research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of tris­­(trans-1,2-di­amino­cyclo­hexane-κ2N,N′)cobalt(III) trichloride monohydrate

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, IN 46556-5670, USA
*Correspondence e-mail: alappin@nd.edu

Edited by A. J. Lough, University of Toronto, Canada (Received 16 November 2015; accepted 9 December 2015; online 1 January 2016)

The synthesis of the title hydrated complex salt, [Co(C6H14N2)3]Cl3·H2O, from racemic trans-1,2-di­amino­cyclo­hexane and [CoCl(NH3)5]Cl2 and its structural characterization are presented in this paper. The product was synthesized in the inter­est of understanding the hydrogen-bonding patterns of coordination complexes. Previous characterizations of the product in the I-42d space group have not yielded coordinates; thus, this paper provides the first coordinates for this complex in this space group. The octahedrally coordinated cation adopts twofold rotation symmetry, with outer-sphere chloride counter-ions and solvent water mol­ecules forming a hydrogen-bonded network with amine H atoms.

1. Chemical context

We are inter­ested in the hydrogen-bonding patterns of various coordination complexes, especially those that incorporate optically active ligands, where the role of hydrogen bonding in the chiral discrimination between coordination complexes is important. As part of our studies, we prepared the title complex by the reaction of racemic trans-(R,R,S,S)-1,2-di­amino­cyclo­hexane with [Co(NH3)5Cl]2+ in aqueous solution at 323 K. The resulting complex is a racemic mixture and does not exhibit optical activity. Isolation of optically active forms is being undertaken.

[Scheme 1]

This complex was first reported in 1937 (Jaeger & Bijkerk, 1937[Jaeger, F. & Bijkerk, L. (1937). Z. Anorg. Allg. Chem. 233, 97-139.]) and by optical crystallography and X-ray diffraction, the space group was determined to be P61 and/or P65. There have been several, successive studies on this compound, and all are reported in a variety of space groups and configurations of the ligand (P61(5): Jaeger & Bijkerk, 1937[Jaeger, F. & Bijkerk, L. (1937). Z. Anorg. Allg. Chem. 233, 97-139.]; [lel3] Marumo et al., 1970[Marumo, F., Utsumi, Y. & Saito, Y. (1970). Acta Cryst. B26, 1492-1498.]; [lel2ob] Sato & Saito, 1977[Sato, S. & Saito, Y. (1977). Acta Cryst. B33, 860-865.]; C2: [ob3] Kobayashi et al., 1972[Kobayashi, A., Marumo, F. & Saito, Y. (1972). Acta Cryst. B28, 2709-2715.]; R32: [ob3] Kobayashi et al., 1983[Kobayashi, A., Marumo, F. & Saito, Y. (1983). Acta Cryst. C39, 807.]; I[\overline{4}]2d, Andersen et al., 1973[Andersen, P., Galsbøl, F., Harnung, S. E. & Laier, T. (1973). Acta Chem. Scand. 27, 3973-3978.]). Note: the 1983 Kobyashi article is a correction of the space group reported for the 1972 paper. The Andersen structure was a unit-cell determination and heavy-atom coordinate prediction based on powder diffraction data. No coordinates are available for that structure. Herein, we report the structural characterization of tris­(trans-1,2 di­amino­cyclo­hexa­ne)cobalt(III) chloride monohydrate in I[\overline{4}]2d.

2. Structural commentary

The cation crystallizes on a twofold rotation axis at [x, 0.25, 0.625], thus, only half of the cation is represented in the asymmetric unit (Fig. 1[link]). One chloride is located on the twofold axis at [0.75, y, 0.875] and the remaining independent chloride anion occupies a general position within the lattice. The water mol­ecule of crystallization is also in a general position, but was modeled as a partial occupancy species (vide infra). The 1,2-di­amino­cyclo­hexane ligands adopt a lel3, Δ (λ,λ,λ) configuration with the (R,R)-ligand in the featured example. The cobalt atom adopts an octa­hedral coordination environment with only small distortions from an ideal geometry (Table 1[link]). The 1,2-di­amino­cyclo­hexane ligands are unexceptional.

