research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of aqua­bis­­(hepta­fluoro­butano­ato-κO)(1,10′-phenanthroline-κ2N,N′)copper(II)

CROSSMARK_Color_square_no_text.svg

aAnadolu University, Faculty of Sciences, Department of Chemistry, 26470 Eskişehir, Turkey
*Correspondence e-mail: ibrahimkani@anadolu.edu.tr

Edited by T. J. Prior, University of Hull, England (Received 6 November 2015; accepted 27 November 2015; online 1 January 2016)

The title compound, [Cu(C4F7O2)2(C12H8N2)(H2O)], is mononuclear and contains a penta­coordinated CuII ion. The geometry of CuII ion can be described as distorted square-pyramidal with two O atoms of two butano­ate anions and two N atoms of the o-phenanthroline ligand occupying the basal plane, and a water O atom located at the axial position. In the crystal, C—H⋯(O,F) and O—H⋯(O,F) hydrogen bonds and ππ inter­actions [centroid-to-centroid distance 3.533 (2) Å] link the mol­ecules into a three-dimensional supra­molecular structure.

1. Chemical context

Over the past decades, vast efforts have been dedicated to the rational design and synthesis of metal-carboxyl­ate coordination polymers due to their potential applications in medicine, electronics, magnetism, catalysis, gas storage, etc (Ahmad et al., 2014[Ahmad, N., Chughtai, A. H., Younus, H. A. & Verpoort, F. (2014). Coord. Chem. Rev. 280, 1-27.]; Patel et al., 2013[Patel, R. N., Patel, D. K., Shukla, K. K. & Singh, Y. (2013). J. Coord. Chem. 66, 4131-4143.]). In addition, metal–o-phenanthroline complexes and their derivatives have attracted much attention because of their unusual features (Ma et al., 2004[Ma, C., Wang, W., Zhang, X., Chen, C., Liu, Q., Zhu, H., Liao, D. & Li, L. (2004). Eur. J. Inorg. Chem. 2004, 3522-3532.]; Bi et al., 2004[Bi, W., Cao, R., Sun, D., Yuan, D., Li, X., Wang, Y., Li, X. & Hong, M. (2004). Chem. Commun. pp. 2104-2105.]; Wall et al., 1999[Wall, M., Linkletter, B., Williams, D., Hynes, R. C. & Chin, J. (1999). J. Am. Chem. Soc. 121, 4710-4711.]; Naing et al., 1995[Naing, K., Takahashi, M., Taniguchi, M. & Yamagishi, A. (1995). Inorg. Chem. 34, 350-356.]). This work reports a new copper coordination complex, [Cu(C4F7O2)2(C12H8N2)(H2O)], resulting from the reaction of hepta­fluoro­butanoic acid and CuII ions in the presence of o-phenanthroline.

[Scheme 1]

2. Structural commentary

The neutral complex [Cu(C4F7O2)2(C12H8N2)(H2O)] is composed of a central CuII ion, coordinated by two oxygen atoms (O1 and O3) of two butano­ate anions, an oxygen atom (O5) of the water mol­ecule, and two nitro­gen atoms (N1 and N2) of the N,N′–chelating o–phenanthroline ligand (Fig. 1[link]). Selected geometric parameters are presented in Table 1[link]. The coordination about the CuII ion is better described as a square-pyramid. The geometry parameter τ, which is defined as τ = (β − α)/60, is applicable to five-coordinate structures within the structural continuum between trigonal–bipyramidal and tetra­gonal or rectangular pyramidal. For perfect tetra­gonal symmetry, τ is zero, and for perfect trigonal–bipyramidal geometry, τ becomes 1.0 (Addison et al., 1984[Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.]). In the title compound, the largest angles within the four atoms N1, N2, O2, O3 are β = 169.16 (12)° for O1–Cu1—N2, and α = 156.71 (11)° for N1—Cu1—O3. Thus, τ is 0.21, indicating a 79% rectangular pyramidal geometry.

Table 1
Selected geometric parameters (Å, °)

Cu1—O1 1.942 (3) Cu1—N1 2.019 (3)
Cu1—O3 1.980 (3) Cu1—O5 2.173 (3)
Cu1—N2 2.007 (3)    
       
O1—Cu1—O3 96.11 (11) N2—Cu1—N1 81.75 (12)
O1—Cu1—N2 169.16 (12) O1—Cu1—O5 97.20 (12)
O3—Cu1—N2 90.37 (12) O3—Cu1—O5 96.84 (12)
O1—Cu1—N1 88.94 (11) N2—Cu1—O5 90.61 (12)
O3—Cu1—N1 156.71 (11) N1—Cu1—O5 105.09 (12)
[Figure 1]
Figure 1
The mol­ecular structure of title compound, with displacement ellipsoids shown at the 30% probability level.

The Cu—O bonds [1.942 (3) and 1.980 (3) Å] in the quadrilateral plane are shorter than the apical position [2.173 (3) Å]. The mean Cu—N(phen) distance of 2.043 Å and the bite angle N1—Cu1—N2 of 81.75 (12)° are close to the corresponding values observed in related copper–o-phenanthroline compounds (Beghidja et al., 2014[Boutebdja, M., Lehleh, A., Beghidja, A., Setifi, Z. & Merazig, H. (2014). Acta Cryst. E70, m185-m186.]; Awaleh et al., 2005[Awaleh, M. O., Badia, A. & Brisse, F. (2005). Cryst. Growth Des. 5, 1897-1906.]). The cisoid bond angles are in the range 81.75 (12)–96.11 (11)°, and transoid ones are 156.71 (11)°, and 169.16 (12)° exhibiting substantial deviations from 90 and 180° for a square. These are consistent with literature values (Jing et al., 2011[Jing, B., Li, L., Dong, J. & Xu, T. (2011). Acta Cryst. E67, m464.]). An intra­molecular C1—H1⋯O1 hydrogen bond occurs.

3. Supra­molecular features

In the crystal, inter­molecular O—H⋯O, C—H⋯O and C—H⋯F hydrogen bonds (Table 2[link]) link the mol­ecules into a three-dimensional network (Fig. 2[link]). The oxygen atom (O5) of the water mol­ecule acts as a hydrogen-bond donor, via atoms H5A and H5B, to oxygen atom O3 of one coordinating carboxyl­ate group (−x + [{1\over 2}], −y + [{1\over 2}], −z) and to the dangling oxygen atom O2 of the other coordinating carboxyl­ate group (−x + [{1\over 2}], −y + [{1\over 2}], −z), thus enclosing centrosymmetric R44(16) ring motifs (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]) running parallel to the b-axis direction (Fig. 3[link]). In addition, C—H⋯F and O—H⋯F hydrogen bonds are formed, (C6—H6⋯F4 and O5—H5B⋯F10; Table 2[link]; Fig. 3[link]); the H⋯F distances are comparable with those reported for C—H⋯F inter­actions (2.44–2.90 Å; Dunitz & Taylor et al., 1997[Dunitz, D. & Taylor, R. (1997). Chem. Eur. J. 3, 89-98.], Bianchi et al., 2003[Bianchi, R., Forni, A. & Pilati, T. (2003). Chem. Eur. J. 9, 1631-1638.]; Lee et al., 2000[Lee, H., Knobler, C. B. & Hawthorne, M. F. (2000). Chem. Commun. pp. 2485-2486.]).

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O4i 0.95 2.33 3.196 (5) 151
C6—H6⋯F4i 0.95 2.54 3.217 (5) 128
O5—H5B⋯F10ii 0.84 (2) 2.45 (6) 2.931 (6) 117 (5)
O5—H5B⋯O3ii 0.84 (2) 2.31 (5) 2.881 (4) 125 (4)
O5—H5A⋯O2ii 0.84 (2) 1.87 (2) 2.707 (5) 175 (6)
C1—H1⋯O1 0.95 2.49 2.974 (5) 111
Symmetry codes: (i) -x, -y, -z; (ii) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z].
[Figure 2]
Figure 2
A partial view of the packing of the title complex, showing the formation of a hydrogen-bond pattern as well as edge-fused R44(16) rings. [Symmetry code: −x + [{1\over 2}], −y + [{1\over 2}], −z.]
[Figure 3]
Figure 3
Representative O—H⋯O, C—H⋯O and C—H⋯F and ππ stacking inter­actions viewed along the c axis are drawn as dotted lines.

In the crystal, the packing appears to be influenced by ππ stacking inter­actions between o-phenanthroline ring systems of neighboring mol­ecules, with the distance between the centroids of the N1/C1–C4/C12 and C4–C7/C11/C12 rings being 3.533 (2) Å. (Fig. 4[link]). The shortest Cu⋯Cu distance in the supra­molecular structure is 7.845 Å.

[Figure 4]
Figure 4
ππ interactions in the title compound.

4. Database survey

For hepta­fluoro­butanoic acid, see: Sokolov et al. (2011[Sokolov, M. N., Mihailov, M. A., Peresypkina, E. V., Brylev, K. A., Kitamura, N. & Fedin, V. P. (2011). Dalton Trans. 40, 6375-6377.]); Awaleh et al. (2005[Awaleh, M. O., Badia, A. & Brisse, F. (2005). Cryst. Growth Des. 5, 1897-1906.]); King et al. (2009[King, W. A., Yap, G. P. A., Incarvito, C. D., Rheingold, A. L. & Theopold, K. H. (2009). Inorg. Chim. Acta, 362, 4493-4499.]). For related structures and o-phenanthroline, see: Beghidja et al. (2014[Boutebdja, M., Lehleh, A., Beghidja, A., Setifi, Z. & Merazig, H. (2014). Acta Cryst. E70, m185-m186.]); Awaleh et al. (2005[Awaleh, M. O., Badia, A. & Brisse, F. (2005). Cryst. Growth Des. 5, 1897-1906.]); Huang et al. (2010[Huang, W.-X., Liu, B.-B. & Lin, J.-L. (2010). Acta Cryst. E66, m488-m489.]); Liu et al. (2010[Liu, Y., Sun, J. & Niu, X. (2010). Acta Cryst. E66, m34.]); Jing et al. (2011[Jing, B., Li, L., Dong, J. & Xu, T. (2011). Acta Cryst. E67, m464.]); Ma et al. (2004[Ma, C., Wang, W., Zhang, X., Chen, C., Liu, Q., Zhu, H., Liao, D. & Li, L. (2004). Eur. J. Inorg. Chem. 2004, 3522-3532.]); Ni et al. (2011[Ni, S.-L., Zhou, F. & Qi, J.-L. (2011). Acta Cryst. E67, m779.]); Meundaeng et al. (2013[Meundaeng, N., Prior, T. J. & Rujiwatra, A. (2013). Acta Cryst. E69, m568-m569.]); Sokolov et al. (2011[Sokolov, M. N., Mihailov, M. A., Peresypkina, E. V., Brylev, K. A., Kitamura, N. & Fedin, V. P. (2011). Dalton Trans. 40, 6375-6377.]); Yin et al. (2011[Yin, X. (2011). Acta Cryst. E67, m564-m565.]).

5. Synthesis and crystallization

Cu(ClO4)·6H2O in methanol (0.076 mmol, 0.19 g) was added to a solution of o-phenanthroline (0.076 mmol, 0.14 g) and hepta­fluoro­butanoic acid (0.0160 mmol, 0.1ml) in methanol (7 ml). Afterwards the obtained transparent blue solution was left to evaporate slowly in the air at ambient temperature and after two weeks, X-ray quality crystals appeared as blue plates. They were filtered off, washed with diethyl ether and dried in the air. Yield: 46 mg, 86%.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. C-bound H atoms were placed in calculated positions and refined as riding with C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C). The coordinates of the water H atoms were refined, and Uiso(H) was set to be 2Ueq(O). One of the hepta­fluoro­butano­ate groups is disordered over two sets of sites in a 0.705 (9):0.955 (9) ratio. Atoms associated with the disorder were refined with isotropic displacement parameters.

Table 3
Experimental details

Crystal data
Chemical formula [Cu(C4F7O2)2(C12H8N2)(H2O)]
Mr 687.84
Crystal system, space group Monoclinic, C2/c
Temperature (K) 110
a, b, c (Å) 18.0213 (5), 19.4619 (6), 13.8664 (4)
β (°) 102.205 (1)
V3) 4753.4 (2)
Z 8
Radiation type Mo Kα
μ (mm−1) 1.07
Crystal size (mm) 0.35 × 0.26 × 0.20
 
Data collection
Diffractometer Bruker APEXII CCD area-detector
Absorption correction Multi-scan (SADABS; Bruker, 2004[Bruker (2004). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.707, 0.815
No. of measured, independent and observed [I > 2σ(I)] reflections 22348, 5892, 4467
Rint 0.030
(sin θ/λ)max−1) 0.668
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.156, 0.95
No. of reflections 5892
No. of parameters 450
No. of restraints 21
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 1.59, −1.08
Computer programs: APEX2 and SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97, SHELXL97 and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: WinGX (Farrugia, 2012).

Aquabis(heptafluorobutanoato-κO)(1,10'-phenanthroline-κ2N,N')copper(II) top
Crystal data top
[Cu(C4F7O2)2(C12H8N2)(H2O)]F(000) = 2712
Mr = 687.84Dx = 1.922 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 18.0213 (5) ÅCell parameters from 6696 reflections
b = 19.4619 (6) Åθ = 2.3–27.3°
c = 13.8664 (4) ŵ = 1.07 mm1
β = 102.205 (1)°T = 110 K
V = 4753.4 (2) Å3Plate, green
Z = 80.35 × 0.26 × 0.20 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
5892 independent reflections
Radiation source: fine-focus sealed tube4467 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
phi and ω scansθmax = 28.3°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 2224
Tmin = 0.707, Tmax = 0.815k = 2525
22348 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.156H atoms treated by a mixture of independent and constrained refinement
S = 0.95 w = 1/[σ2(Fo2) + (0.0714P)2 + 30.9575P]
where P = (Fo2 + 2Fc2)/3
5892 reflections(Δ/σ)max < 0.001
450 parametersΔρmax = 1.59 e Å3
21 restraintsΔρmin = 1.08 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.1436 (2)0.00631 (18)0.0275 (3)0.0331 (8)
H10.19450.01020.00840.040*
C20.1051 (3)0.06556 (19)0.0674 (3)0.0384 (9)
H20.13010.10880.05970.046*
C30.0312 (2)0.06099 (19)0.1176 (3)0.0363 (8)
H30.00450.10120.14390.044*
C40.0050 (2)0.00320 (18)0.1299 (3)0.0314 (7)
C50.0812 (2)0.0146 (2)0.1834 (3)0.0350 (8)
H50.11210.02370.20830.042*
C60.1098 (2)0.0786 (2)0.1991 (3)0.0358 (8)
H60.16000.08460.23640.043*
C70.0660 (2)0.13790 (19)0.1606 (3)0.0310 (7)
C80.0907 (2)0.2063 (2)0.1761 (3)0.0377 (8)
H80.13950.21610.21530.045*
C90.0445 (2)0.2586 (2)0.1347 (3)0.0417 (9)
H90.06040.30490.14600.050*
C100.0269 (2)0.24334 (19)0.0752 (3)0.0378 (8)
H100.05810.28000.04500.045*
C110.00687 (19)0.12756 (17)0.1035 (2)0.0265 (7)
C120.03820 (19)0.06005 (17)0.0895 (2)0.0261 (7)
C130.3038 (2)0.1216 (2)0.1361 (3)0.0446 (10)
C140.3553 (3)0.0667 (2)0.1973 (3)0.0497 (11)
C150.3264 (3)0.0430 (3)0.2862 (3)0.0532 (12)
C160.3843 (4)0.0061 (3)0.3681 (4)0.0755 (18)
C170.1326 (2)0.21520 (19)0.1794 (3)0.0378 (8)
Cu10.15206 (2)0.14635 (2)0.01889 (3)0.02752 (13)
F10.42548 (17)0.0915 (2)0.2295 (3)0.0965 (13)
F20.3629 (3)0.0143 (2)0.1396 (3)0.122 (2)
F30.3026 (2)0.0984 (2)0.3269 (2)0.1035 (16)
F40.2709 (2)0.0012 (3)0.2555 (4)0.146 (3)
F50.4354 (2)0.04972 (17)0.4146 (2)0.0900 (13)
F60.3516 (3)0.0217 (4)0.4308 (4)0.187 (3)
F70.4236 (3)0.03979 (16)0.3298 (3)0.1140 (18)
N10.11117 (17)0.05511 (14)0.0382 (2)0.0272 (6)
N20.05191 (16)0.17936 (15)0.0599 (2)0.0296 (6)
O10.23861 (16)0.09849 (14)0.09756 (19)0.0376 (6)
O20.33070 (19)0.1784 (2)0.1330 (4)0.0850 (15)
O30.15945 (15)0.22857 (13)0.1045 (2)0.0358 (6)
O40.1086 (2)0.16038 (16)0.2021 (3)0.0548 (9)
O50.21033 (16)0.18964 (17)0.0891 (2)0.0435 (7)
C19A0.1413 (3)0.2694 (3)0.3503 (4)0.0340 (14)0.705 (9)
C18A0.1341 (3)0.2831 (3)0.2401 (4)0.0308 (14)0.705 (9)
F100.1905 (3)0.3264 (2)0.2301 (4)0.0468 (12)0.705 (9)
F10A0.0794 (3)0.2369 (3)0.3662 (4)0.0391 (11)0.705 (9)
F11A0.2022 (3)0.2288 (2)0.3824 (4)0.0542 (13)0.705 (9)
F13A0.1512 (3)0.3159 (3)0.5086 (4)0.0653 (15)0.705 (9)
F14A0.2185 (6)0.3659 (6)0.4174 (5)0.067 (2)0.705 (9)
C18B0.1086 (7)0.2638 (6)0.2581 (8)0.031 (3)0.295 (9)
C19B0.1812 (6)0.2937 (6)0.3221 (8)0.033 (3)0.295 (9)
F9B0.0682 (7)0.2367 (6)0.3213 (9)0.034 (2)0.295 (9)
F10B0.2100 (7)0.3414 (6)0.2688 (9)0.040 (2)0.295 (9)
F11B0.2321 (6)0.2427 (5)0.3454 (9)0.046 (3)0.295 (9)
F13B0.1619 (7)0.2812 (7)0.4850 (8)0.055 (3)0.295 (9)
F14B0.2290 (11)0.3614 (15)0.4558 (11)0.063 (5)0.295 (9)
F80.06788 (13)0.31602 (11)0.20682 (16)0.0373 (5)
F120.10008 (19)0.37634 (14)0.3905 (2)0.0641 (8)
C200.1565 (3)0.3330 (2)0.4172 (3)0.0571 (13)
H5A0.200 (3)0.2313 (13)0.100 (5)0.086*
H5B0.2577 (13)0.185 (3)0.081 (5)0.086*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.043 (2)0.0282 (17)0.0332 (18)0.0037 (15)0.0187 (16)0.0015 (14)
C20.060 (3)0.0249 (17)0.0364 (19)0.0036 (16)0.0247 (18)0.0016 (14)
C30.054 (2)0.0292 (17)0.0328 (18)0.0083 (16)0.0249 (17)0.0060 (14)
C40.0391 (19)0.0321 (17)0.0289 (16)0.0094 (15)0.0207 (15)0.0066 (14)
C50.039 (2)0.042 (2)0.0291 (17)0.0145 (16)0.0179 (15)0.0131 (15)
C60.0314 (19)0.049 (2)0.0299 (17)0.0093 (16)0.0124 (15)0.0076 (16)
C70.0293 (17)0.0372 (19)0.0297 (16)0.0024 (14)0.0130 (14)0.0025 (14)
C80.0292 (18)0.044 (2)0.040 (2)0.0023 (16)0.0086 (15)0.0013 (17)
C90.033 (2)0.0312 (19)0.059 (3)0.0060 (15)0.0050 (18)0.0054 (18)
C100.0318 (19)0.0266 (17)0.054 (2)0.0013 (14)0.0066 (17)0.0010 (16)
C110.0274 (16)0.0270 (15)0.0287 (16)0.0049 (13)0.0144 (13)0.0016 (13)
C120.0294 (17)0.0266 (15)0.0269 (15)0.0031 (13)0.0165 (13)0.0029 (12)
C130.033 (2)0.056 (3)0.045 (2)0.0097 (19)0.0077 (17)0.0139 (19)
C140.053 (3)0.047 (2)0.044 (2)0.015 (2)0.0026 (19)0.0041 (19)
C150.049 (3)0.052 (3)0.049 (2)0.009 (2)0.012 (2)0.015 (2)
C160.100 (5)0.056 (3)0.053 (3)0.005 (3)0.025 (3)0.008 (3)
C170.037 (2)0.0278 (18)0.048 (2)0.0001 (15)0.0085 (17)0.0129 (16)
Cu10.0256 (2)0.0237 (2)0.0338 (2)0.00175 (16)0.00763 (16)0.00126 (16)
F10.0325 (15)0.120 (3)0.128 (3)0.0171 (17)0.0034 (17)0.051 (3)
F20.175 (4)0.108 (3)0.061 (2)0.099 (3)0.027 (2)0.033 (2)
F30.115 (3)0.151 (4)0.0462 (17)0.081 (3)0.0195 (18)0.009 (2)
F40.094 (3)0.141 (4)0.162 (4)0.081 (3)0.066 (3)0.109 (3)
F50.110 (3)0.065 (2)0.0649 (19)0.0228 (19)0.0494 (19)0.0231 (16)
F60.147 (5)0.268 (8)0.127 (4)0.009 (5)0.010 (4)0.148 (5)
F70.171 (4)0.0399 (17)0.090 (3)0.039 (2)0.064 (3)0.0144 (17)
N10.0322 (15)0.0250 (13)0.0279 (13)0.0003 (11)0.0146 (12)0.0006 (11)
N20.0248 (14)0.0259 (14)0.0395 (16)0.0015 (11)0.0097 (12)0.0022 (12)
O10.0396 (15)0.0344 (14)0.0362 (13)0.0061 (11)0.0022 (11)0.0013 (11)
O20.0348 (18)0.077 (3)0.131 (4)0.0168 (17)0.010 (2)0.060 (3)
O30.0354 (14)0.0245 (12)0.0457 (15)0.0064 (10)0.0045 (12)0.0028 (11)
O40.064 (2)0.0404 (16)0.071 (2)0.0094 (15)0.0411 (18)0.0060 (15)
O50.0326 (14)0.0626 (19)0.0336 (14)0.0162 (13)0.0033 (12)0.0108 (13)
C19A0.036 (3)0.022 (2)0.043 (3)0.003 (2)0.009 (2)0.001 (2)
C18A0.034 (3)0.017 (2)0.046 (3)0.007 (2)0.017 (2)0.006 (2)
F100.060 (3)0.031 (2)0.060 (3)0.0265 (18)0.036 (3)0.019 (2)
F10A0.049 (3)0.0278 (17)0.046 (3)0.0078 (16)0.022 (2)0.004 (2)
F11A0.046 (3)0.044 (2)0.068 (3)0.0102 (19)0.001 (2)0.006 (2)
F13A0.099 (4)0.059 (3)0.035 (2)0.008 (3)0.007 (2)0.003 (2)
F14A0.080 (4)0.063 (4)0.062 (5)0.034 (3)0.020 (4)0.017 (5)
C18B0.030 (7)0.025 (7)0.038 (7)0.002 (5)0.007 (6)0.005 (5)
C19B0.039 (7)0.032 (6)0.027 (6)0.004 (5)0.006 (5)0.002 (5)
F9B0.034 (5)0.031 (4)0.040 (6)0.006 (3)0.015 (5)0.002 (5)
F10B0.052 (6)0.031 (5)0.045 (6)0.017 (4)0.024 (5)0.007 (4)
F11B0.032 (5)0.045 (5)0.055 (6)0.006 (4)0.004 (4)0.006 (4)
F13B0.065 (7)0.072 (8)0.028 (5)0.028 (6)0.007 (4)0.003 (5)
F14B0.087 (12)0.063 (8)0.054 (10)0.021 (8)0.046 (9)0.013 (10)
F80.0431 (13)0.0271 (10)0.0419 (12)0.0077 (9)0.0096 (10)0.0026 (9)
F120.092 (2)0.0404 (14)0.0661 (18)0.0051 (15)0.0298 (17)0.0202 (13)
C200.091 (4)0.046 (2)0.033 (2)0.024 (3)0.010 (2)0.0066 (18)
Geometric parameters (Å, º) top
C1—N11.325 (4)C15—C161.546 (7)
C1—C21.398 (5)C16—F61.271 (8)
C1—H10.9500C16—F51.316 (7)
C2—C31.369 (6)C16—F71.319 (8)
C2—H20.9500C17—O41.218 (5)
C3—C41.403 (5)C17—O31.261 (5)
C3—H30.9500C17—C18A1.564 (6)
C4—C121.400 (5)C17—C18B1.572 (11)
C4—C51.433 (6)Cu1—O11.942 (3)
C5—C61.348 (6)Cu1—O31.980 (3)
C5—H50.9500Cu1—N22.007 (3)
C6—C71.437 (5)Cu1—N12.019 (3)
C6—H60.9500Cu1—O52.173 (3)
C7—C111.397 (5)O5—H5A0.840 (19)
C7—C81.406 (5)O5—H5B0.843 (19)
C8—C91.362 (6)C19A—F10A1.341 (7)
C8—H80.9500C19A—F11A1.349 (6)
C9—C101.405 (5)C19A—C18A1.530 (7)
C9—H90.9500C19A—C201.536 (7)
C10—N21.326 (5)C18A—F81.348 (6)
C10—H100.9500C18A—F101.349 (8)
C11—N21.354 (4)F13A—C201.332 (6)
C11—C121.427 (5)F14A—C201.288 (9)
C12—N11.360 (4)C18B—F9B1.359 (15)
C13—O21.211 (6)C18B—F81.363 (11)
C13—O11.265 (5)C18B—C19B1.532 (12)
C13—C141.546 (6)C19B—F11B1.344 (12)
C14—F21.321 (5)C19B—F10B1.357 (13)
C14—F11.339 (6)C19B—C201.665 (13)
C14—C151.508 (7)F13B—C201.366 (11)
C15—F41.321 (6)F14B—C201.417 (16)
C15—F31.329 (6)F12—C201.313 (6)
N1—C1—C2122.0 (4)O3—Cu1—N290.37 (12)
N1—C1—H1119.0O1—Cu1—N188.94 (11)
C2—C1—H1119.0O3—Cu1—N1156.71 (11)
C3—C2—C1119.7 (4)N2—Cu1—N181.75 (12)
C3—C2—H2120.1O1—Cu1—O597.20 (12)
C1—C2—H2120.1O3—Cu1—O596.84 (12)
C2—C3—C4119.8 (3)N2—Cu1—O590.61 (12)
C2—C3—H3120.1N1—Cu1—O5105.09 (12)
C4—C3—H3120.1C1—N1—C12118.5 (3)
C12—C4—C3116.7 (3)C1—N1—Cu1129.3 (3)
C12—C4—C5118.4 (3)C12—N1—Cu1112.0 (2)
C3—C4—C5124.8 (3)C10—N2—C11118.4 (3)
C6—C5—C4121.2 (3)C10—N2—Cu1128.6 (3)
C6—C5—H5119.4C11—N2—Cu1113.0 (2)
C4—C5—H5119.4C13—O1—Cu1129.1 (3)
C5—C6—C7121.4 (4)C17—O3—Cu1109.7 (2)
C5—C6—H6119.3Cu1—O5—H5A112 (4)
C7—C6—H6119.3Cu1—O5—H5B120 (4)
C11—C7—C8116.9 (3)H5A—O5—H5B108 (3)
C11—C7—C6118.2 (3)F10A—C19A—F11A108.4 (5)
C8—C7—C6124.9 (4)F10A—C19A—C18A110.4 (5)
C9—C8—C7119.8 (4)F11A—C19A—C18A108.8 (5)
C9—C8—H8120.1F10A—C19A—C20109.2 (5)
C7—C8—H8120.1F11A—C19A—C20104.1 (4)
C8—C9—C10119.5 (4)C18A—C19A—C20115.5 (4)
C8—C9—H9120.2F8—C18A—F10107.4 (5)
C10—C9—H9120.2F8—C18A—C19A107.8 (4)
N2—C10—C9122.0 (4)F10—C18A—C19A107.7 (5)
N2—C10—H10119.0F8—C18A—C17107.7 (4)
C9—C10—H10119.0F10—C18A—C17113.6 (4)
N2—C11—C7123.3 (3)C19A—C18A—C17112.3 (4)
N2—C11—C12116.2 (3)F9B—C18B—F8108.9 (9)
C7—C11—C12120.5 (3)F9B—C18B—C19B106.3 (10)
N1—C12—C4123.3 (3)F8—C18B—C19B108.5 (9)
N1—C12—C11116.6 (3)F9B—C18B—C17118.6 (9)
C4—C12—C11120.1 (3)F8—C18B—C17106.5 (7)
O2—C13—O1130.7 (4)C19B—C18B—C17107.7 (9)
O2—C13—C14116.8 (4)F11B—C19B—F10B108.4 (11)
O1—C13—C14112.5 (4)F11B—C19B—C18B108.3 (9)
F2—C14—F1105.6 (5)F10B—C19B—C18B108.8 (11)
F2—C14—C15110.9 (5)F11B—C19B—C20115.6 (9)
F1—C14—C15107.6 (4)F10B—C19B—C20108.4 (9)
F2—C14—C13109.1 (4)C18B—C19B—C20107.2 (8)
F1—C14—C13110.4 (4)C18A—F8—C18B29.1 (5)
C15—C14—C13112.9 (4)F14A—C20—F12107.5 (7)
F4—C15—F3112.0 (5)F14A—C20—F13A111.0 (5)
F4—C15—C14107.7 (4)F12—C20—F13A102.8 (5)
F3—C15—C14107.3 (4)F14A—C20—F13B115.4 (8)
F4—C15—C16106.4 (4)F12—C20—F13B127.3 (7)
F3—C15—C16107.1 (4)F13A—C20—F13B34.1 (5)
C14—C15—C16116.5 (5)F14A—C20—F14B22.1 (8)
F6—C16—F5108.4 (6)F12—C20—F14B116.9 (13)
F6—C16—F7110.6 (6)F13A—C20—F14B89.1 (8)
F5—C16—F7104.8 (6)F13B—C20—F14B95.9 (11)
F6—C16—C15111.3 (6)F14A—C20—C19A116.4 (6)
F5—C16—C15110.7 (4)F12—C20—C19A108.6 (4)
F7—C16—C15110.8 (5)F13A—C20—C19A109.6 (4)
O4—C17—O3127.8 (3)F13B—C20—C19A78.5 (7)
O4—C17—C18A124.6 (4)F14B—C20—C19A125.1 (12)
O3—C17—C18A107.6 (4)F14A—C20—C19B81.5 (6)
O4—C17—C18B100.5 (5)F12—C20—C19B113.1 (5)
O3—C17—C18B131.1 (5)F13A—C20—C19B136.4 (6)
C18A—C17—C18B25.1 (4)F13B—C20—C19B102.4 (8)
O1—Cu1—O396.11 (11)F14B—C20—C19B95.6 (10)
O1—Cu1—N2169.16 (12)C19A—C20—C19B36.3 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O4i0.952.333.196 (5)151
C6—H6···F4i0.952.543.217 (5)128
O5—H5B···F10ii0.84 (2)2.45 (6)2.931 (6)117 (5)
O5—H5B···O3ii0.84 (2)2.31 (5)2.881 (4)125 (4)
O5—H5A···O2ii0.84 (2)1.87 (2)2.707 (5)175 (6)
C1—H1···O10.952.492.974 (5)111
Symmetry codes: (i) x, y, z; (ii) x+1/2, y+1/2, z.
 

Acknowledgements

The author is grateful to Anadolu University and the Medicinal Plants and Medicine research Centre of Anadolu University, Eskişehir, Turkey, for the use of X-ray diffractometer.

References

First citationAddison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.  CSD CrossRef Web of Science Google Scholar
First citationAhmad, N., Chughtai, A. H., Younus, H. A. & Verpoort, F. (2014). Coord. Chem. Rev. 280, 1–27.  Web of Science CrossRef CAS Google Scholar
First citationAwaleh, M. O., Badia, A. & Brisse, F. (2005). Cryst. Growth Des. 5, 1897–1906.  Web of Science CSD CrossRef CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBi, W., Cao, R., Sun, D., Yuan, D., Li, X., Wang, Y., Li, X. & Hong, M. (2004). Chem. Commun. pp. 2104–2105.  Web of Science CSD CrossRef Google Scholar
First citationBianchi, R., Forni, A. & Pilati, T. (2003). Chem. Eur. J. 9, 1631–1638.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBoutebdja, M., Lehleh, A., Beghidja, A., Setifi, Z. & Merazig, H. (2014). Acta Cryst. E70, m185–m186.  CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2004). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDunitz, D. & Taylor, R. (1997). Chem. Eur. J. 3, 89–98.  CSD CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHuang, W.-X., Liu, B.-B. & Lin, J.-L. (2010). Acta Cryst. E66, m488–m489.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJing, B., Li, L., Dong, J. & Xu, T. (2011). Acta Cryst. E67, m464.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKing, W. A., Yap, G. P. A., Incarvito, C. D., Rheingold, A. L. & Theopold, K. H. (2009). Inorg. Chim. Acta, 362, 4493–4499.  Web of Science CSD CrossRef CAS Google Scholar
First citationLee, H., Knobler, C. B. & Hawthorne, M. F. (2000). Chem. Commun. pp. 2485–2486.  Web of Science CSD CrossRef Google Scholar
First citationLiu, Y., Sun, J. & Niu, X. (2010). Acta Cryst. E66, m34.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMa, C., Wang, W., Zhang, X., Chen, C., Liu, Q., Zhu, H., Liao, D. & Li, L. (2004). Eur. J. Inorg. Chem. 2004, 3522–3532.  Web of Science CSD CrossRef Google Scholar
First citationMeundaeng, N., Prior, T. J. & Rujiwatra, A. (2013). Acta Cryst. E69, m568–m569.  CSD CrossRef IUCr Journals Google Scholar
First citationNaing, K., Takahashi, M., Taniguchi, M. & Yamagishi, A. (1995). Inorg. Chem. 34, 350–356.  CrossRef CAS Web of Science Google Scholar
First citationNi, S.-L., Zhou, F. & Qi, J.-L. (2011). Acta Cryst. E67, m779.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPatel, R. N., Patel, D. K., Shukla, K. K. & Singh, Y. (2013). J. Coord. Chem. 66, 4131–4143.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSokolov, M. N., Mihailov, M. A., Peresypkina, E. V., Brylev, K. A., Kitamura, N. & Fedin, V. P. (2011). Dalton Trans. 40, 6375–6377.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationWall, M., Linkletter, B., Williams, D., Hynes, R. C. & Chin, J. (1999). J. Am. Chem. Soc. 121, 4710–4711.  Web of Science CSD CrossRef CAS Google Scholar
First citationYin, X. (2011). Acta Cryst. E67, m564–m565.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds