research communications
Investigations into the construction of the pentasubstituted ring C of Neosurugatoxin – a crystallographic study
aDepartment of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland, and bDivision of Chemistry and Environmental Science, School of Science and the Environment, Faculty of Science and Engineering, Manchester Metropolitan University, John Dalton Building, Chester Street, Manchester M1 5GD, England
*Correspondence e-mail: a.m.jones@mmu.ac.uk, w.harrison@abdn.ac.uk
The crystal structures of three cyclopenta[c]furans with various substituents at the 4-, 5- and 6-positions of the ring system are reported, namely, (±)-(3aR,4S,5S,6aS)-4-methyl-5-phenylhexahydro-1H-cyclopenta[c]furan-4,5-diol, C14H18O3, (I), (±)-(3aR,4S,5S,6aS)-4-benzyloxy-4-methyl-5-phenylhexahydro-1H-cyclopenta[c]furan-5-ol, C21H24O3, (II), and (±)-(1aR,1bS,4aR,5S,5aR)-5-benzyloxy-5-methyl-5a-phenylhexahydro-2H-oxireno[2′,3′:3,4]cyclopenta[1,2-c]furan, C21H22O3, (III). The dominant interaction in (I) and (II) is an O—H⋯O hydrogen bond across the bicyclic 5,5-ring system between the non-functionalized hydroxy group and the tetrahydrofuran O atom, which appears to influence the envelope conformations of the fused five-membered rings, whereas in (III), the rings have different conformations. A weak intramolecular C—H⋯O interaction appears to influence the degree of tilt of the phenyl ring attached to the 5-position and is different in (I) compared to (II) and (III).
1. Chemical context
Neosurugatoxin, C30H34BrN5O15, is the causative agent behind the toxicity of the Japanese ivory shell, Babylonia Japonica, a shellfish widely consumed in Japan. Neosurugatoxin, shown in Scheme 1 below, was first isolated and the structure delineated using X-ray crystallographic studies by Kosuge and co-workers (Kosuge et al., 1981, 1982).
Biological studies with Neosurugatoxin have shown it to have a wide range of actions on the central nervous system including: potent nicotinic acetylcholine receptor antagonist (Yamada et al., 1988; Bai & Sattelle, 1993; Tornøe et al., 1995); inhibition of acetylcholine release and blockage of muscle and neuronal nicotinic receptors (Hong et al., 1992); and a central action upon nicotinic cholinoreceptors (Bisset et al., 1992). Alternative total syntheses of Neosurugatoxin have previously been reported by the Inoue and Okada groups (Inoue et al., 1986, 1994; Okada et al., 1989). Intrigued by the dense functionality and complexity of ring C in Neosurugatoxin (see Scheme 1), we investigated a synthetic route to novel simplified cyclopentanes with diversity vectors to install the required functionality at a later stage.
As part of these studies, we now report the crystal structures of three of these compounds, namely (±)-(3aR,4S,5S,6aS)-4-methyl-5-phenylhexahydro-1H-cyclopenta[c]furan-4,5-diol, C14H18O3, (I), (±)-(3aR,4S,5S,6aS)-4-benzyloxy-4-methyl-5-phenylhexahydro-1H-cyclopenta[c]furan-5-ol, C21H24O3, (II), and (±)-(1aR,1bS,4aR,5S,5aR)-5-benzyloxy-5-methyl-5a-phenylhexahydro-2H-oxireno[2′,3′:3,4]cyclopenta[1,2-c]furan, C21H22O3, (III), see Scheme 2 above.
2. Structural commentary
Compound (I) crystallizes in the centrosymmetric Pbca and its molecular structure is illustrated in Fig. 1. In the arbitrarily chosen asymmetric molecule, the configurations of the stereogenic atoms C1, C2, C6 and C7 are S, R, R, and R, respectively. As expected, the junction of the fused rings is cis (H1—C1—C2—H2 = 5°). The C1/C2/C3/O1/C4 ring has an with O1 displaced from the mean plane of the carbon atoms (r.m.s. deviation = 0.018 Å) by 0.566 (5) Å. The C1/C2/C5/C6/C7 ring also has an with C6 displaced from the other atoms (r.m.s. deviation = 0.026 Å) by 0.573 (6) Å. The dihedral angle between the almost planar parts of the rings is 58.3 (2)°: the overall shape could be described as a butterfly, with the flap atoms (O1 and C6) pointing inwards. Atoms O2 and O3 lie to the same face of the ring although there is a significant twist between them [O2—C6—C7—O3 = 46.5 (4)°]. The O2—C6—C7—C8 torsion angle is 164.9 (3)° and the C8—C7—C6—C9 torsion angle is 47.6 (4)°. The dihedral angle between the pendant benzene ring (C9–C14) and C1/C2/C5/C7 is 64.00 (17)°. The molecular structure of (I) features two intramolecular O—H⋯O hydrogen bonds (Table 1). The O3—H3o⋯O2 bond closes an S(5) ring. The O2—H2o⋯O1 bond, which bridges across the top of the fused-ring system to generate an S(7) ring, may influence the conformations of the five-membered rings. An intramolecular C10—H10⋯O2 short contact (H⋯O = 2.33 Å) is also present: although the C—H⋯O angle of 100° is extremely small to be regarded as a bond (Steiner, 1996) it is interesting to compare this C—H grouping to the situation in (II) and (III) (vide infra).
The , which crystallizes in the centrosymmetric P21/c, contains one molecule (Fig. 2): for ease of comparison with (I), the stereogenic centres in this molecule have configurations of S, R, R, and R, for C1, C2, C7 and C8, respectively. As with (I), the C1/C2/C3/O1/C4 ring has an with O1 as the flap, displaced by 0.571 (2) Å from the other atoms. The conformation of the C1/C2/C5/C6/C7 ring in (II) is also an envelope, with C6 as the flap [displacement = 0.618 (2) Å]. The dihedral angle between C1/C2/C3/C4 (r.m.s. deviation = 0.004 Å) and C1/C2/C5/C7 (r.m.s. deviation = 0.016 Å) of 58.28 (7)° is identical to the equivalent value for (I) and the flap atoms (O1 and C6) also point inwards. Key torsion angles in (II) include O2—C6—C7—O3 [42.19 (17)°], O2—C6—C7—C8 [164.41 (13)°] and C8—C7—C6—C9 [46.42 (17)°]: these data are similar to the corresponding values for (I). However, the dihedral angle between the C9–C14 benzene ring and C1/C2/C5/C7 in (II) is 34.90 (9)°, which differs by some 30° compared to the equivalent value for (I). The dihedral angle between the aromatic rings (C9–C14 and C16–C21) is 89.74 (5)°. As with (I), the hydroxy (O2—H2o) grouping forms an intramolecular hydrogen bond (Table 2) to O1 across the fused-ring system and an S(7) ring results. The C10—H10 grouping in (II) points towards O3 rather than O2 (H⋯O = 2.56 Å), which appears to correlate with the different orientation of the C9–C14 ring.
of (II)
|
Compound (III) crystallizes in the P212121. The was indeterminate in the present experiment and C1, C2, C5, C6 and C7 in the asymmetric molecule were assigned configurations of S, R, S, S and R, respectively (Fig. 3). Based on the synthesis, we assume the bulk sample to be racemic. The conformation of the C1/C2/C3/O1/C4 ring is different to the equivalent unit in (I) and (II): in (III), this ring is twisted about the C2—C3 bond [Q(2) = 0.307 (10) Å, φ(2) = 232.5 (18)°] such that C2 and C3 are displaced from the O1/C4/C1 plane by −0.22 (2) and 0.29 (2) Å, respectively. The C1/C2/C5/C6/C7 conformation in (III) is an envelope, but the flap atom is different to that in (I) and (II): in this case C1 (rather than C6) is displaced by 0.487 (14) Å from the other atoms (r.m.s. deviation = 0.011 Å). The dihedral angle between the five-membered rings (all atoms) of 69.6 (5)° in (III) is significantly larger than the corresponding angle for (I) and (II). The epoxide ring (C5/C6/O2) subtends a dihedral angle of 74.0 (4)° with respect to C2/C5/C6/C7. Important torsion angles in (III) include O2—C6—C7—O3 [76.3 (8)°], O2—C6—C7—C8 [–161.3 (6)°] and C8—C7—C6—C9 [55.4 (9)°]: these data are very different from the corresponding values for (I) and (II), which must in part be due to the steric inflexibility of the epoxide ring containing O2. The dihedral angle between the C9–C14 benzene ring and C2/C5/C6/C7 in (II) is 49.3 (4)°, which is intermediate between the corresponding values for (I) and (II). The dihedral angle between the C9–C14 and C16a–C21a benzene rings is 41.0 (7)°. There are obviously no classical intramolecular hydrogen bonds in (III), but, as in (II), a C10—H10⋯O3 link (Table 3) is seen.
3. Supramolecular features
In the crystal of (I), the molecules are linked into [010] chains by O3—H3o⋯O1i [symmetry code: (i) − x, y − , z] hydrogen bonds (Table 1, Fig. 4): the same OH group also participates in an intramolecular bond, as described above. Adjacent molecules are enantiomers, being related by b-glide symmetry and the chain has a C(6) motif. Long and presumably very weak intermolecular C—H⋯O and C—H⋯π interactions (Tables 2 and 3) are observed in the crystals of (II) and (III). Assuming these interactions to be significant, (100) sheets in (II) and [100] chains in (III) arise (Fig. 5). It is notable that the epoxide O atom accepts both C—H⋯O interactions in the latter. Aromatic π–π stacking is absent in these structures, the shortest centroid–centroid separations being ca 4.97 in (I), 5.03 in (II) and 5.24 Å in (III).
4. Database survey
A search of the Cambridge Structural Database (Groom & Allen, 2014) for compounds with a cyclopenta[c]furan skeleton revealed 321 matches; of these, just two had O atoms bonded to the 4- and 5-positions of the fused-ring system, viz.: VALFIX (Dumdei et al., 1989) and YEYBEB (Wang et al., 2012), but otherwise, neither bears a close resemblance to the compounds described here.
5. Synthesis and crystallization
Full synthesis details will be reported in due course, but a summary of the steps followed to prepare (I), (II) and (III) are detailed as follows. A Pauson–Khand [2 + 2 + 1] cycloaddition (Pauson, 1985) was used to prepare the key starting material: a mixture of phenylacetylene, 2,5-dihydrofuran and dicobalt octacarbonyl in toluene under an inert atmosphere was heated to reflux for 1 h to afford (±)-(3aR,6aS)-5-phenyl-1,3,3a,6a-tetrahydro-4H-cyclopenta[c]furan-4-one, A: after purification by silica gel spectroscopic data were in accordance with those previously reported by Brown et al. (2005). Treatment of A with methyl magnesium iodide in anhydrous tetrahydrofuran using the procedure of Coote et al. (2008) afforded (±)-(3aR,4S,6aS)-4-methyl-5-phenyl-3,3a,4,6a-tetrahydro-1H-cyclopenta[c]furan-4-ol, B. Treatment of B with m-CPBA in anhydrous dichloromethane at 273 K yielded (±)-(1aR,1bS,4aR,5S,5aR)-5-methyl-5a-phenylhexahydro-2H-oxireno[2′,3′:3,4]cyclopenta[1,2-c]furan-5-ol, C, with facial selectivity directed by the hydroxy group (Langston et al., 2007). Treatment of C with lithium aluminium hydride in anhydrous tetrahydrofuran (Howe et al., 1987) afforded the epoxide opened product, (±)-(3aR,4S,5S,6aS)-4-methyl-5-phenylhexahydro-1H-cyclopenta[c]furan-4,5-diol, (I). Further treatment of (I) with benzyl chloride under identical conditions to above afforded (±)-(3aR,4S,5S,6aS)-4-(benzyloxy)-4-methyl-5-phenylhexahydro-1H-cyclopenta[c]furan-5-ol, (II). Benzylation of C using the procedure of Peng & Woerpel (2003) afforded (±)-(1aR,1bS,4aR,5S,5aR)-5-(benzyloxy)-5-methyl-5a-phenylhexahydro-2H-oxireno[2′,3′:3,4]cyclopenta[1,2-c]furan, (III).
6. Refinement
Crystal data, data collection and structure are summarized in Table 4. The O-bound H atoms were located in difference maps and their positions freely refined. The C-bound H atoms were geometrically placed (C—H = 0.95–1.00 Å) and refined as riding atoms. The constraint Uiso(H) = 1.2Ueq(carrier) or 1.5Ueq(methyl carrier) was applied in all cases. The methyl H atoms were allowed to rotate, but not to tip, to best fit the electron density. The C16–C21 benzene ring in (III) was modelled as being disordered over two overlapped orientations in a 0.54 (3):0.46 (3) ratio; the rings were constrained to be regular hexagons (C—C = 1.39 Å). The crystal quality for (I) and (III) was poor, which may correlate with the rather high R-factors obtained, although the structures are clearly resolved with acceptable geometrical precision. The of compound (III) was indeterminate in the present experiment.
details for (I)–(III)
|
Supporting information
10.1107/S2056989015023506/gk2648sup1.cif
contains datablocks I, II, III, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S2056989015023506/gk2648Isup2.hkl
Structure factors: contains datablock II. DOI: 10.1107/S2056989015023506/gk2648IIsup3.hkl
Structure factors: contains datablock III. DOI: 10.1107/S2056989015023506/gk2648IIIsup4.hkl
Supporting information file. DOI: 10.1107/S2056989015023506/gk2648Isup5.cml
Supporting information file. DOI: 10.1107/S2056989015023506/gk2648IIsup6.cml
Supporting information file. DOI: 10.1107/S2056989015023506/gk2648IIIsup7.cml
For all compounds, data collection: COLLECT (Nonius, 1998); cell
SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997), and SORTAV (Blessing, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).C14H18O3 | Dx = 1.311 Mg m−3 |
Mr = 234.28 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, Pbca | Cell parameters from 4280 reflections |
a = 10.997 (2) Å | θ = 2.9–27.5° |
b = 7.7489 (9) Å | µ = 0.09 mm−1 |
c = 27.852 (4) Å | T = 120 K |
V = 2373.4 (6) Å3 | Lath, colourless |
Z = 8 | 0.18 × 0.08 × 0.02 mm |
F(000) = 1008 |
Nonius KappaCCD diffractometer | 1303 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.137 |
Graphite monochromator | θmax = 26.0°, θmin = 3.3° |
ω scans | h = −13→13 |
13446 measured reflections | k = −6→9 |
2312 independent reflections | l = −34→34 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.095 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.148 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.09 | w = 1/[σ2(Fo2) + (0.0231P)2 + 2.9549P] where P = (Fo2 + 2Fc2)/3 |
2312 reflections | (Δ/σ)max < 0.001 |
161 parameters | Δρmax = 0.25 e Å−3 |
0 restraints | Δρmin = −0.27 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.4979 (4) | 0.7625 (5) | 0.44924 (12) | 0.0240 (10) | |
H1 | 0.5579 | 0.7736 | 0.4760 | 0.029* | |
C2 | 0.5209 (4) | 0.9051 (4) | 0.41050 (13) | 0.0251 (10) | |
H2 | 0.5951 | 0.9739 | 0.4185 | 0.030* | |
C3 | 0.4068 (4) | 1.0179 (5) | 0.41288 (13) | 0.0285 (10) | |
H3A | 0.4189 | 1.1156 | 0.4353 | 0.034* | |
H3B | 0.3863 | 1.0641 | 0.3808 | 0.034* | |
C4 | 0.3697 (4) | 0.8034 (5) | 0.46709 (13) | 0.0292 (11) | |
H4A | 0.3237 | 0.6955 | 0.4728 | 0.035* | |
H4B | 0.3733 | 0.8695 | 0.4975 | 0.035* | |
C5 | 0.5380 (4) | 0.8075 (4) | 0.36269 (12) | 0.0252 (10) | |
H5A | 0.4957 | 0.8687 | 0.3363 | 0.030* | |
H5B | 0.6254 | 0.7990 | 0.3546 | 0.030* | |
C6 | 0.4840 (4) | 0.6287 (4) | 0.36962 (12) | 0.0221 (9) | |
C7 | 0.5147 (4) | 0.5877 (4) | 0.42306 (12) | 0.0207 (9) | |
C8 | 0.6451 (4) | 0.5287 (5) | 0.43001 (12) | 0.0254 (10) | |
H8A | 0.6578 | 0.4196 | 0.4129 | 0.038* | |
H8B | 0.6610 | 0.5120 | 0.4643 | 0.038* | |
H8C | 0.7006 | 0.6164 | 0.4173 | 0.038* | |
C9 | 0.5241 (4) | 0.4920 (5) | 0.33435 (11) | 0.0235 (10) | |
C10 | 0.4430 (4) | 0.3631 (5) | 0.31982 (13) | 0.0301 (11) | |
H10 | 0.3628 | 0.3614 | 0.3325 | 0.036* | |
C11 | 0.4784 (5) | 0.2378 (5) | 0.28707 (15) | 0.0404 (13) | |
H11 | 0.4224 | 0.1505 | 0.2779 | 0.048* | |
C12 | 0.5939 (5) | 0.2384 (6) | 0.26765 (14) | 0.0430 (14) | |
H12 | 0.6174 | 0.1534 | 0.2449 | 0.052* | |
C13 | 0.6743 (5) | 0.3641 (5) | 0.28186 (13) | 0.0353 (12) | |
H13 | 0.7542 | 0.3657 | 0.2689 | 0.042* | |
C14 | 0.6403 (4) | 0.4878 (5) | 0.31469 (12) | 0.0303 (11) | |
H14 | 0.6978 | 0.5727 | 0.3242 | 0.036* | |
O1 | 0.3123 (3) | 0.9043 (3) | 0.43001 (9) | 0.0297 (7) | |
O2 | 0.3534 (3) | 0.6375 (3) | 0.36550 (9) | 0.0270 (7) | |
H2o | 0.328 (4) | 0.722 (5) | 0.3816 (13) | 0.032* | |
O3 | 0.4425 (3) | 0.4516 (3) | 0.44161 (9) | 0.0280 (8) | |
H3o | 0.375 (4) | 0.464 (5) | 0.4309 (14) | 0.034* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.016 (3) | 0.031 (2) | 0.0249 (19) | 0.0010 (19) | −0.0017 (19) | −0.0017 (17) |
C2 | 0.018 (3) | 0.018 (2) | 0.039 (2) | −0.0007 (19) | 0.000 (2) | −0.0036 (17) |
C3 | 0.031 (3) | 0.022 (2) | 0.033 (2) | 0.000 (2) | 0.006 (2) | 0.0035 (17) |
C4 | 0.031 (3) | 0.028 (2) | 0.029 (2) | 0.008 (2) | 0.007 (2) | 0.0026 (18) |
C5 | 0.023 (3) | 0.026 (2) | 0.027 (2) | 0.0007 (19) | 0.0027 (19) | 0.0022 (17) |
C6 | 0.018 (3) | 0.021 (2) | 0.028 (2) | −0.0039 (19) | −0.0048 (19) | 0.0027 (17) |
C7 | 0.018 (3) | 0.023 (2) | 0.0213 (18) | 0.0007 (18) | 0.0035 (18) | 0.0011 (16) |
C8 | 0.026 (3) | 0.028 (2) | 0.023 (2) | 0.002 (2) | −0.0040 (19) | −0.0017 (16) |
C9 | 0.035 (3) | 0.022 (2) | 0.0139 (18) | 0.004 (2) | −0.0063 (19) | 0.0021 (16) |
C10 | 0.036 (3) | 0.028 (2) | 0.026 (2) | 0.002 (2) | −0.008 (2) | 0.0031 (19) |
C11 | 0.058 (4) | 0.025 (3) | 0.039 (2) | 0.004 (3) | −0.023 (3) | −0.004 (2) |
C12 | 0.067 (4) | 0.033 (3) | 0.029 (2) | 0.028 (3) | −0.013 (3) | −0.011 (2) |
C13 | 0.051 (4) | 0.032 (3) | 0.024 (2) | 0.017 (2) | −0.002 (2) | 0.0019 (19) |
C14 | 0.042 (3) | 0.028 (2) | 0.0209 (19) | 0.009 (2) | 0.003 (2) | 0.0024 (18) |
O1 | 0.0226 (19) | 0.0266 (15) | 0.0399 (16) | 0.0066 (13) | 0.0054 (14) | 0.0074 (12) |
O2 | 0.023 (2) | 0.0290 (17) | 0.0293 (15) | 0.0018 (14) | −0.0068 (14) | 0.0002 (12) |
O3 | 0.027 (2) | 0.0289 (16) | 0.0283 (15) | −0.0050 (15) | −0.0050 (14) | 0.0076 (12) |
C1—C4 | 1.528 (5) | C7—O3 | 1.417 (4) |
C1—C7 | 1.550 (5) | C7—C8 | 1.517 (5) |
C1—C2 | 1.565 (5) | C8—H8A | 0.9800 |
C1—H1 | 1.0000 | C8—H8B | 0.9800 |
C2—C3 | 1.530 (5) | C8—H8C | 0.9800 |
C2—C5 | 1.543 (5) | C9—C14 | 1.390 (5) |
C2—H2 | 1.0000 | C9—C10 | 1.399 (5) |
C3—O1 | 1.444 (4) | C10—C11 | 1.388 (5) |
C3—H3A | 0.9900 | C10—H10 | 0.9500 |
C3—H3B | 0.9900 | C11—C12 | 1.381 (6) |
C4—O1 | 1.441 (4) | C11—H11 | 0.9500 |
C4—H4A | 0.9900 | C12—C13 | 1.373 (6) |
C4—H4B | 0.9900 | C12—H12 | 0.9500 |
C5—C6 | 1.519 (5) | C13—C14 | 1.377 (5) |
C5—H5A | 0.9900 | C13—H13 | 0.9500 |
C5—H5B | 0.9900 | C14—H14 | 0.9500 |
C6—O2 | 1.442 (5) | O2—H2o | 0.84 (4) |
C6—C9 | 1.511 (5) | O3—H3o | 0.80 (4) |
C6—C7 | 1.559 (5) | ||
C4—C1—C7 | 116.4 (3) | C5—C6—C7 | 102.9 (3) |
C4—C1—C2 | 103.1 (3) | O3—C7—C8 | 105.0 (3) |
C7—C1—C2 | 105.9 (3) | O3—C7—C1 | 114.3 (3) |
C4—C1—H1 | 110.4 | C8—C7—C1 | 108.4 (3) |
C7—C1—H1 | 110.4 | O3—C7—C6 | 112.2 (3) |
C2—C1—H1 | 110.4 | C8—C7—C6 | 112.8 (3) |
C3—C2—C5 | 114.7 (3) | C1—C7—C6 | 104.2 (3) |
C3—C2—C1 | 103.9 (3) | C7—C8—H8A | 109.5 |
C5—C2—C1 | 105.6 (3) | C7—C8—H8B | 109.5 |
C3—C2—H2 | 110.8 | H8A—C8—H8B | 109.5 |
C5—C2—H2 | 110.8 | C7—C8—H8C | 109.5 |
C1—C2—H2 | 110.8 | H8A—C8—H8C | 109.5 |
O1—C3—C2 | 104.9 (3) | H8B—C8—H8C | 109.5 |
O1—C3—H3A | 110.8 | C14—C9—C10 | 117.1 (4) |
C2—C3—H3A | 110.8 | C14—C9—C6 | 122.7 (4) |
O1—C3—H3B | 110.8 | C10—C9—C6 | 120.2 (4) |
C2—C3—H3B | 110.8 | C11—C10—C9 | 120.7 (4) |
H3A—C3—H3B | 108.8 | C11—C10—H10 | 119.6 |
O1—C4—C1 | 106.5 (3) | C9—C10—H10 | 119.6 |
O1—C4—H4A | 110.4 | C12—C11—C10 | 120.8 (4) |
C1—C4—H4A | 110.4 | C12—C11—H11 | 119.6 |
O1—C4—H4B | 110.4 | C10—C11—H11 | 119.6 |
C1—C4—H4B | 110.4 | C13—C12—C11 | 118.8 (4) |
H4A—C4—H4B | 108.6 | C13—C12—H12 | 120.6 |
C6—C5—C2 | 106.8 (3) | C11—C12—H12 | 120.6 |
C6—C5—H5A | 110.4 | C12—C13—C14 | 120.7 (5) |
C2—C5—H5A | 110.4 | C12—C13—H13 | 119.7 |
C6—C5—H5B | 110.4 | C14—C13—H13 | 119.7 |
C2—C5—H5B | 110.4 | C13—C14—C9 | 121.8 (4) |
H5A—C5—H5B | 108.6 | C13—C14—H14 | 119.1 |
O2—C6—C9 | 105.8 (3) | C9—C14—H14 | 119.1 |
O2—C6—C5 | 109.6 (3) | C4—O1—C3 | 104.6 (3) |
C9—C6—C5 | 116.3 (3) | C6—O2—H2o | 109 (3) |
O2—C6—C7 | 107.5 (3) | C7—O3—H3o | 107 (3) |
C9—C6—C7 | 114.5 (3) | ||
C4—C1—C2—C3 | 3.5 (4) | O2—C6—C7—C8 | 164.9 (3) |
C7—C1—C2—C3 | 126.2 (3) | C9—C6—C7—C8 | 47.6 (4) |
C4—C1—C2—C5 | −117.5 (3) | C5—C6—C7—C8 | −79.4 (4) |
C7—C1—C2—C5 | 5.2 (4) | O2—C6—C7—C1 | −77.7 (3) |
C5—C2—C3—O1 | 87.8 (4) | C9—C6—C7—C1 | 165.0 (3) |
C1—C2—C3—O1 | −26.9 (4) | C5—C6—C7—C1 | 38.0 (4) |
C7—C1—C4—O1 | −94.2 (3) | O2—C6—C9—C14 | 155.7 (3) |
C2—C1—C4—O1 | 21.2 (4) | C5—C6—C9—C14 | 33.8 (5) |
C3—C2—C5—C6 | −94.9 (4) | C7—C6—C9—C14 | −86.1 (4) |
C1—C2—C5—C6 | 18.9 (4) | O2—C6—C9—C10 | −23.8 (4) |
C2—C5—C6—O2 | 78.9 (4) | C5—C6—C9—C10 | −145.7 (3) |
C2—C5—C6—C9 | −161.2 (3) | C7—C6—C9—C10 | 94.4 (4) |
C2—C5—C6—C7 | −35.2 (4) | C14—C9—C10—C11 | −0.2 (5) |
C4—C1—C7—O3 | −35.5 (4) | C6—C9—C10—C11 | 179.4 (3) |
C2—C1—C7—O3 | −149.4 (3) | C9—C10—C11—C12 | −0.7 (6) |
C4—C1—C7—C8 | −152.3 (3) | C10—C11—C12—C13 | 1.0 (6) |
C2—C1—C7—C8 | 93.9 (3) | C11—C12—C13—C14 | −0.3 (6) |
C4—C1—C7—C6 | 87.3 (4) | C12—C13—C14—C9 | −0.6 (6) |
C2—C1—C7—C6 | −26.5 (4) | C10—C9—C14—C13 | 0.8 (5) |
O2—C6—C7—O3 | 46.5 (4) | C6—C9—C14—C13 | −178.7 (3) |
C9—C6—C7—O3 | −70.7 (4) | C1—C4—O1—C3 | −39.4 (4) |
C5—C6—C7—O3 | 162.2 (3) | C2—C3—O1—C4 | 41.3 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H2o···O1 | 0.84 (4) | 1.96 (4) | 2.776 (4) | 163 (4) |
O3—H3o···O1i | 0.80 (4) | 2.11 (4) | 2.844 (4) | 151 (4) |
O3—H3o···O2 | 0.80 (4) | 2.28 (4) | 2.744 (3) | 118 (4) |
C10—H10···O2 | 0.95 | 2.33 | 2.667 (5) | 100 |
Symmetry code: (i) −x+1/2, y−1/2, z. |
C21H24O3 | F(000) = 696 |
Mr = 324.40 | Dx = 1.271 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 12.8872 (3) Å | Cell parameters from 3991 reflections |
b = 19.3544 (6) Å | θ = 2.9–27.5° |
c = 6.8046 (1) Å | µ = 0.08 mm−1 |
β = 92.3907 (16)° | T = 120 K |
V = 1695.75 (7) Å3 | Block, colourless |
Z = 4 | 0.14 × 0.10 × 0.04 mm |
Nonius KappaCCD diffractometer | 2834 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.091 |
Graphite monochromator | θmax = 27.6°, θmin = 3.2° |
ω scans | h = −16→16 |
28187 measured reflections | k = −25→22 |
3899 independent reflections | l = −8→8 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.053 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.132 | w = 1/[σ2(Fo2) + (0.0522P)2 + 0.6264P] where P = (Fo2 + 2Fc2)/3 |
S = 1.06 | (Δ/σ)max < 0.001 |
3899 reflections | Δρmax = 0.30 e Å−3 |
222 parameters | Δρmin = −0.23 e Å−3 |
0 restraints | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.015 (2) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.30147 (13) | 0.58494 (9) | 0.3553 (2) | 0.0281 (4) | |
H1 | 0.2965 | 0.5555 | 0.2345 | 0.034* | |
C2 | 0.29204 (13) | 0.66286 (9) | 0.2994 (2) | 0.0287 (4) | |
H2 | 0.2808 | 0.6687 | 0.1541 | 0.034* | |
C3 | 0.39707 (14) | 0.69274 (10) | 0.3697 (3) | 0.0363 (4) | |
H3A | 0.4456 | 0.6937 | 0.2608 | 0.044* | |
H3B | 0.3887 | 0.7404 | 0.4198 | 0.044* | |
C4 | 0.40989 (14) | 0.57980 (10) | 0.4536 (3) | 0.0350 (4) | |
H4A | 0.4103 | 0.5463 | 0.5636 | 0.042* | |
H4B | 0.4607 | 0.5644 | 0.3576 | 0.042* | |
C5 | 0.19910 (13) | 0.69099 (9) | 0.4091 (2) | 0.0269 (4) | |
H5A | 0.2134 | 0.7385 | 0.4569 | 0.032* | |
H5B | 0.1360 | 0.6919 | 0.3212 | 0.032* | |
C6 | 0.18412 (12) | 0.64195 (8) | 0.5828 (2) | 0.0225 (4) | |
C7 | 0.20787 (13) | 0.57048 (9) | 0.4881 (2) | 0.0242 (4) | |
C8 | 0.11588 (14) | 0.54513 (9) | 0.3603 (2) | 0.0300 (4) | |
H8A | 0.1346 | 0.5021 | 0.2948 | 0.045* | |
H8B | 0.0972 | 0.5802 | 0.2611 | 0.045* | |
H8C | 0.0566 | 0.5368 | 0.4428 | 0.045* | |
C9 | 0.07863 (12) | 0.64665 (9) | 0.6741 (2) | 0.0237 (4) | |
C10 | 0.05847 (13) | 0.60608 (9) | 0.8379 (2) | 0.0284 (4) | |
H10 | 0.1113 | 0.5767 | 0.8921 | 0.034* | |
C11 | −0.03727 (14) | 0.60800 (10) | 0.9227 (2) | 0.0317 (4) | |
H11 | −0.0498 | 0.5796 | 1.0332 | 0.038* | |
C12 | −0.11497 (14) | 0.65112 (10) | 0.8471 (2) | 0.0322 (4) | |
H12 | −0.1810 | 0.6521 | 0.9042 | 0.039* | |
C13 | −0.09541 (14) | 0.69271 (10) | 0.6879 (3) | 0.0321 (4) | |
H13 | −0.1479 | 0.7231 | 0.6370 | 0.039* | |
C14 | 0.00014 (13) | 0.69059 (9) | 0.6015 (2) | 0.0280 (4) | |
H14 | 0.0123 | 0.7194 | 0.4917 | 0.034* | |
C15 | 0.24848 (15) | 0.45363 (9) | 0.5913 (2) | 0.0311 (4) | |
H15A | 0.2899 | 0.4514 | 0.4721 | 0.037* | |
H15B | 0.1807 | 0.4310 | 0.5618 | 0.037* | |
C16 | 0.30523 (13) | 0.41712 (9) | 0.7601 (2) | 0.0261 (4) | |
C17 | 0.31224 (14) | 0.34524 (9) | 0.7586 (3) | 0.0295 (4) | |
H17 | 0.2798 | 0.3199 | 0.6534 | 0.035* | |
C18 | 0.36607 (14) | 0.31032 (10) | 0.9088 (3) | 0.0324 (4) | |
H18 | 0.3709 | 0.2614 | 0.9053 | 0.039* | |
C19 | 0.41288 (14) | 0.34674 (10) | 1.0645 (3) | 0.0329 (4) | |
H19 | 0.4494 | 0.3230 | 1.1680 | 0.039* | |
C20 | 0.40569 (14) | 0.41784 (10) | 1.0669 (3) | 0.0335 (4) | |
H20 | 0.4376 | 0.4430 | 1.1731 | 0.040* | |
C21 | 0.35245 (14) | 0.45329 (9) | 0.9163 (2) | 0.0297 (4) | |
H22 | 0.3483 | 0.5023 | 0.9200 | 0.036* | |
O1 | 0.43553 (9) | 0.64763 (7) | 0.52482 (18) | 0.0359 (3) | |
O2 | 0.25800 (9) | 0.65642 (6) | 0.74180 (16) | 0.0258 (3) | |
H2o | 0.3204 (16) | 0.6532 (10) | 0.697 (3) | 0.031* | |
O3 | 0.23287 (9) | 0.52361 (6) | 0.64562 (15) | 0.0276 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0325 (9) | 0.0287 (10) | 0.0232 (8) | 0.0023 (7) | 0.0020 (7) | −0.0027 (7) |
C2 | 0.0291 (9) | 0.0303 (10) | 0.0269 (8) | 0.0007 (7) | 0.0043 (7) | 0.0043 (7) |
C3 | 0.0324 (10) | 0.0370 (11) | 0.0402 (10) | −0.0025 (8) | 0.0085 (8) | 0.0044 (8) |
C4 | 0.0307 (9) | 0.0360 (11) | 0.0383 (10) | 0.0055 (8) | 0.0045 (8) | 0.0030 (8) |
C5 | 0.0284 (9) | 0.0246 (9) | 0.0278 (8) | −0.0002 (7) | 0.0016 (7) | 0.0056 (7) |
C6 | 0.0243 (8) | 0.0220 (8) | 0.0210 (7) | 0.0003 (6) | −0.0027 (6) | 0.0007 (6) |
C7 | 0.0309 (9) | 0.0220 (8) | 0.0194 (7) | 0.0006 (7) | −0.0006 (6) | 0.0015 (6) |
C8 | 0.0362 (10) | 0.0307 (10) | 0.0229 (8) | −0.0052 (8) | −0.0004 (7) | −0.0015 (7) |
C9 | 0.0264 (8) | 0.0221 (8) | 0.0225 (7) | −0.0017 (6) | −0.0006 (6) | −0.0036 (6) |
C10 | 0.0305 (9) | 0.0300 (10) | 0.0247 (8) | 0.0007 (7) | −0.0008 (7) | 0.0006 (7) |
C11 | 0.0319 (9) | 0.0396 (11) | 0.0238 (8) | −0.0052 (8) | 0.0025 (7) | −0.0006 (7) |
C12 | 0.0249 (9) | 0.0420 (11) | 0.0298 (9) | −0.0039 (8) | 0.0042 (7) | −0.0099 (8) |
C13 | 0.0275 (9) | 0.0357 (10) | 0.0326 (9) | 0.0038 (8) | −0.0032 (7) | −0.0038 (8) |
C14 | 0.0288 (9) | 0.0292 (9) | 0.0260 (8) | 0.0016 (7) | −0.0010 (7) | 0.0001 (7) |
C15 | 0.0464 (11) | 0.0221 (9) | 0.0245 (8) | 0.0020 (8) | −0.0005 (8) | −0.0023 (7) |
C16 | 0.0291 (9) | 0.0247 (9) | 0.0250 (8) | 0.0002 (7) | 0.0060 (7) | −0.0003 (7) |
C17 | 0.0331 (9) | 0.0262 (9) | 0.0297 (9) | 0.0005 (7) | 0.0073 (7) | −0.0011 (7) |
C18 | 0.0356 (10) | 0.0242 (9) | 0.0382 (10) | 0.0051 (7) | 0.0128 (8) | 0.0035 (8) |
C19 | 0.0298 (9) | 0.0370 (11) | 0.0322 (9) | 0.0075 (8) | 0.0046 (7) | 0.0082 (8) |
C20 | 0.0345 (10) | 0.0360 (11) | 0.0297 (9) | 0.0018 (8) | −0.0007 (7) | −0.0020 (8) |
C21 | 0.0384 (10) | 0.0241 (9) | 0.0266 (8) | 0.0011 (7) | 0.0007 (7) | −0.0015 (7) |
O1 | 0.0288 (7) | 0.0435 (8) | 0.0354 (7) | −0.0024 (6) | 0.0003 (5) | −0.0020 (6) |
O2 | 0.0240 (6) | 0.0287 (7) | 0.0245 (6) | 0.0000 (5) | −0.0012 (5) | −0.0052 (5) |
O3 | 0.0421 (7) | 0.0206 (6) | 0.0199 (5) | 0.0046 (5) | −0.0009 (5) | 0.0002 (4) |
C1—C4 | 1.527 (2) | C10—C11 | 1.384 (2) |
C1—C2 | 1.559 (2) | C10—H10 | 0.9500 |
C1—C7 | 1.562 (2) | C11—C12 | 1.386 (3) |
C1—H1 | 1.0000 | C11—H11 | 0.9500 |
C2—C3 | 1.530 (3) | C12—C13 | 1.381 (3) |
C2—C5 | 1.537 (2) | C12—H12 | 0.9500 |
C2—H2 | 1.0000 | C13—C14 | 1.387 (2) |
C3—O1 | 1.441 (2) | C13—H13 | 0.9500 |
C3—H3A | 0.9900 | C14—H14 | 0.9500 |
C3—H3B | 0.9900 | C15—O3 | 1.421 (2) |
C4—O1 | 1.433 (2) | C15—C16 | 1.511 (2) |
C4—H4A | 0.9900 | C15—H15A | 0.9900 |
C4—H4B | 0.9900 | C15—H15B | 0.9900 |
C5—C6 | 1.534 (2) | C16—C21 | 1.391 (2) |
C5—H5A | 0.9900 | C16—C17 | 1.394 (2) |
C5—H5B | 0.9900 | C17—C18 | 1.387 (3) |
C6—O2 | 1.4387 (19) | C17—H17 | 0.9500 |
C6—C9 | 1.521 (2) | C18—C19 | 1.389 (3) |
C6—C7 | 1.562 (2) | C18—H18 | 0.9500 |
C7—O3 | 1.4305 (19) | C19—C20 | 1.379 (3) |
C7—C8 | 1.522 (2) | C19—H19 | 0.9500 |
C8—H8A | 0.9800 | C20—C21 | 1.391 (2) |
C8—H8B | 0.9800 | C20—H20 | 0.9500 |
C8—H8C | 0.9800 | C21—H22 | 0.9500 |
C9—C14 | 1.396 (2) | O2—H2o | 0.87 (2) |
C9—C10 | 1.397 (2) | ||
C4—C1—C2 | 103.32 (14) | H8B—C8—H8C | 109.5 |
C4—C1—C7 | 116.71 (14) | C14—C9—C10 | 117.94 (15) |
C2—C1—C7 | 105.08 (13) | C14—C9—C6 | 122.61 (15) |
C4—C1—H1 | 110.4 | C10—C9—C6 | 119.45 (14) |
C2—C1—H1 | 110.4 | C11—C10—C9 | 121.08 (16) |
C7—C1—H1 | 110.4 | C11—C10—H10 | 119.5 |
C3—C2—C5 | 114.28 (15) | C9—C10—H10 | 119.5 |
C3—C2—C1 | 103.32 (14) | C10—C11—C12 | 120.28 (17) |
C5—C2—C1 | 106.17 (13) | C10—C11—H11 | 119.9 |
C3—C2—H2 | 110.9 | C12—C11—H11 | 119.9 |
C5—C2—H2 | 110.9 | C13—C12—C11 | 119.30 (16) |
C1—C2—H2 | 110.9 | C13—C12—H12 | 120.3 |
O1—C3—C2 | 105.82 (14) | C11—C12—H12 | 120.3 |
O1—C3—H3A | 110.6 | C12—C13—C14 | 120.61 (17) |
C2—C3—H3A | 110.6 | C12—C13—H13 | 119.7 |
O1—C3—H3B | 110.6 | C14—C13—H13 | 119.7 |
C2—C3—H3B | 110.6 | C13—C14—C9 | 120.75 (16) |
H3A—C3—H3B | 108.7 | C13—C14—H14 | 119.6 |
O1—C4—C1 | 106.40 (14) | C9—C14—H14 | 119.6 |
O1—C4—H4A | 110.4 | O3—C15—C16 | 108.51 (13) |
C1—C4—H4A | 110.4 | O3—C15—H15A | 110.0 |
O1—C4—H4B | 110.4 | C16—C15—H15A | 110.0 |
C1—C4—H4B | 110.4 | O3—C15—H15B | 110.0 |
H4A—C4—H4B | 108.6 | C16—C15—H15B | 110.0 |
C6—C5—C2 | 106.29 (13) | H15A—C15—H15B | 108.4 |
C6—C5—H5A | 110.5 | C21—C16—C17 | 118.78 (16) |
C2—C5—H5A | 110.5 | C21—C16—C15 | 121.85 (15) |
C6—C5—H5B | 110.5 | C17—C16—C15 | 119.36 (15) |
C2—C5—H5B | 110.5 | C18—C17—C16 | 120.74 (17) |
H5A—C5—H5B | 108.7 | C18—C17—H17 | 119.6 |
O2—C6—C9 | 104.83 (12) | C16—C17—H17 | 119.6 |
O2—C6—C5 | 111.00 (13) | C17—C18—C19 | 120.17 (17) |
C9—C6—C5 | 114.90 (13) | C17—C18—H18 | 119.9 |
O2—C6—C7 | 110.35 (12) | C19—C18—H18 | 119.9 |
C9—C6—C7 | 114.54 (13) | C20—C19—C18 | 119.24 (16) |
C5—C6—C7 | 101.38 (12) | C20—C19—H19 | 120.4 |
O3—C7—C8 | 111.68 (13) | C18—C19—H19 | 120.4 |
O3—C7—C6 | 107.13 (12) | C19—C20—C21 | 120.97 (17) |
C8—C7—C6 | 111.09 (14) | C19—C20—H20 | 119.5 |
O3—C7—C1 | 113.06 (13) | C21—C20—H20 | 119.5 |
C8—C7—C1 | 109.21 (13) | C20—C21—C16 | 120.10 (16) |
C6—C7—C1 | 104.43 (13) | C20—C21—H22 | 120.0 |
C7—C8—H8A | 109.5 | C16—C21—H22 | 120.0 |
C7—C8—H8B | 109.5 | C4—O1—C3 | 103.87 (13) |
H8A—C8—H8B | 109.5 | C6—O2—H2o | 108.4 (12) |
C7—C8—H8C | 109.5 | C15—O3—C7 | 116.08 (12) |
H8A—C8—H8C | 109.5 | ||
C4—C1—C2—C3 | 0.84 (16) | C5—C6—C9—C14 | 2.0 (2) |
C7—C1—C2—C3 | 123.68 (14) | C7—C6—C9—C14 | −114.80 (17) |
C4—C1—C2—C5 | −119.73 (14) | O2—C6—C9—C10 | −55.45 (18) |
C7—C1—C2—C5 | 3.10 (17) | C5—C6—C9—C10 | −177.55 (15) |
C5—C2—C3—O1 | 89.86 (17) | C7—C6—C9—C10 | 65.64 (19) |
C1—C2—C3—O1 | −25.02 (17) | C14—C9—C10—C11 | 1.7 (2) |
C2—C1—C4—O1 | 23.80 (16) | C6—C9—C10—C11 | −178.76 (15) |
C7—C1—C4—O1 | −90.94 (17) | C9—C10—C11—C12 | −0.7 (3) |
C3—C2—C5—C6 | −91.02 (17) | C10—C11—C12—C13 | −0.8 (3) |
C1—C2—C5—C6 | 22.18 (17) | C11—C12—C13—C14 | 1.3 (3) |
C2—C5—C6—O2 | 79.01 (16) | C12—C13—C14—C9 | −0.3 (3) |
C2—C5—C6—C9 | −162.29 (13) | C10—C9—C14—C13 | −1.2 (2) |
C2—C5—C6—C7 | −38.20 (16) | C6—C9—C14—C13 | 179.27 (15) |
O2—C6—C7—O3 | 42.19 (17) | O3—C15—C16—C21 | −13.3 (2) |
C9—C6—C7—O3 | −75.80 (16) | O3—C15—C16—C17 | 167.77 (15) |
C5—C6—C7—O3 | 159.87 (12) | C21—C16—C17—C18 | −0.6 (2) |
O2—C6—C7—C8 | 164.41 (13) | C15—C16—C17—C18 | 178.35 (16) |
C9—C6—C7—C8 | 46.42 (17) | C16—C17—C18—C19 | 0.7 (3) |
C5—C6—C7—C8 | −77.91 (15) | C17—C18—C19—C20 | −0.4 (3) |
O2—C6—C7—C1 | −77.98 (15) | C18—C19—C20—C21 | 0.0 (3) |
C9—C6—C7—C1 | 164.03 (13) | C19—C20—C21—C16 | 0.1 (3) |
C5—C6—C7—C1 | 39.70 (15) | C17—C16—C21—C20 | 0.2 (2) |
C4—C1—C7—O3 | −29.0 (2) | C15—C16—C21—C20 | −178.73 (16) |
C2—C1—C7—O3 | −142.74 (13) | C1—C4—O1—C3 | −40.50 (17) |
C4—C1—C7—C8 | −153.99 (15) | C2—C3—O1—C4 | 40.92 (17) |
C2—C1—C7—C8 | 92.26 (16) | C16—C15—O3—C7 | 162.70 (13) |
C4—C1—C7—C6 | 87.11 (17) | C8—C7—O3—C15 | 52.94 (19) |
C2—C1—C7—C6 | −26.63 (16) | C6—C7—O3—C15 | 174.79 (14) |
O2—C6—C9—C14 | 124.12 (16) | C1—C7—O3—C15 | −70.71 (18) |
Cg4 is the centroid of the C16–C21 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H2o···O1 | 0.87 (2) | 1.93 (2) | 2.7794 (17) | 162.9 (18) |
C10—H10···O3 | 0.95 | 2.56 | 3.091 (2) | 116 |
C5—H5A···O2i | 0.99 | 2.58 | 3.266 (2) | 126 |
C19—H19···O1ii | 0.95 | 2.58 | 3.344 (2) | 138 |
C12—H12···Cg4iii | 0.95 | 2.74 | 3.6619 (19) | 165 |
Symmetry codes: (i) x, −y+3/2, z−1/2; (ii) −x+1, −y+1, −z+2; (iii) −x, −y+1, −z+2. |
C21H22O3 | Dx = 1.291 Mg m−3 |
Mr = 322.39 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, P212121 | Cell parameters from 2191 reflections |
a = 5.6392 (2) Å | θ = 2.9–27.5° |
b = 11.0427 (5) Å | µ = 0.09 mm−1 |
c = 26.6311 (13) Å | T = 120 K |
V = 1658.37 (13) Å3 | Block, colourless |
Z = 4 | 0.34 × 0.14 × 0.04 mm |
F(000) = 688 |
Nonius KappaCCD diffractometer | 1867 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.073 |
Graphite monochromator | θmax = 27.5°, θmin = 2.9° |
ω scans | h = −7→7 |
12562 measured reflections | k = −14→10 |
2221 independent reflections | l = −33→34 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.123 | H-atom parameters constrained |
wR(F2) = 0.279 | w = 1/[σ2(Fo2) + (0.P)2 + 10.5966P] where P = (Fo2 + 2Fc2)/3 |
S = 1.17 | (Δ/σ)max = 0.001 |
2221 reflections | Δρmax = 0.40 e Å−3 |
190 parameters | Δρmin = −0.44 e Å−3 |
0 restraints | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.027 (5) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
C1 | 0.6868 (17) | 0.6626 (7) | 0.1385 (3) | 0.032 (2) | |
H1 | 0.8255 | 0.6533 | 0.1615 | 0.038* | |
C2 | 0.7362 (19) | 0.7660 (7) | 0.1007 (3) | 0.035 (2) | |
H2 | 0.9101 | 0.7763 | 0.0947 | 0.042* | |
C3 | 0.631 (2) | 0.8762 (7) | 0.1259 (4) | 0.045 (3) | |
H3A | 0.7478 | 0.9148 | 0.1484 | 0.054* | |
H3B | 0.5793 | 0.9363 | 0.1005 | 0.054* | |
C4 | 0.471 (2) | 0.7092 (8) | 0.1684 (3) | 0.041 (2) | |
H4A | 0.3289 | 0.6596 | 0.1608 | 0.049* | |
H4B | 0.5024 | 0.7042 | 0.2049 | 0.049* | |
C5 | 0.6092 (14) | 0.7235 (7) | 0.0536 (3) | 0.0232 (16) | |
H5 | 0.6490 | 0.7608 | 0.0204 | 0.028* | |
C6 | 0.5563 (14) | 0.5938 (7) | 0.0566 (3) | 0.0247 (17) | |
C7 | 0.6606 (15) | 0.5476 (7) | 0.1061 (3) | 0.0230 (16) | |
C8 | 0.9005 (16) | 0.4920 (7) | 0.0942 (3) | 0.0301 (18) | |
H8A | 0.9849 | 0.4746 | 0.1255 | 0.045* | |
H8B | 0.9937 | 0.5490 | 0.0740 | 0.045* | |
H8C | 0.8778 | 0.4167 | 0.0753 | 0.045* | |
C9 | 0.5260 (13) | 0.5131 (7) | 0.0124 (3) | 0.0210 (15) | |
C10 | 0.3788 (15) | 0.4124 (7) | 0.0148 (3) | 0.0298 (18) | |
H10 | 0.2965 | 0.3951 | 0.0451 | 0.036* | |
C11 | 0.3498 (17) | 0.3360 (8) | −0.0267 (3) | 0.036 (2) | |
H11 | 0.2495 | 0.2671 | −0.0245 | 0.043* | |
C12 | 0.4673 (19) | 0.3614 (8) | −0.0704 (3) | 0.038 (2) | |
H12 | 0.4526 | 0.3088 | −0.0985 | 0.046* | |
C13 | 0.606 (2) | 0.4624 (9) | −0.0735 (3) | 0.060 (4) | |
H13 | 0.6799 | 0.4824 | −0.1044 | 0.072* | |
C14 | 0.639 (2) | 0.5365 (9) | −0.0319 (3) | 0.046 (3) | |
H14 | 0.7420 | 0.6043 | −0.0343 | 0.055* | |
C15 | 0.5820 (19) | 0.4029 (9) | 0.1723 (3) | 0.042 (2) | |
H15A | 0.7256 | 0.3557 | 0.1638 | 0.050* | |
H15B | 0.6280 | 0.4654 | 0.1972 | 0.050* | |
C17A | 0.232 (3) | 0.3698 (9) | 0.2235 (6) | 0.030 (6)* | 0.54 (3) |
H17A | 0.2215 | 0.4538 | 0.2309 | 0.035* | 0.54 (3) |
C18A | 0.062 (2) | 0.2904 (12) | 0.2423 (5) | 0.038 (5)* | 0.54 (3) |
H18A | −0.0637 | 0.3201 | 0.2625 | 0.045* | 0.54 (3) |
C19A | 0.077 (3) | 0.1675 (12) | 0.2315 (5) | 0.034 (4)* | 0.54 (3) |
H19A | −0.0389 | 0.1132 | 0.2443 | 0.041* | 0.54 (3) |
C20A | 0.261 (3) | 0.1240 (9) | 0.2019 (4) | 0.032 (5)* | 0.54 (3) |
H20A | 0.2711 | 0.0399 | 0.1945 | 0.038* | 0.54 (3) |
C21A | 0.431 (3) | 0.2033 (11) | 0.1831 (4) | 0.037 (5)* | 0.54 (3) |
H21A | 0.5564 | 0.1736 | 0.1628 | 0.045* | 0.54 (3) |
C16A | 0.416 (2) | 0.3262 (10) | 0.1939 (6) | 0.026 (5)* | 0.54 (3) |
C17B | 0.226 (3) | 0.3804 (10) | 0.2286 (7) | 0.035 (8)* | 0.46 (3) |
H17B | 0.2537 | 0.4629 | 0.2369 | 0.043* | 0.46 (3) |
C18B | 0.040 (3) | 0.3181 (13) | 0.2510 (6) | 0.035 (5)* | 0.46 (3) |
H18B | −0.0600 | 0.3581 | 0.2746 | 0.042* | 0.46 (3) |
C19B | −0.001 (3) | 0.1974 (14) | 0.2390 (5) | 0.030 (5)* | 0.46 (3) |
H19B | −0.1285 | 0.1549 | 0.2543 | 0.036* | 0.46 (3) |
C20B | 0.145 (4) | 0.1390 (10) | 0.2046 (5) | 0.034 (5)* | 0.46 (3) |
H20B | 0.1167 | 0.0565 | 0.1963 | 0.041* | 0.46 (3) |
C21B | 0.331 (4) | 0.2012 (13) | 0.1822 (5) | 0.029 (5)* | 0.46 (3) |
H21B | 0.4304 | 0.1612 | 0.1586 | 0.035* | 0.46 (3) |
C16B | 0.372 (3) | 0.3219 (13) | 0.1942 (7) | 0.032 (6)* | 0.46 (3) |
O1 | 0.4314 (16) | 0.8325 (6) | 0.1539 (2) | 0.057 (2) | |
O2 | 0.3649 (10) | 0.6835 (5) | 0.0638 (2) | 0.0279 (13) | |
O3 | 0.4946 (11) | 0.4616 (5) | 0.12770 (19) | 0.0301 (13) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.043 (5) | 0.025 (4) | 0.027 (4) | 0.011 (4) | −0.011 (4) | −0.004 (3) |
C2 | 0.046 (6) | 0.025 (4) | 0.033 (4) | 0.014 (4) | −0.003 (4) | −0.006 (3) |
C3 | 0.072 (8) | 0.020 (4) | 0.043 (5) | 0.010 (5) | −0.014 (6) | −0.003 (4) |
C4 | 0.060 (6) | 0.037 (5) | 0.026 (4) | 0.023 (5) | −0.007 (4) | −0.001 (4) |
C5 | 0.018 (4) | 0.027 (4) | 0.025 (4) | 0.002 (3) | 0.003 (3) | 0.003 (3) |
C6 | 0.021 (4) | 0.031 (4) | 0.023 (3) | 0.013 (3) | 0.000 (3) | 0.006 (3) |
C7 | 0.025 (4) | 0.019 (3) | 0.025 (3) | 0.004 (3) | −0.005 (3) | 0.000 (3) |
C8 | 0.028 (4) | 0.024 (4) | 0.038 (4) | 0.005 (4) | −0.005 (4) | −0.005 (3) |
C9 | 0.017 (3) | 0.024 (4) | 0.022 (3) | −0.003 (3) | −0.004 (3) | 0.004 (3) |
C10 | 0.017 (4) | 0.026 (4) | 0.046 (4) | 0.000 (3) | 0.012 (4) | 0.000 (4) |
C11 | 0.033 (5) | 0.025 (4) | 0.049 (5) | −0.003 (4) | 0.004 (4) | −0.006 (4) |
C12 | 0.058 (6) | 0.028 (4) | 0.028 (4) | −0.015 (5) | −0.003 (4) | −0.007 (3) |
C13 | 0.094 (10) | 0.052 (6) | 0.034 (5) | −0.041 (7) | 0.024 (6) | −0.014 (4) |
C14 | 0.059 (7) | 0.054 (6) | 0.025 (4) | −0.041 (6) | 0.013 (4) | −0.007 (4) |
C15 | 0.042 (6) | 0.051 (5) | 0.032 (4) | 0.005 (5) | 0.001 (4) | 0.020 (4) |
O1 | 0.084 (6) | 0.044 (4) | 0.042 (4) | 0.033 (4) | 0.013 (4) | 0.003 (3) |
O2 | 0.021 (3) | 0.035 (3) | 0.028 (3) | 0.007 (3) | 0.006 (2) | 0.004 (2) |
O3 | 0.033 (3) | 0.031 (3) | 0.026 (3) | 0.009 (3) | 0.001 (3) | 0.007 (2) |
C1—C7 | 1.542 (10) | C12—H12 | 0.9500 |
C1—C4 | 1.545 (13) | C13—C14 | 1.390 (11) |
C1—C2 | 1.547 (11) | C13—H13 | 0.9500 |
C1—H1 | 1.0000 | C14—H14 | 0.9500 |
C2—C3 | 1.512 (11) | C15—C16A | 1.387 (13) |
C2—C5 | 1.519 (11) | C15—O3 | 1.441 (9) |
C2—H2 | 1.0000 | C15—C16B | 1.596 (15) |
C3—O1 | 1.432 (14) | C15—H15A | 0.9900 |
C3—H3A | 0.9900 | C15—H15B | 0.9900 |
C3—H3B | 0.9900 | C17A—C18A | 1.3900 |
C4—O1 | 1.433 (10) | C17A—C16A | 1.3900 |
C4—H4A | 0.9900 | C17A—H17A | 0.9500 |
C4—H4B | 0.9900 | C18A—C19A | 1.3900 |
C5—C6 | 1.465 (11) | C18A—H18A | 0.9500 |
C5—O2 | 1.472 (9) | C19A—C20A | 1.3900 |
C5—H5 | 1.0000 | C19A—H19A | 0.9500 |
C6—O2 | 1.477 (9) | C20A—C21A | 1.3900 |
C6—C9 | 1.487 (10) | C20A—H20A | 0.9500 |
C6—C7 | 1.532 (10) | C21A—C16A | 1.3900 |
C7—O3 | 1.452 (10) | C21A—H21A | 0.9500 |
C7—C8 | 1.519 (11) | C17B—C18B | 1.3900 |
C8—H8A | 0.9800 | C17B—C16B | 1.3900 |
C8—H8B | 0.9800 | C17B—H17B | 0.9500 |
C8—H8C | 0.9800 | C18B—C19B | 1.3900 |
C9—C14 | 1.364 (10) | C18B—H18B | 0.9500 |
C9—C10 | 1.389 (10) | C19B—C20B | 1.3900 |
C10—C11 | 1.399 (11) | C19B—H19B | 0.9500 |
C10—H10 | 0.9500 | C20B—C21B | 1.3900 |
C11—C12 | 1.370 (12) | C20B—H20B | 0.9500 |
C11—H11 | 0.9500 | C21B—C16B | 1.3900 |
C12—C13 | 1.364 (13) | C21B—H21B | 0.9500 |
C7—C1—C4 | 119.2 (8) | C13—C12—H12 | 120.2 |
C7—C1—C2 | 105.2 (6) | C11—C12—H12 | 120.2 |
C4—C1—C2 | 103.4 (7) | C12—C13—C14 | 120.8 (9) |
C7—C1—H1 | 109.5 | C12—C13—H13 | 119.6 |
C4—C1—H1 | 109.5 | C14—C13—H13 | 119.6 |
C2—C1—H1 | 109.5 | C9—C14—C13 | 120.9 (8) |
C3—C2—C5 | 115.4 (8) | C9—C14—H14 | 119.5 |
C3—C2—C1 | 103.6 (7) | C13—C14—H14 | 119.5 |
C5—C2—C1 | 102.9 (7) | C16A—C15—O3 | 112.6 (10) |
C3—C2—H2 | 111.4 | C16A—C15—C16B | 5.6 (12) |
C5—C2—H2 | 111.4 | O3—C15—C16B | 107.4 (10) |
C1—C2—H2 | 111.4 | C16A—C15—H15A | 109.1 |
O1—C3—C2 | 105.6 (7) | O3—C15—H15A | 109.1 |
O1—C3—H3A | 110.6 | C16B—C15—H15A | 113.4 |
C2—C3—H3A | 110.6 | C16A—C15—H15B | 109.1 |
O1—C3—H3B | 110.6 | O3—C15—H15B | 109.1 |
C2—C3—H3B | 110.6 | C16B—C15—H15B | 110.0 |
H3A—C3—H3B | 108.8 | H15A—C15—H15B | 107.8 |
O1—C4—C1 | 107.4 (8) | C18A—C17A—C16A | 120.0 |
O1—C4—H4A | 110.2 | C18A—C17A—H17A | 120.0 |
C1—C4—H4A | 110.2 | C16A—C17A—H17A | 120.0 |
O1—C4—H4B | 110.2 | C19A—C18A—C17A | 120.0 |
C1—C4—H4B | 110.2 | C19A—C18A—H18A | 120.0 |
H4A—C4—H4B | 108.5 | C17A—C18A—H18A | 120.0 |
C6—C5—O2 | 60.4 (5) | C18A—C19A—C20A | 120.0 |
C6—C5—C2 | 110.7 (7) | C18A—C19A—H19A | 120.0 |
O2—C5—C2 | 112.4 (7) | C20A—C19A—H19A | 120.0 |
C6—C5—H5 | 119.8 | C21A—C20A—C19A | 120.0 |
O2—C5—H5 | 119.8 | C21A—C20A—H20A | 120.0 |
C2—C5—H5 | 119.8 | C19A—C20A—H20A | 120.0 |
C5—C6—O2 | 60.1 (5) | C20A—C21A—C16A | 120.0 |
C5—C6—C9 | 124.5 (7) | C20A—C21A—H21A | 120.0 |
O2—C6—C9 | 114.9 (6) | C16A—C21A—H21A | 120.0 |
C5—C6—C7 | 107.1 (7) | C15—C16A—C21A | 118.0 (9) |
O2—C6—C7 | 113.1 (6) | C15—C16A—C17A | 121.9 (9) |
C9—C6—C7 | 121.7 (6) | C21A—C16A—C17A | 120.0 |
O3—C7—C8 | 113.2 (6) | C18B—C17B—C16B | 120.0 |
O3—C7—C6 | 108.2 (6) | C18B—C17B—H17B | 120.0 |
C8—C7—C6 | 107.3 (6) | C16B—C17B—H17B | 120.0 |
O3—C7—C1 | 112.3 (6) | C19B—C18B—C17B | 120.0 |
C8—C7—C1 | 111.3 (7) | C19B—C18B—H18B | 120.0 |
C6—C7—C1 | 104.1 (6) | C17B—C18B—H18B | 120.0 |
C7—C8—H8A | 109.5 | C18B—C19B—C20B | 120.0 |
C7—C8—H8B | 109.5 | C18B—C19B—H19B | 120.0 |
H8A—C8—H8B | 109.5 | C20B—C19B—H19B | 120.0 |
C7—C8—H8C | 109.5 | C21B—C20B—C19B | 120.0 |
H8A—C8—H8C | 109.5 | C21B—C20B—H20B | 120.0 |
H8B—C8—H8C | 109.5 | C19B—C20B—H20B | 120.0 |
C14—C9—C10 | 118.0 (7) | C20B—C21B—C16B | 120.0 |
C14—C9—C6 | 121.1 (7) | C20B—C21B—H21B | 120.0 |
C10—C9—C6 | 120.8 (7) | C16B—C21B—H21B | 120.0 |
C9—C10—C11 | 121.1 (8) | C21B—C16B—C17B | 120.0 |
C9—C10—H10 | 119.5 | C21B—C16B—C15 | 125.2 (10) |
C11—C10—H10 | 119.5 | C17B—C16B—C15 | 114.8 (10) |
C12—C11—C10 | 119.4 (8) | C3—O1—C4 | 109.9 (8) |
C12—C11—H11 | 120.3 | C5—O2—C6 | 59.5 (5) |
C10—C11—H11 | 120.3 | C15—O3—C7 | 113.6 (7) |
C13—C12—C11 | 119.6 (8) | ||
C7—C1—C2—C3 | 149.9 (8) | C9—C10—C11—C12 | −0.4 (14) |
C4—C1—C2—C3 | 24.2 (10) | C10—C11—C12—C13 | −1.8 (15) |
C7—C1—C2—C5 | 29.3 (9) | C11—C12—C13—C14 | 3.5 (18) |
C4—C1—C2—C5 | −96.4 (8) | C10—C9—C14—C13 | 0.7 (16) |
C5—C2—C3—O1 | 79.5 (9) | C6—C9—C14—C13 | −178.4 (10) |
C1—C2—C3—O1 | −32.2 (10) | C12—C13—C14—C9 | −3.0 (19) |
C7—C1—C4—O1 | −124.4 (8) | C16A—C17A—C18A—C19A | 0.0 |
C2—C1—C4—O1 | −8.2 (9) | C17A—C18A—C19A—C20A | 0.0 |
C3—C2—C5—C6 | −128.9 (8) | C18A—C19A—C20A—C21A | 0.0 |
C1—C2—C5—C6 | −16.8 (9) | C19A—C20A—C21A—C16A | 0.0 |
C3—C2—C5—O2 | −63.5 (10) | O3—C15—C16A—C21A | 97.6 (11) |
C1—C2—C5—O2 | 48.6 (8) | C16B—C15—C16A—C21A | 118 (11) |
C2—C5—C6—O2 | 104.7 (7) | O3—C15—C16A—C17A | −79.3 (11) |
O2—C5—C6—C9 | 101.2 (8) | C16B—C15—C16A—C17A | −59 (11) |
C2—C5—C6—C9 | −154.1 (8) | C20A—C21A—C16A—C15 | −176.9 (13) |
O2—C5—C6—C7 | −107.2 (6) | C20A—C21A—C16A—C17A | 0.0 |
C2—C5—C6—C7 | −2.5 (9) | C18A—C17A—C16A—C15 | 176.8 (13) |
C5—C6—C7—O3 | 140.5 (6) | C18A—C17A—C16A—C21A | 0.0 |
O2—C6—C7—O3 | 76.3 (8) | C16B—C17B—C18B—C19B | 0.0 |
C9—C6—C7—O3 | −67.0 (9) | C17B—C18B—C19B—C20B | 0.0 |
C5—C6—C7—C8 | −97.2 (7) | C18B—C19B—C20B—C21B | 0.0 |
O2—C6—C7—C8 | −161.3 (6) | C19B—C20B—C21B—C16B | 0.0 |
C9—C6—C7—C8 | 55.4 (9) | C20B—C21B—C16B—C17B | 0.0 |
C5—C6—C7—C1 | 20.9 (8) | C20B—C21B—C16B—C15 | 178.5 (15) |
O2—C6—C7—C1 | −43.2 (9) | C18B—C17B—C16B—C21B | 0.0 |
C9—C6—C7—C1 | 173.5 (7) | C18B—C17B—C16B—C15 | −178.6 (14) |
C4—C1—C7—O3 | −32.7 (9) | C16A—C15—C16B—C21B | −69 (11) |
C2—C1—C7—O3 | −148.0 (7) | O3—C15—C16B—C21B | 90.9 (13) |
C4—C1—C7—C8 | −160.7 (7) | C16A—C15—C16B—C17B | 109 (11) |
C2—C1—C7—C8 | 84.0 (8) | O3—C15—C16B—C17B | −90.5 (10) |
C4—C1—C7—C6 | 84.0 (8) | C2—C3—O1—C4 | 28.3 (10) |
C2—C1—C7—C6 | −31.2 (9) | C1—C4—O1—C3 | −12.3 (10) |
C5—C6—C9—C14 | 28.5 (13) | C2—C5—O2—C6 | −101.8 (7) |
O2—C6—C9—C14 | 98.1 (10) | C9—C6—O2—C5 | −116.9 (8) |
C7—C6—C9—C14 | −119.2 (10) | C7—C6—O2—C5 | 97.1 (7) |
C5—C6—C9—C10 | −150.6 (8) | C16A—C15—O3—C7 | 176.7 (9) |
O2—C6—C9—C10 | −81.0 (9) | C16B—C15—O3—C7 | 174.6 (8) |
C7—C6—C9—C10 | 61.7 (11) | C8—C7—O3—C15 | 56.0 (8) |
C14—C9—C10—C11 | 0.9 (13) | C6—C7—O3—C15 | 174.7 (6) |
C6—C9—C10—C11 | −179.9 (8) | C1—C7—O3—C15 | −71.1 (8) |
Cg6 is the centroid of the C16a–C21a ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C10—H10···O3 | 0.95 | 2.57 | 3.124 (10) | 117 |
C8—H8B···O2i | 0.98 | 2.58 | 3.462 (10) | 150 |
C14—H14···O2ii | 0.95 | 2.57 | 3.450 (11) | 155 |
C4—H4B···Cg6iii | 0.99 | 2.65 | 3.569 (10) | 154 |
Symmetry codes: (i) x+1, y, z; (ii) x+1/2, −y+3/2, −z; (iii) −x+1, y+1/2, −z+1/2. |
Acknowledgements
We thank the EPSRC National Crystallography Service (University of Southampton) for the data collections.
References
Bai, D. & Sattelle, D. B. (1993). Arch. Insect Biochem. Physiol. 23, 161–167. CrossRef CAS PubMed Google Scholar
Bisset, G. W., Fairhall, K. M. & Tsuji, K. (1992). Br. J. Pharmacol. 106, 685–692. CrossRef PubMed CAS Google Scholar
Blessing, R. H. (1995). Acta Cryst. A51, 33–38. CrossRef CAS Web of Science IUCr Journals Google Scholar
Brown, J. A., Irvine, S., Kerr, W. J. & Pearson, C. M. (2005). Org. Biomol. Chem. 3, 2396–2398. Web of Science CrossRef PubMed CAS Google Scholar
Coote, S. C., O'Brien, P. & Whitwood, A. C. (2008). Org. Biomol. Chem. 6, 4299–4314. Web of Science CSD CrossRef PubMed CAS Google Scholar
Dumdei, E. J., De Silva, E. D., Andersen, R. J., Choudhary, M. I. & Clardy, J. (1989). J. Am. Chem. Soc. 111, 2712–2713. CSD CrossRef CAS Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671. Web of Science CSD CrossRef CAS Google Scholar
Hong, S. J., Tsuji, J. & Chang, C. C. (1992). Neuroscience, 48, 727–735. CrossRef PubMed CAS Google Scholar
Howe, G. P., Wang, S. & Procter, G. (1987). Tetrahedron Lett. 28, 2629–2632. CrossRef CAS Google Scholar
Inoue, S., Okada, K., Tanino, H. & Kakoi, H. (1986). Tetrahedron Lett. 27, 5225–5228. CrossRef CAS Google Scholar
Inoues, S., Okada, K., Tanino, H. & Kakoi, H. (1994). Tetrahedron, 50, 2753–2770. CrossRef Google Scholar
Kosuge, T., Tsuji, K. & Hirai, K. (1982). Chem. Pharm. Bull. 30, 3255–3259. CrossRef CAS PubMed Google Scholar
Kosuge, T., Tsuji, K., Hirai, K., Yamaguchi, K., Okamoto, T. & Iitaka, Y. (1981). Tetrahedron Lett. 22, 3417–3420. CSD CrossRef CAS Google Scholar
Langston, S. P., Olhava, E. J. & Vyskocil, S. (2007). PCT Int. Appl. WO 2007092213. Google Scholar
Nonius, B. V. (1998). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Okada, K., Mizuno, Y., Tanino, H., Kakoi, H. & Inoue, S. (1989). Chem. Lett. pp. 703–706. CrossRef Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Pauson, P. L. (1985). Tetrahedron, 41, 5855–5860. CrossRef CAS Google Scholar
Peng, Z.-H. & Woerpel, K. A. (2003). J. Am. Chem. Soc. 125, 6018–6019. CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Steiner, T. (1996). Crystallogr. Rev. 6, 1–51. CrossRef CAS Google Scholar
Tornøe, C., Bai, D., Holden-Dye, L., Abramson, S. N. & Sattelle, D. B. (1995). Toxicon, 33, 411–424. PubMed Google Scholar
Wang, H., Kohler, P., Overman, L. E. & Houk, K. N. (2012). J. Am. Chem. Soc. 134, 16054–16058. CSD CrossRef CAS PubMed Google Scholar
Yamada, S., Ushijima, H., Nakayama, K., Hayashi, E., Tsuji, K. & Kosuge, T. (1988). Eur. J. Pharmacol. 156, 279–282. CrossRef CAS PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.