Table 1
Selected geometric parameters (Å, °)

Co1—N1 1.959 (4) Co1—N2 1.974 (4)
Co1—N1i 1.959 (4) Co1—N3i 1.980 (4)
Co1—N2i 1.974 (4) Co1—N3 1.980 (4)
       
N1—Co1—N1i 92.2 (3) N2i—Co1—N3i 92.64 (19)
N1—Co1—N2i 90.61 (19) N2—Co1—N3i 91.62 (19)
N1i—Co1—N2i 85.4 (2) N1—Co1—N3 175.8 (2)
N1—Co1—N2 85.4 (2) N1i—Co1—N3 91.58 (17)
N1i—Co1—N2 90.61 (19) N2i—Co1—N3 91.62 (19)
N2i—Co1—N2 174.2 (3) N2—Co1—N3 92.64 (19)
N1—Co1—N3i 91.58 (17) N3i—Co1—N3 84.7 (3)
N1i—Co1—N3i 175.8 (2)    
Symmetry code: (i) [x, -y+{\script{1\over 2}}, -z+{\script{5\over 4}}].
[Figure 1]
Figure 1
Labeling scheme for (I)[link]. Atomic displacement parameters are depicted at the 50% probability level. [Symmetry code: (i) x, −y + [{1\over 2}], −z + [{5\over 4}].]

3. Comparison with previously reported structures

An inspection of the structure and comparison with the Marumo lel3 complex gives an r.m.s. fit of 0.0706 for the cobalt and nitro­gen atoms (Marumo et al., 1970[Marumo, F., Utsumi, Y. & Saito, Y. (1970). Acta Cryst. B26, 1492-1498.]; Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]). The predominant difference between the Marumo structure and that reported here is the mol­ecular symmetry. The Marumo structure adopts C3 symmetry, with only one unique ligand. The structure herein adopts C2 symmetry with one complete and one half ligand in the asymmetric unit.

Perhaps the most surprising change when compared with the Andersen structure is the contraction in cell parameters and overall cell-volume reduction. The cell parameters reported by Andersen are a = 19.208, c = 13.908 Å, V = 5131.3 Å3 (Andersen et al., 1973[Andersen, P., Galsbøl, F., Harnung, S. E. & Laier, T. (1973). Acta Chem. Scand. 27, 3973-3978.]). Our study has a = 18.786, c = 13.857 Å and V = 4830.3 Å3. This change represents a 4.6% reduction in cell volume, with a and b contracting in a concerted fashion by nearly 0.5 Å. Typically one might expect a contraction of around 0.1 to 0.2 Å upon cooling, similar to that observed for the change in c. This observation led us to undertake variable temperature studies to determine if this was actually the case. Data on a crystal of the title compound were recorded at 120 K, 250 K and 293 K. Cell parameters and refinement statistics are given in Table 2[link]. It should be noted that the redetermination of the unit cell at room temperature with a single crystal sample yielded a unit cell that is approximately 100 Å3 smaller in volume than that calculated originally from powder diffraction data.

Table 2
Comparison of 120, 250, and 293 K data sets

  120 K 250 K 293 K
a, c (Å) 18.960 (3), 13.642 (2) 19.039 (9), 13.651 (7) 19.210 (10), 13.567 (8)
Vol (Å3) 4903.8 4948.6 5007.1
% Vol change (w.r.t. 293 K) 2.1 1.2 0.0
R[F2 > 2σ(F2)], wR(F2), S 0.0525, 0.1401, 1.028 0.0386, 0.1078, 1.029 0.0586, 0.1617, 1.017
Data recorded on a second crystal selected from same batch. Crystal showed signs of degradation at higher temperatures, presumably due to solvent loss. Inspection of the crystal after 293 K data set showed fracturing within the crystal.

4. Supra­molecular features

The complex forms a hydrogen-bonded network with the amino nitro­gen atoms on the cation serving as donors to nearby chlorine atoms and the water mol­ecule (Fig. 2[link], Table 3[link]). Although the water hydrogen atoms could not be located, there are contacts to nearby chlorine atoms from the oxygen atom at reasonable hydrogen-bond contact distances (Table 3[link]). Close inspection of the Fourier difference map reveals several locations for potential hydrogen-atom sites on the water oxygen. However, none of these sites refines suitably when modeled as a hydrogen atom. Further exacerbating this situation is the disorder apparent with this lattice water mol­ecule, because through symmetry there is another water oxygen atom located only 2.11 Å distant. Clearly this is unreasonable and reflects the disorder in this mol­ecule. The water of crystallization and chlorine anions are arranged within discrete pockets within the lattice. Other contacts are simple van der Waals inter­actions.

Table 3
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯Cl1ii 0.91 2.46 3.270 (5) 148
N1—H1B⋯Cl1 0.91 2.33 3.222 (5) 167
N2—H2A⋯Cl2iii 0.91 2.57 3.433 (5) 159
N2—H2B⋯O1 0.91 2.35 3.019 (14) 130
N3—H3A⋯Cl2 0.91 2.46 3.352 (5) 167
N3—H3B⋯Cl1i 0.91 2.36 3.223 (5) 158
O1⋯Cl1i     3.296 (18)  
O1⋯Cl1iv     3.393 (15)  
O1⋯Cl1v     3.287 (12)  
C2—H2⋯Cl1iv 1.00 2.78 3.772 (10) 173
C3—H3C⋯O1 0.99 2.37 3.039 (15) 124
C8—H8A⋯Cl1vi 0.99 2.86 3.780 (6) 156
C8—H8B⋯Cl2 0.99 2.94 3.762 (6) 141
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, -z+{\script{5\over 4}}]; (ii) y+1, -x+1, -z+1; (iii) [-x+{\script{3\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iv) [y+1, x-{\script{1\over 2}}, z+{\script{1\over 4}}]; (v) [-y+1, -x+{\script{3\over 2}}, z+{\script{1\over 4}}]; (vi) [-x+{\script{3\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].
[Figure 2]
Figure 2
Packing diagram of (I)[link], viewed along the c axis. Hydrogen bonds are shown as dashed lines.

5. Database survey

This structure was first reported in 1937 (Jaeger & Bijkerk, 1937[Jaeger, F. & Bijkerk, L. (1937). Z. Anorg. Allg. Chem. 233, 97-139.]) with the space group P61 and P65 at room temperature. Other reports of the structure with the P61 space group were in 1970 (Marumo et al., 1970[Marumo, F., Utsumi, Y. & Saito, Y. (1970). Acta Cryst. B26, 1492-1498.]) and 1977 (Sato & Saito, 1977[Sato, S. & Saito, Y. (1977). Acta Cryst. B33, 860-865.]), both at room temperature. The structure was also reported in 1972 (Kobayashi et al., 1972[Kobayashi, A., Marumo, F. & Saito, Y. (1972). Acta Cryst. B28, 2709-2715.]) with the C2 space group and 1983 (Kobayashi et al., 1983[Kobayashi, A., Marumo, F. & Saito, Y. (1983). Acta Cryst. C39, 807.]) with the R32 space group. The first report of the structure with the I[\overline{4}]2d space group was in 1973 (Andersen et al., 1973[Andersen, P., Galsbøl, F., Harnung, S. E. & Laier, T. (1973). Acta Chem. Scand. 27, 3973-3978.]). This structure is at room temperature and no coordinates were provided by the authors. The structure presented in this paper has the same I[\overline{4}]2d space group and provides coordinates for the structure at cryogenic temperatures.

6. Synthesis and crystallization

0.56 g of [Co(NH3)5Cl]Cl2 was dissolved in 200 mL of DI water and allowed to stand overnight. 1.54 g of racemic trans-(R,R,S,S)1,2-di­amino­cyclo­hexane was added along with a small amount of charcoal. The mixture was stirred and heated at 313–323K for 2 d. The solution was filtered through a SP Sephadex C25 column. Using first 0.01 M HCl then 1 M HCl, the product was collected from the column. The fractions were placed in evaporation dishes and allowed to dry for three weeks. Orange crystals formed in the evaporation dish and were harvested for analysis.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. All non-hydrogen atoms were refined with anisotropic atomic displacement parameters. Hydrogen atoms were included in geometrically calculated positions with Uiso(H) = 1.2Ueq(C/N). C—H distances were fixed at 0.95 Å and N—H distances fixed at 0.91 Å.

Table 4
Experimental details

Crystal data
Chemical formula [Co(C6H14N2)3]Cl3·H2O
Mr 525.87
Crystal system, space group Tetragonal, I[\overline{4}]2d
Temperature (K) 120
a, c (Å) 18.7857 (14), 13.8572 (12)
V3) 4890.2 (9)
Z 8
Radiation type Mo Kα
μ (mm−1) 1.05
Crystal size (mm) 0.22 × 0.06 × 0.05
 
Data collection
Diffractometer Bruker APEXII
Absorption correction Numerical (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.809, 0.926
No. of measured, independent and observed [I > 2σ(I)] reflections 43332, 2707, 2416
Rint 0.068
(sin θ/λ)max−1) 0.642
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.130, 1.06
No. of reflections 2707
No. of parameters 137
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.14, −0.62
Absolute structure Flack x determined using 1004 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.]).
Absolute structure parameter 0.003 (7)
Computer programs: APEX2 and SAINT (Bruker, 2015[Bruker (2015). APEX2 and SAINT. Bruker-Nonius AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

The water of crystallization was determined to be partially occupied by inspection of the displacement parameters during refinement. The occupancy was set to 50% in the final model which yielded reasonable displacement parameters. Hydrogen atoms could not be located or reliably modeled on the water molecule, but have been included in the chemical formula for completeness.

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2015); cell refinement: SAINT (Bruker, 2015); data reduction: SAINT (Bruker, 2015); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009) and publCIF (Westrip, 2010).

Tris(trans-1,2-diaminocyclohexane-κ2N,N')cobalt(III) trichloride monohydrate top
Crystal data top
[Co(C6H14N2)3]Cl3·H2ODx = 1.429 Mg m3
Mr = 525.87Mo Kα radiation, λ = 0.71073 Å
Tetragonal, I42dCell parameters from 9897 reflections
a = 18.7857 (14) Åθ = 2.8–24.8°
c = 13.8572 (12) ŵ = 1.05 mm1
V = 4890.2 (9) Å3T = 120 K
Z = 8Rod, orange
F(000) = 22400.22 × 0.06 × 0.05 mm
Data collection top
Bruker APEXII
diffractometer
2707 independent reflections
Radiation source: fine-focus sealed tube2416 reflections with I > 2σ(I)
Bruker TRIUMPH curved-graphite monochromatorRint = 0.068
Detector resolution: 8.33 pixels mm-1θmax = 27.2°, θmin = 1.8°
combination of ω and φ–scansh = 2424
Absorption correction: numerical
(SADABS; Krause et al., 2015)
k = 2424
Tmin = 0.809, Tmax = 0.926l = 1717
43332 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047H-atom parameters constrained
wR(F2) = 0.130 w = 1/[σ2(Fo2) + (0.0844P)2 + 6.4309P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.010
2707 reflectionsΔρmax = 1.14 e Å3
137 parametersΔρmin = 0.62 e Å3
0 restraintsAbsolute structure: Flack x determined using 1004 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013).
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.003 (7)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Co10.86364 (5)0.25000.62500.0199 (2)
Cl10.85979 (10)0.08706 (8)0.43019 (16)0.0553 (5)
Cl20.75000.15300 (10)0.87500.0324 (4)
N10.9360 (2)0.2216 (2)0.5307 (3)0.0265 (9)
H1A0.97790.21260.56120.032*
H1B0.92190.18130.49960.032*
N20.8689 (2)0.3445 (2)0.5631 (4)0.0289 (10)
H2A0.83010.35130.52490.035*
H2B0.86930.37910.60900.035*
N30.7858 (2)0.2801 (2)0.7122 (3)0.0239 (9)
H3A0.78190.24880.76210.029*
H3B0.79560.32380.73700.029*
C10.9455 (5)0.2804 (4)0.4598 (6)0.057 (2)
H10.90470.27500.41410.068*
C20.9338 (4)0.3487 (5)0.5050 (7)0.063 (2)
H20.97400.35620.55110.075*
C30.9375 (4)0.4089 (4)0.4326 (7)0.060 (2)
H3C0.93090.45490.46620.071*
H3D0.89860.40360.38490.071*
C41.0086 (5)0.4087 (6)0.3809 (9)0.092 (4)
H4A1.04730.41810.42770.110*
H4B1.00940.44680.33160.110*
C51.0206 (5)0.3362 (5)0.3323 (6)0.065 (2)
H5A0.98740.33190.27720.078*
H5B1.06960.33510.30610.078*
C61.0107 (3)0.2723 (4)0.3971 (4)0.0418 (17)
H6A1.00580.22890.35700.050*
H6B1.05320.26650.43850.050*
C70.7181 (3)0.2825 (3)0.6575 (4)0.0251 (10)
H70.71860.32590.61570.030*
C80.6525 (3)0.2853 (3)0.7199 (4)0.0311 (12)
H8A0.65290.32960.75870.037*
H8B0.65230.24430.76480.037*
C90.5856 (3)0.2833 (3)0.6569 (5)0.0359 (13)
H9A0.58400.32630.61570.043*
H9B0.54280.28330.69850.043*
O10.9506 (10)0.4729 (6)0.6332 (9)0.104 (6)0.5
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0181 (4)0.0195 (4)0.0221 (4)0.0000.0000.0026 (4)
Cl10.0471 (9)0.0311 (8)0.0877 (13)0.0106 (7)0.0231 (10)0.0252 (8)
Cl20.0324 (9)0.0358 (10)0.0291 (9)0.0000.0006 (8)0.000
N10.023 (2)0.030 (2)0.027 (2)0.0010 (18)0.0021 (17)0.0049 (18)
N20.022 (2)0.024 (2)0.041 (2)0.0001 (18)0.003 (2)0.0034 (18)
N30.023 (2)0.024 (2)0.025 (2)0.0015 (18)0.0006 (17)0.0056 (17)
C10.071 (5)0.043 (4)0.055 (4)0.003 (4)0.032 (4)0.013 (3)
C20.050 (4)0.058 (5)0.080 (6)0.014 (4)0.023 (4)0.035 (4)
C30.030 (3)0.057 (5)0.091 (6)0.003 (3)0.006 (4)0.046 (4)
C40.055 (5)0.104 (9)0.117 (9)0.008 (5)0.008 (6)0.070 (8)
C50.068 (5)0.086 (7)0.042 (4)0.026 (5)0.017 (4)0.014 (4)
C60.026 (3)0.074 (5)0.026 (3)0.001 (3)0.000 (2)0.009 (3)
C70.020 (2)0.027 (2)0.029 (2)0.000 (2)0.0004 (19)0.002 (2)
C80.025 (3)0.037 (3)0.031 (3)0.005 (2)0.004 (2)0.001 (2)
C90.025 (3)0.036 (3)0.047 (3)0.005 (2)0.005 (2)0.003 (3)
O10.206 (18)0.049 (6)0.058 (7)0.026 (9)0.076 (10)0.016 (6)
Geometric parameters (Å, º) top
Co1—N11.959 (4)C3—C41.516 (12)
Co1—N1i1.959 (4)C3—H3C0.9900
Co1—N2i1.974 (4)C3—H3D0.9900
Co1—N21.974 (4)C4—C51.536 (15)
Co1—N3i1.980 (4)C4—H4A0.9900
Co1—N31.980 (4)C4—H4B0.9900
N1—C11.489 (8)C5—C61.510 (11)
N1—H1A0.9100C5—H5A0.9900
N1—H1B0.9100C5—H5B0.9900
N2—C21.462 (9)C6—H6A0.9900
N2—H2A0.9100C6—H6B0.9900
N2—H2B0.9100C7—C81.506 (7)
N3—C71.482 (6)C7—C7i1.516 (10)
N3—H3A0.9100C7—H71.0000
N3—H3B0.9100C8—C91.531 (8)
C1—C21.445 (12)C8—H8A0.9900
C1—C61.508 (9)C8—H8B0.9900
C1—H11.0000C9—C9i1.532 (13)
C2—C31.513 (9)C9—H9A0.9900
C2—H21.0000C9—H9B0.9900
N1—Co1—N1i92.2 (3)C3—C2—H2106.6
N1—Co1—N2i90.61 (19)C2—C3—C4110.6 (6)
N1i—Co1—N2i85.4 (2)C2—C3—H3C109.5
N1—Co1—N285.4 (2)C4—C3—H3C109.5
N1i—Co1—N290.61 (19)C2—C3—H3D109.5
N2i—Co1—N2174.2 (3)C4—C3—H3D109.5
N1—Co1—N3i91.58 (17)H3C—C3—H3D108.1
N1i—Co1—N3i175.8 (2)C3—C4—C5109.9 (8)
N2i—Co1—N3i92.64 (19)C3—C4—H4A109.7
N2—Co1—N3i91.62 (19)C5—C4—H4A109.7
N1—Co1—N3175.8 (2)C3—C4—H4B109.7
N1i—Co1—N391.58 (17)C5—C4—H4B109.7
N2i—Co1—N391.62 (19)H4A—C4—H4B108.2
N2—Co1—N392.64 (19)C6—C5—C4115.2 (7)
N3i—Co1—N384.7 (3)C6—C5—H5A108.5
C1—N1—Co1108.8 (4)C4—C5—H5A108.5
C1—N1—H1A109.9C6—C5—H5B108.5
Co1—N1—H1A109.9C4—C5—H5B108.5
C1—N1—H1B109.9H5A—C5—H5B107.5
Co1—N1—H1B109.9C1—C6—C5111.2 (7)
H1A—N1—H1B108.3C1—C6—H6A109.4
C2—N2—Co1109.3 (4)C5—C6—H6A109.4
C2—N2—H2A109.8C1—C6—H6B109.4
Co1—N2—H2A109.8C5—C6—H6B109.4
C2—N2—H2B109.8H6A—C6—H6B108.0
Co1—N2—H2B109.8N3—C7—C8114.1 (4)
H2A—N2—H2B108.3N3—C7—C7i106.2 (3)
C7—N3—Co1109.3 (3)C8—C7—C7i111.7 (4)
C7—N3—H3A109.8N3—C7—H7108.2
Co1—N3—H3A109.8C8—C7—H7108.2
C7—N3—H3B109.8C7i—C7—H7108.2
Co1—N3—H3B109.8C7—C8—C9110.0 (4)
H3A—N3—H3B108.3C7—C8—H8A109.7
C2—C1—N1110.7 (6)C9—C8—H8A109.7
C2—C1—C6117.6 (7)C7—C8—H8B109.7
N1—C1—C6113.7 (6)C9—C8—H8B109.7
C2—C1—H1104.4H8A—C8—H8B108.2
N1—C1—H1104.4C8—C9—C9i110.4 (4)
C6—C1—H1104.4C8—C9—H9A109.6
C1—C2—N2108.5 (7)C9i—C9—H9A109.6
C1—C2—C3111.6 (7)C8—C9—H9B109.6
N2—C2—C3116.4 (6)C9i—C9—H9B109.6
C1—C2—H2106.6H9A—C9—H9B108.1
N2—C2—H2106.6
Co1—N1—C1—C232.0 (8)C2—C3—C4—C556.6 (11)
Co1—N1—C1—C6167.1 (5)C3—C4—C5—C651.3 (11)
N1—C1—C2—N245.9 (10)C2—C1—C6—C543.7 (10)
C6—C1—C2—N2179.1 (6)N1—C1—C6—C5175.6 (6)
N1—C1—C2—C3175.5 (6)C4—C5—C6—C143.1 (10)
C6—C1—C2—C351.3 (11)Co1—N3—C7—C8164.5 (4)
Co1—N2—C2—C137.8 (8)Co1—N3—C7—C7i41.0 (6)
Co1—N2—C2—C3164.7 (7)N3—C7—C8—C9176.7 (5)
C1—C2—C3—C457.2 (11)C7i—C7—C8—C956.2 (7)
N2—C2—C3—C4177.5 (9)C7—C8—C9—C9i57.0 (7)
Symmetry code: (i) x, y+1/2, z+5/4.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl1ii0.912.463.270 (5)148
N1—H1B···Cl10.912.333.222 (5)167
N2—H2A···Cl2iii0.912.573.433 (5)159
N2—H2B···O10.912.353.019 (14)130
N3—H3A···Cl20.912.463.352 (5)167
N3—H3B···Cl1i0.912.363.223 (5)158
O1···Cl1i3.296 (18)
O1···Cl1iv3.393 (15)
O1···Cl1v3.287 (12)
C2—H2···Cl1iv1.002.783.772 (10)173
C3—H3C···O10.992.373.039 (15)124
C8—H8A···Cl1vi0.992.863.780 (6)156
C8—H8B···Cl20.992.943.762 (6)141
Symmetry codes: (i) x, y+1/2, z+5/4; (ii) y+1, x+1, z+1; (iii) x+3/2, y+1/2, z1/2; (iv) y+1, x1/2, z+1/4; (v) y+1, x+3/2, z+1/4; (vi) x+3/2, y+1/2, z+1/2.
Comparison of 120, 250, and 293 K data sets top
120 K250 K293 K
a, c (Å)18.960 (3), 13.642 (2)19.039 (9), 13.651 (7)19.210 (10), 13.567 (8)
Vol (Å3)4903.84948.65007.1
% Vol change (w.r.t. 293 K)2.11.20.0
R[F2 > 2σ(F2)], wR(F2), S0.0525, 0.1401, 1.0280.0386, 0.1078, 1.0290.0586, 0.1617, 1.017
Data recorded on a second crystal selected from same batch. Crystal showed signs of degradation at higher temperatures, presumably due to solvent loss. Inspection of the crystal after 293 K data set showed fracturing within the crystal.
 

References

First citationAndersen, P., Galsbøl, F., Harnung, S. E. & Laier, T. (1973). Acta Chem. Scand. 27, 3973–3978.  CrossRef CAS Google Scholar
First citationBruker (2015). APEX2 and SAINT. Bruker–Nonius AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationJaeger, F. & Bijkerk, L. (1937). Z. Anorg. Allg. Chem. 233, 97–139.  CSD CrossRef CAS Google Scholar
First citationKobayashi, A., Marumo, F. & Saito, Y. (1972). Acta Cryst. B28, 2709–2715.  CSD CrossRef IUCr Journals Google Scholar
First citationKobayashi, A., Marumo, F. & Saito, Y. (1983). Acta Cryst. C39, 807.  CSD CrossRef IUCr Journals Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMarumo, F., Utsumi, Y. & Saito, Y. (1970). Acta Cryst. B26, 1492–1498.  CSD CrossRef IUCr Journals Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSato, S. & Saito, Y. (1977). Acta Cryst. B33, 860–865.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds