0.2 (3) |
C3—C2—C1—C6 | −179.01 (17) | C3—N2—C4—C5 | 0.7 (3) |
C4—C5—C1—C2 | −0.4 (3) | C1—C5—C4—N2 | −0.3 (3) |
C4—C5—C1—C6 | 179.21 (17) |
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H3O···N2 | 0.95 (3) | 1.79 (3) | 2.721 (2) | 165 (2) |
N1—H1N···O1i | 0.91 (2) | 1.97 (2) | 2.880 (2) | 175.3 (15) |
N1—H2N···O3ii | 0.94 (2) | 2.02 (2) | 2.948 (2) | 168.3 (18) |
Symmetry codes: (i) −x−1, −y+3, −z+3; (ii) −x−1, −y+2, −z+2. |
References
Aakeröy, C. B., Beatty, A. M., Helfrich, B. A. & Nieuwenhuyzen, M. (2003). Cryst. Growth Des. 3, 159–165. Web of Science CSD CrossRef Google Scholar
Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Charnock, C. & Finsrud, T. (2007). J. Clin. Pharm. Ther. 32, 567–572. CrossRef PubMed CAS Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Florence, A. J., Baumgartner, B., Weston, C., Shankland, N., Kennedy, A. R., Shankland, K. & David, W. I. F. (2003). J. Pharm. Sci. 92, 1930–1938. Web of Science CSD CrossRef PubMed CAS Google Scholar
Gavezzotti, A. (2002). J. Phys. Chem. B, 106, 4145–4154. Web of Science CrossRef CAS Google Scholar
Gavezzotti, A. (2003). J. Phys. Chem. B, 107, 2344–2353. Web of Science CrossRef CAS Google Scholar
Hossaini, A., Larsen, J. J. & Larsen, J. C. (2000). Food Chem. Toxicol. 38, 319–323. CrossRef PubMed CAS Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
McKellar, S. C., Kennedy, A. R., McCloy, N. C., McBride, E. & Florence, A. J. (2014). Cryst. Growth Des. 14, 2422–2430. CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Vishweshwar, P., Nangia, A. & Lynch, V. M. (2003). CrystEngComm, 5, 164–168. Web of Science CSD CrossRef CAS Google Scholar
Vries, E. J. C. de & Caira, M. R. (2008). Carbohydr. Res. 343, 2433–2438. PubMed Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yang, H. Y. & Rasmuson, A. C. (2010). J. Chem. Eng. Data, 55, 5091–5093. CrossRef CAS Google Scholar
Yang, H. & Rasmuson, A. C. (2012). Org. Process Res. Dev. 16, 1212–1224. CrossRef CAS Google Scholar
Yang, H. Y. & Rasmuson, A. C. (2013). Cryst. Growth Des. 13, 4226–4238. CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.