research communications
κO)(1,10′-phenanthroline-κ2N,N′)copper(II)
of aquabis(heptafluorobutanoato-aAnadolu University, Faculty of Sciences, Department of Chemistry, 26470 Eskişehir, Turkey
*Correspondence e-mail: ibrahimkani@anadolu.edu.tr
The title compound, [Cu(C4F7O2)2(C12H8N2)(H2O)], is mononuclear and contains a pentacoordinated CuII ion. The geometry of CuII ion can be described as distorted square-pyramidal with two O atoms of two butanoate anions and two N atoms of the o-phenanthroline ligand occupying the basal plane, and a water O atom located at the axial position. In the crystal, C—H⋯(O,F) and O—H⋯(O,F) hydrogen bonds and π–π interactions [centroid-to-centroid distance 3.533 (2) Å] link the molecules into a three-dimensional supramolecular structure.
Keywords: crystal structure; copper(II) complex; heptafluorobutanoic acid; o-phenanthroline; hydrogen bonding.
CCDC reference: 1434356
1. Chemical context
Over the past decades, vast efforts have been dedicated to the rational design and synthesis of metal-carboxylate coordination polymers due to their potential applications in medicine, electronics, magnetism, catalysis, gas storage, etc (Ahmad et al., 2014; Patel et al., 2013). In addition, metal–o-phenanthroline complexes and their derivatives have attracted much attention because of their unusual features (Ma et al., 2004; Bi et al., 2004; Wall et al., 1999; Naing et al., 1995). This work reports a new copper coordination complex, [Cu(C4F7O2)2(C12H8N2)(H2O)], resulting from the reaction of heptafluorobutanoic acid and CuII ions in the presence of o-phenanthroline.
2. Structural commentary
The neutral complex [Cu(C4F7O2)2(C12H8N2)(H2O)] is composed of a central CuII ion, coordinated by two oxygen atoms (O1 and O3) of two butanoate anions, an oxygen atom (O5) of the water molecule, and two nitrogen atoms (N1 and N2) of the N,N′–chelating o–phenanthroline ligand (Fig. 1). Selected geometric parameters are presented in Table 1. The coordination about the CuII ion is better described as a square-pyramid. The geometry parameter τ, which is defined as τ = (β − α)/60, is applicable to five-coordinate structures within the structural continuum between trigonal–bipyramidal and tetragonal or rectangular pyramidal. For perfect tetragonal symmetry, τ is zero, and for perfect trigonal–bipyramidal geometry, τ becomes 1.0 (Addison et al., 1984). In the title compound, the largest angles within the four atoms N1, N2, O2, O3 are β = 169.16 (12)° for O1–Cu1—N2, and α = 156.71 (11)° for N1—Cu1—O3. Thus, τ is 0.21, indicating a 79% rectangular pyramidal geometry.
|
The Cu—O bonds [1.942 (3) and 1.980 (3) Å] in the quadrilateral plane are shorter than the apical position [2.173 (3) Å]. The mean Cu—N(phen) distance of 2.043 Å and the bite angle N1—Cu1—N2 of 81.75 (12)° are close to the corresponding values observed in related copper–o-phenanthroline compounds (Beghidja et al., 2014; Awaleh et al., 2005). The cisoid bond angles are in the range 81.75 (12)–96.11 (11)°, and transoid ones are 156.71 (11)°, and 169.16 (12)° exhibiting substantial deviations from 90 and 180° for a square. These are consistent with literature values (Jing et al., 2011). An intramolecular C1—H1⋯O1 hydrogen bond occurs.
3. Supramolecular features
In the crystal, intermolecular O—H⋯O, C—H⋯O and C—H⋯F hydrogen bonds (Table 2) link the molecules into a three-dimensional network (Fig. 2). The oxygen atom (O5) of the water molecule acts as a hydrogen-bond donor, via atoms H5A and H5B, to oxygen atom O3 of one coordinating carboxylate group (−x + , −y + , −z) and to the dangling oxygen atom O2 of the other coordinating carboxylate group (−x + , −y + , −z), thus enclosing centrosymmetric R44(16) ring motifs (Bernstein et al., 1995) running parallel to the b-axis direction (Fig. 3). In addition, C—H⋯F and O—H⋯F hydrogen bonds are formed, (C6—H6⋯F4 and O5—H5B⋯F10; Table 2; Fig. 3); the H⋯F distances are comparable with those reported for C—H⋯F interactions (2.44–2.90 Å; Dunitz & Taylor et al., 1997, Bianchi et al., 2003; Lee et al., 2000).
In the crystal, the packing appears to be influenced by π–π stacking interactions between o-phenanthroline ring systems of neighboring molecules, with the distance between the centroids of the N1/C1–C4/C12 and C4–C7/C11/C12 rings being 3.533 (2) Å. (Fig. 4). The shortest Cu⋯Cu distance in the supramolecular structure is 7.845 Å.
4. Database survey
For heptafluorobutanoic acid, see: Sokolov et al. (2011); Awaleh et al. (2005); King et al. (2009). For related structures and o-phenanthroline, see: Beghidja et al. (2014); Awaleh et al. (2005); Huang et al. (2010); Liu et al. (2010); Jing et al. (2011); Ma et al. (2004); Ni et al. (2011); Meundaeng et al. (2013); Sokolov et al. (2011); Yin et al. (2011).
5. Synthesis and crystallization
Cu(ClO4)·6H2O in methanol (0.076 mmol, 0.19 g) was added to a solution of o-phenanthroline (0.076 mmol, 0.14 g) and heptafluorobutanoic acid (0.0160 mmol, 0.1ml) in methanol (7 ml). Afterwards the obtained transparent blue solution was left to evaporate slowly in the air at ambient temperature and after two weeks, X-ray quality crystals appeared as blue plates. They were filtered off, washed with diethyl ether and dried in the air. Yield: 46 mg, 86%.
6. Refinement
Crystal data, data collection and structure . C-bound H atoms were placed in calculated positions and refined as riding with C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C). The coordinates of the water H atoms were refined, and Uiso(H) was set to be 2Ueq(O). One of the heptafluorobutanoate groups is disordered over two sets of sites in a 0.705 (9):0.955 (9) ratio. Atoms associated with the disorder were refined with isotropic displacement parameters.
details are summarized in Table 3
|
Supporting information
CCDC reference: 1434356
10.1107/S2056989015022720/pj2026sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S2056989015022720/pj2026Isup2.hkl
Data collection: APEX2 (Bruker, 2007); cell
SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: WinGX (Farrugia, 2012).[Cu(C4F7O2)2(C12H8N2)(H2O)] | F(000) = 2712 |
Mr = 687.84 | Dx = 1.922 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
a = 18.0213 (5) Å | Cell parameters from 6696 reflections |
b = 19.4619 (6) Å | θ = 2.3–27.3° |
c = 13.8664 (4) Å | µ = 1.07 mm−1 |
β = 102.205 (1)° | T = 110 K |
V = 4753.4 (2) Å3 | Plate, green |
Z = 8 | 0.35 × 0.26 × 0.20 mm |
Bruker APEXII CCD area-detector diffractometer | 5892 independent reflections |
Radiation source: fine-focus sealed tube | 4467 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.030 |
phi and ω scans | θmax = 28.3°, θmin = 2.1° |
Absorption correction: multi-scan (SADABS; Bruker, 2004) | h = −22→24 |
Tmin = 0.707, Tmax = 0.815 | k = −25→25 |
22348 measured reflections | l = −18→18 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.056 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.156 | H atoms treated by a mixture of independent and constrained refinement |
S = 0.95 | w = 1/[σ2(Fo2) + (0.0714P)2 + 30.9575P] where P = (Fo2 + 2Fc2)/3 |
5892 reflections | (Δ/σ)max < 0.001 |
450 parameters | Δρmax = 1.59 e Å−3 |
21 restraints | Δρmin = −1.08 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
C1 | 0.1436 (2) | −0.00631 (18) | −0.0275 (3) | 0.0331 (8) | |
H1 | 0.1945 | −0.0102 | 0.0084 | 0.040* | |
C2 | 0.1051 (3) | −0.06556 (19) | −0.0674 (3) | 0.0384 (9) | |
H2 | 0.1301 | −0.1088 | −0.0597 | 0.046* | |
C3 | 0.0312 (2) | −0.06099 (19) | −0.1176 (3) | 0.0363 (8) | |
H3 | 0.0045 | −0.1012 | −0.1439 | 0.044* | |
C4 | −0.0050 (2) | 0.00320 (18) | −0.1299 (3) | 0.0314 (7) | |
C5 | −0.0812 (2) | 0.0146 (2) | −0.1834 (3) | 0.0350 (8) | |
H5 | −0.1121 | −0.0237 | −0.2083 | 0.042* | |
C6 | −0.1098 (2) | 0.0786 (2) | −0.1991 (3) | 0.0358 (8) | |
H6 | −0.1600 | 0.0846 | −0.2364 | 0.043* | |
C7 | −0.0660 (2) | 0.13790 (19) | −0.1606 (3) | 0.0310 (7) | |
C8 | −0.0907 (2) | 0.2063 (2) | −0.1761 (3) | 0.0377 (8) | |
H8 | −0.1395 | 0.2161 | −0.2153 | 0.045* | |
C9 | −0.0445 (2) | 0.2586 (2) | −0.1347 (3) | 0.0417 (9) | |
H9 | −0.0604 | 0.3049 | −0.1460 | 0.050* | |
C10 | 0.0269 (2) | 0.24334 (19) | −0.0752 (3) | 0.0378 (8) | |
H10 | 0.0581 | 0.2800 | −0.0450 | 0.045* | |
C11 | 0.00687 (19) | 0.12756 (17) | −0.1035 (2) | 0.0265 (7) | |
C12 | 0.03820 (19) | 0.06005 (17) | −0.0895 (2) | 0.0261 (7) | |
C13 | 0.3038 (2) | 0.1216 (2) | 0.1361 (3) | 0.0446 (10) | |
C14 | 0.3553 (3) | 0.0667 (2) | 0.1973 (3) | 0.0497 (11) | |
C15 | 0.3264 (3) | 0.0430 (3) | 0.2862 (3) | 0.0532 (12) | |
C16 | 0.3843 (4) | 0.0061 (3) | 0.3681 (4) | 0.0755 (18) | |
C17 | 0.1326 (2) | 0.21520 (19) | 0.1794 (3) | 0.0378 (8) | |
Cu1 | 0.15206 (2) | 0.14635 (2) | 0.01889 (3) | 0.02752 (13) | |
F1 | 0.42548 (17) | 0.0915 (2) | 0.2295 (3) | 0.0965 (13) | |
F2 | 0.3629 (3) | 0.0143 (2) | 0.1396 (3) | 0.122 (2) | |
F3 | 0.3026 (2) | 0.0984 (2) | 0.3269 (2) | 0.1035 (16) | |
F4 | 0.2709 (2) | −0.0012 (3) | 0.2555 (4) | 0.146 (3) | |
F5 | 0.4354 (2) | 0.04972 (17) | 0.4146 (2) | 0.0900 (13) | |
F6 | 0.3516 (3) | −0.0217 (4) | 0.4308 (4) | 0.187 (3) | |
F7 | 0.4236 (3) | −0.03979 (16) | 0.3298 (3) | 0.1140 (18) | |
N1 | 0.11117 (17) | 0.05511 (14) | −0.0382 (2) | 0.0272 (6) | |
N2 | 0.05191 (16) | 0.17936 (15) | −0.0599 (2) | 0.0296 (6) | |
O1 | 0.23861 (16) | 0.09849 (14) | 0.09756 (19) | 0.0376 (6) | |
O2 | 0.33070 (19) | 0.1784 (2) | 0.1330 (4) | 0.0850 (15) | |
O3 | 0.15945 (15) | 0.22857 (13) | 0.1045 (2) | 0.0358 (6) | |
O4 | 0.1086 (2) | 0.16038 (16) | 0.2021 (3) | 0.0548 (9) | |
O5 | 0.21033 (16) | 0.18964 (17) | −0.0891 (2) | 0.0435 (7) | |
C19A | 0.1413 (3) | 0.2694 (3) | 0.3503 (4) | 0.0340 (14) | 0.705 (9) |
C18A | 0.1341 (3) | 0.2831 (3) | 0.2401 (4) | 0.0308 (14) | 0.705 (9) |
F10 | 0.1905 (3) | 0.3264 (2) | 0.2301 (4) | 0.0468 (12) | 0.705 (9) |
F10A | 0.0794 (3) | 0.2369 (3) | 0.3662 (4) | 0.0391 (11) | 0.705 (9) |
F11A | 0.2022 (3) | 0.2288 (2) | 0.3824 (4) | 0.0542 (13) | 0.705 (9) |
F13A | 0.1512 (3) | 0.3159 (3) | 0.5086 (4) | 0.0653 (15) | 0.705 (9) |
F14A | 0.2185 (6) | 0.3659 (6) | 0.4174 (5) | 0.067 (2) | 0.705 (9) |
C18B | 0.1086 (7) | 0.2638 (6) | 0.2581 (8) | 0.031 (3) | 0.295 (9) |
C19B | 0.1812 (6) | 0.2937 (6) | 0.3221 (8) | 0.033 (3) | 0.295 (9) |
F9B | 0.0682 (7) | 0.2367 (6) | 0.3213 (9) | 0.034 (2) | 0.295 (9) |
F10B | 0.2100 (7) | 0.3414 (6) | 0.2688 (9) | 0.040 (2) | 0.295 (9) |
F11B | 0.2321 (6) | 0.2427 (5) | 0.3454 (9) | 0.046 (3) | 0.295 (9) |
F13B | 0.1619 (7) | 0.2812 (7) | 0.4850 (8) | 0.055 (3) | 0.295 (9) |
F14B | 0.2290 (11) | 0.3614 (15) | 0.4558 (11) | 0.063 (5) | 0.295 (9) |
F8 | 0.06788 (13) | 0.31602 (11) | 0.20682 (16) | 0.0373 (5) | |
F12 | 0.10008 (19) | 0.37634 (14) | 0.3905 (2) | 0.0641 (8) | |
C20 | 0.1565 (3) | 0.3330 (2) | 0.4172 (3) | 0.0571 (13) | |
H5A | 0.200 (3) | 0.2313 (13) | −0.100 (5) | 0.086* | |
H5B | 0.2577 (13) | 0.185 (3) | −0.081 (5) | 0.086* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.043 (2) | 0.0282 (17) | 0.0332 (18) | 0.0037 (15) | 0.0187 (16) | 0.0015 (14) |
C2 | 0.060 (3) | 0.0249 (17) | 0.0364 (19) | 0.0036 (16) | 0.0247 (18) | −0.0016 (14) |
C3 | 0.054 (2) | 0.0292 (17) | 0.0328 (18) | −0.0083 (16) | 0.0249 (17) | −0.0060 (14) |
C4 | 0.0391 (19) | 0.0321 (17) | 0.0289 (16) | −0.0094 (15) | 0.0207 (15) | −0.0066 (14) |
C5 | 0.039 (2) | 0.042 (2) | 0.0291 (17) | −0.0145 (16) | 0.0179 (15) | −0.0131 (15) |
C6 | 0.0314 (19) | 0.049 (2) | 0.0299 (17) | −0.0093 (16) | 0.0124 (15) | −0.0076 (16) |
C7 | 0.0293 (17) | 0.0372 (19) | 0.0297 (16) | −0.0024 (14) | 0.0130 (14) | −0.0025 (14) |
C8 | 0.0292 (18) | 0.044 (2) | 0.040 (2) | 0.0023 (16) | 0.0086 (15) | 0.0013 (17) |
C9 | 0.033 (2) | 0.0312 (19) | 0.059 (3) | 0.0060 (15) | 0.0050 (18) | 0.0054 (18) |
C10 | 0.0318 (19) | 0.0266 (17) | 0.054 (2) | −0.0013 (14) | 0.0066 (17) | 0.0010 (16) |
C11 | 0.0274 (16) | 0.0270 (15) | 0.0287 (16) | −0.0049 (13) | 0.0144 (13) | −0.0016 (13) |
C12 | 0.0294 (17) | 0.0266 (15) | 0.0269 (15) | −0.0031 (13) | 0.0165 (13) | −0.0029 (12) |
C13 | 0.033 (2) | 0.056 (3) | 0.045 (2) | 0.0097 (19) | 0.0077 (17) | 0.0139 (19) |
C14 | 0.053 (3) | 0.047 (2) | 0.044 (2) | 0.015 (2) | −0.0026 (19) | −0.0041 (19) |
C15 | 0.049 (3) | 0.052 (3) | 0.049 (2) | −0.009 (2) | −0.012 (2) | 0.015 (2) |
C16 | 0.100 (5) | 0.056 (3) | 0.053 (3) | 0.005 (3) | −0.025 (3) | 0.008 (3) |
C17 | 0.037 (2) | 0.0278 (18) | 0.048 (2) | −0.0001 (15) | 0.0085 (17) | −0.0129 (16) |
Cu1 | 0.0256 (2) | 0.0237 (2) | 0.0338 (2) | −0.00175 (16) | 0.00763 (16) | 0.00126 (16) |
F1 | 0.0325 (15) | 0.120 (3) | 0.128 (3) | 0.0171 (17) | −0.0034 (17) | 0.051 (3) |
F2 | 0.175 (4) | 0.108 (3) | 0.061 (2) | 0.099 (3) | −0.027 (2) | −0.033 (2) |
F3 | 0.115 (3) | 0.151 (4) | 0.0462 (17) | 0.081 (3) | 0.0195 (18) | 0.009 (2) |
F4 | 0.094 (3) | 0.141 (4) | 0.162 (4) | −0.081 (3) | −0.066 (3) | 0.109 (3) |
F5 | 0.110 (3) | 0.065 (2) | 0.0649 (19) | 0.0228 (19) | −0.0494 (19) | −0.0231 (16) |
F6 | 0.147 (5) | 0.268 (8) | 0.127 (4) | −0.009 (5) | −0.010 (4) | 0.148 (5) |
F7 | 0.171 (4) | 0.0399 (17) | 0.090 (3) | 0.039 (2) | −0.064 (3) | −0.0144 (17) |
N1 | 0.0322 (15) | 0.0250 (13) | 0.0279 (13) | −0.0003 (11) | 0.0146 (12) | −0.0006 (11) |
N2 | 0.0248 (14) | 0.0259 (14) | 0.0395 (16) | −0.0015 (11) | 0.0097 (12) | 0.0022 (12) |
O1 | 0.0396 (15) | 0.0344 (14) | 0.0362 (13) | 0.0061 (11) | 0.0022 (11) | −0.0013 (11) |
O2 | 0.0348 (18) | 0.077 (3) | 0.131 (4) | −0.0168 (17) | −0.010 (2) | 0.060 (3) |
O3 | 0.0354 (14) | 0.0245 (12) | 0.0457 (15) | −0.0064 (10) | 0.0045 (12) | −0.0028 (11) |
O4 | 0.064 (2) | 0.0404 (16) | 0.071 (2) | −0.0094 (15) | 0.0411 (18) | −0.0060 (15) |
O5 | 0.0326 (14) | 0.0626 (19) | 0.0336 (14) | −0.0162 (13) | 0.0033 (12) | 0.0108 (13) |
C19A | 0.036 (3) | 0.022 (2) | 0.043 (3) | −0.003 (2) | 0.009 (2) | 0.001 (2) |
C18A | 0.034 (3) | 0.017 (2) | 0.046 (3) | −0.007 (2) | 0.017 (2) | −0.006 (2) |
F10 | 0.060 (3) | 0.031 (2) | 0.060 (3) | −0.0265 (18) | 0.036 (3) | −0.019 (2) |
F10A | 0.049 (3) | 0.0278 (17) | 0.046 (3) | −0.0078 (16) | 0.022 (2) | 0.004 (2) |
F11A | 0.046 (3) | 0.044 (2) | 0.068 (3) | 0.0102 (19) | 0.001 (2) | 0.006 (2) |
F13A | 0.099 (4) | 0.059 (3) | 0.035 (2) | −0.008 (3) | 0.007 (2) | −0.003 (2) |
F14A | 0.080 (4) | 0.063 (4) | 0.062 (5) | −0.034 (3) | 0.020 (4) | −0.017 (5) |
C18B | 0.030 (7) | 0.025 (7) | 0.038 (7) | −0.002 (5) | 0.007 (6) | 0.005 (5) |
C19B | 0.039 (7) | 0.032 (6) | 0.027 (6) | −0.004 (5) | 0.006 (5) | 0.002 (5) |
F9B | 0.034 (5) | 0.031 (4) | 0.040 (6) | −0.006 (3) | 0.015 (5) | 0.002 (5) |
F10B | 0.052 (6) | 0.031 (5) | 0.045 (6) | −0.017 (4) | 0.024 (5) | −0.007 (4) |
F11B | 0.032 (5) | 0.045 (5) | 0.055 (6) | 0.006 (4) | −0.004 (4) | −0.006 (4) |
F13B | 0.065 (7) | 0.072 (8) | 0.028 (5) | −0.028 (6) | 0.007 (4) | 0.003 (5) |
F14B | 0.087 (12) | 0.063 (8) | 0.054 (10) | −0.021 (8) | 0.046 (9) | −0.013 (10) |
F8 | 0.0431 (13) | 0.0271 (10) | 0.0419 (12) | 0.0077 (9) | 0.0096 (10) | 0.0026 (9) |
F12 | 0.092 (2) | 0.0404 (14) | 0.0661 (18) | −0.0051 (15) | 0.0298 (17) | −0.0202 (13) |
C20 | 0.091 (4) | 0.046 (2) | 0.033 (2) | −0.024 (3) | 0.010 (2) | −0.0066 (18) |
C1—N1 | 1.325 (4) | C15—C16 | 1.546 (7) |
C1—C2 | 1.398 (5) | C16—F6 | 1.271 (8) |
C1—H1 | 0.9500 | C16—F5 | 1.316 (7) |
C2—C3 | 1.369 (6) | C16—F7 | 1.319 (8) |
C2—H2 | 0.9500 | C17—O4 | 1.218 (5) |
C3—C4 | 1.403 (5) | C17—O3 | 1.261 (5) |
C3—H3 | 0.9500 | C17—C18A | 1.564 (6) |
C4—C12 | 1.400 (5) | C17—C18B | 1.572 (11) |
C4—C5 | 1.433 (6) | Cu1—O1 | 1.942 (3) |
C5—C6 | 1.348 (6) | Cu1—O3 | 1.980 (3) |
C5—H5 | 0.9500 | Cu1—N2 | 2.007 (3) |
C6—C7 | 1.437 (5) | Cu1—N1 | 2.019 (3) |
C6—H6 | 0.9500 | Cu1—O5 | 2.173 (3) |
C7—C11 | 1.397 (5) | O5—H5A | 0.840 (19) |
C7—C8 | 1.406 (5) | O5—H5B | 0.843 (19) |
C8—C9 | 1.362 (6) | C19A—F10A | 1.341 (7) |
C8—H8 | 0.9500 | C19A—F11A | 1.349 (6) |
C9—C10 | 1.405 (5) | C19A—C18A | 1.530 (7) |
C9—H9 | 0.9500 | C19A—C20 | 1.536 (7) |
C10—N2 | 1.326 (5) | C18A—F8 | 1.348 (6) |
C10—H10 | 0.9500 | C18A—F10 | 1.349 (8) |
C11—N2 | 1.354 (4) | F13A—C20 | 1.332 (6) |
C11—C12 | 1.427 (5) | F14A—C20 | 1.288 (9) |
C12—N1 | 1.360 (4) | C18B—F9B | 1.359 (15) |
C13—O2 | 1.211 (6) | C18B—F8 | 1.363 (11) |
C13—O1 | 1.265 (5) | C18B—C19B | 1.532 (12) |
C13—C14 | 1.546 (6) | C19B—F11B | 1.344 (12) |
C14—F2 | 1.321 (5) | C19B—F10B | 1.357 (13) |
C14—F1 | 1.339 (6) | C19B—C20 | 1.665 (13) |
C14—C15 | 1.508 (7) | F13B—C20 | 1.366 (11) |
C15—F4 | 1.321 (6) | F14B—C20 | 1.417 (16) |
C15—F3 | 1.329 (6) | F12—C20 | 1.313 (6) |
N1—C1—C2 | 122.0 (4) | O3—Cu1—N2 | 90.37 (12) |
N1—C1—H1 | 119.0 | O1—Cu1—N1 | 88.94 (11) |
C2—C1—H1 | 119.0 | O3—Cu1—N1 | 156.71 (11) |
C3—C2—C1 | 119.7 (4) | N2—Cu1—N1 | 81.75 (12) |
C3—C2—H2 | 120.1 | O1—Cu1—O5 | 97.20 (12) |
C1—C2—H2 | 120.1 | O3—Cu1—O5 | 96.84 (12) |
C2—C3—C4 | 119.8 (3) | N2—Cu1—O5 | 90.61 (12) |
C2—C3—H3 | 120.1 | N1—Cu1—O5 | 105.09 (12) |
C4—C3—H3 | 120.1 | C1—N1—C12 | 118.5 (3) |
C12—C4—C3 | 116.7 (3) | C1—N1—Cu1 | 129.3 (3) |
C12—C4—C5 | 118.4 (3) | C12—N1—Cu1 | 112.0 (2) |
C3—C4—C5 | 124.8 (3) | C10—N2—C11 | 118.4 (3) |
C6—C5—C4 | 121.2 (3) | C10—N2—Cu1 | 128.6 (3) |
C6—C5—H5 | 119.4 | C11—N2—Cu1 | 113.0 (2) |
C4—C5—H5 | 119.4 | C13—O1—Cu1 | 129.1 (3) |
C5—C6—C7 | 121.4 (4) | C17—O3—Cu1 | 109.7 (2) |
C5—C6—H6 | 119.3 | Cu1—O5—H5A | 112 (4) |
C7—C6—H6 | 119.3 | Cu1—O5—H5B | 120 (4) |
C11—C7—C8 | 116.9 (3) | H5A—O5—H5B | 108 (3) |
C11—C7—C6 | 118.2 (3) | F10A—C19A—F11A | 108.4 (5) |
C8—C7—C6 | 124.9 (4) | F10A—C19A—C18A | 110.4 (5) |
C9—C8—C7 | 119.8 (4) | F11A—C19A—C18A | 108.8 (5) |
C9—C8—H8 | 120.1 | F10A—C19A—C20 | 109.2 (5) |
C7—C8—H8 | 120.1 | F11A—C19A—C20 | 104.1 (4) |
C8—C9—C10 | 119.5 (4) | C18A—C19A—C20 | 115.5 (4) |
C8—C9—H9 | 120.2 | F8—C18A—F10 | 107.4 (5) |
C10—C9—H9 | 120.2 | F8—C18A—C19A | 107.8 (4) |
N2—C10—C9 | 122.0 (4) | F10—C18A—C19A | 107.7 (5) |
N2—C10—H10 | 119.0 | F8—C18A—C17 | 107.7 (4) |
C9—C10—H10 | 119.0 | F10—C18A—C17 | 113.6 (4) |
N2—C11—C7 | 123.3 (3) | C19A—C18A—C17 | 112.3 (4) |
N2—C11—C12 | 116.2 (3) | F9B—C18B—F8 | 108.9 (9) |
C7—C11—C12 | 120.5 (3) | F9B—C18B—C19B | 106.3 (10) |
N1—C12—C4 | 123.3 (3) | F8—C18B—C19B | 108.5 (9) |
N1—C12—C11 | 116.6 (3) | F9B—C18B—C17 | 118.6 (9) |
C4—C12—C11 | 120.1 (3) | F8—C18B—C17 | 106.5 (7) |
O2—C13—O1 | 130.7 (4) | C19B—C18B—C17 | 107.7 (9) |
O2—C13—C14 | 116.8 (4) | F11B—C19B—F10B | 108.4 (11) |
O1—C13—C14 | 112.5 (4) | F11B—C19B—C18B | 108.3 (9) |
F2—C14—F1 | 105.6 (5) | F10B—C19B—C18B | 108.8 (11) |
F2—C14—C15 | 110.9 (5) | F11B—C19B—C20 | 115.6 (9) |
F1—C14—C15 | 107.6 (4) | F10B—C19B—C20 | 108.4 (9) |
F2—C14—C13 | 109.1 (4) | C18B—C19B—C20 | 107.2 (8) |
F1—C14—C13 | 110.4 (4) | C18A—F8—C18B | 29.1 (5) |
C15—C14—C13 | 112.9 (4) | F14A—C20—F12 | 107.5 (7) |
F4—C15—F3 | 112.0 (5) | F14A—C20—F13A | 111.0 (5) |
F4—C15—C14 | 107.7 (4) | F12—C20—F13A | 102.8 (5) |
F3—C15—C14 | 107.3 (4) | F14A—C20—F13B | 115.4 (8) |
F4—C15—C16 | 106.4 (4) | F12—C20—F13B | 127.3 (7) |
F3—C15—C16 | 107.1 (4) | F13A—C20—F13B | 34.1 (5) |
C14—C15—C16 | 116.5 (5) | F14A—C20—F14B | 22.1 (8) |
F6—C16—F5 | 108.4 (6) | F12—C20—F14B | 116.9 (13) |
F6—C16—F7 | 110.6 (6) | F13A—C20—F14B | 89.1 (8) |
F5—C16—F7 | 104.8 (6) | F13B—C20—F14B | 95.9 (11) |
F6—C16—C15 | 111.3 (6) | F14A—C20—C19A | 116.4 (6) |
F5—C16—C15 | 110.7 (4) | F12—C20—C19A | 108.6 (4) |
F7—C16—C15 | 110.8 (5) | F13A—C20—C19A | 109.6 (4) |
O4—C17—O3 | 127.8 (3) | F13B—C20—C19A | 78.5 (7) |
O4—C17—C18A | 124.6 (4) | F14B—C20—C19A | 125.1 (12) |
O3—C17—C18A | 107.6 (4) | F14A—C20—C19B | 81.5 (6) |
O4—C17—C18B | 100.5 (5) | F12—C20—C19B | 113.1 (5) |
O3—C17—C18B | 131.1 (5) | F13A—C20—C19B | 136.4 (6) |
C18A—C17—C18B | 25.1 (4) | F13B—C20—C19B | 102.4 (8) |
O1—Cu1—O3 | 96.11 (11) | F14B—C20—C19B | 95.6 (10) |
O1—Cu1—N2 | 169.16 (12) | C19A—C20—C19B | 36.3 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
C3—H3···O4i | 0.95 | 2.33 | 3.196 (5) | 151 |
C6—H6···F4i | 0.95 | 2.54 | 3.217 (5) | 128 |
O5—H5B···F10ii | 0.84 (2) | 2.45 (6) | 2.931 (6) | 117 (5) |
O5—H5B···O3ii | 0.84 (2) | 2.31 (5) | 2.881 (4) | 125 (4) |
O5—H5A···O2ii | 0.84 (2) | 1.87 (2) | 2.707 (5) | 175 (6) |
C1—H1···O1 | 0.95 | 2.49 | 2.974 (5) | 111 |
Symmetry codes: (i) −x, −y, −z; (ii) −x+1/2, −y+1/2, −z. |
Acknowledgements
The author is grateful to Anadolu University and the Medicinal Plants and Medicine research Centre of Anadolu University, Eskişehir, Turkey, for the use of X-ray diffractometer.
References
Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356. CSD CrossRef Web of Science Google Scholar
Ahmad, N., Chughtai, A. H., Younus, H. A. & Verpoort, F. (2014). Coord. Chem. Rev. 280, 1–27. Web of Science CrossRef CAS Google Scholar
Awaleh, M. O., Badia, A. & Brisse, F. (2005). Cryst. Growth Des. 5, 1897–1906. Web of Science CSD CrossRef CAS Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Bi, W., Cao, R., Sun, D., Yuan, D., Li, X., Wang, Y., Li, X. & Hong, M. (2004). Chem. Commun. pp. 2104–2105. Web of Science CSD CrossRef Google Scholar
Bianchi, R., Forni, A. & Pilati, T. (2003). Chem. Eur. J. 9, 1631–1638. Web of Science CSD CrossRef PubMed CAS Google Scholar
Boutebdja, M., Lehleh, A., Beghidja, A., Setifi, Z. & Merazig, H. (2014). Acta Cryst. E70, m185–m186. CSD CrossRef IUCr Journals Google Scholar
Bruker (2004). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Dunitz, D. & Taylor, R. (1997). Chem. Eur. J. 3, 89–98. CSD CrossRef CAS Web of Science Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Huang, W.-X., Liu, B.-B. & Lin, J.-L. (2010). Acta Cryst. E66, m488–m489. Web of Science CSD CrossRef IUCr Journals Google Scholar
Jing, B., Li, L., Dong, J. & Xu, T. (2011). Acta Cryst. E67, m464. Web of Science CSD CrossRef IUCr Journals Google Scholar
King, W. A., Yap, G. P. A., Incarvito, C. D., Rheingold, A. L. & Theopold, K. H. (2009). Inorg. Chim. Acta, 362, 4493–4499. Web of Science CSD CrossRef CAS Google Scholar
Lee, H., Knobler, C. B. & Hawthorne, M. F. (2000). Chem. Commun. pp. 2485–2486. Web of Science CSD CrossRef Google Scholar
Liu, Y., Sun, J. & Niu, X. (2010). Acta Cryst. E66, m34. Web of Science CSD CrossRef IUCr Journals Google Scholar
Ma, C., Wang, W., Zhang, X., Chen, C., Liu, Q., Zhu, H., Liao, D. & Li, L. (2004). Eur. J. Inorg. Chem. 2004, 3522–3532. Web of Science CSD CrossRef Google Scholar
Meundaeng, N., Prior, T. J. & Rujiwatra, A. (2013). Acta Cryst. E69, m568–m569. CSD CrossRef IUCr Journals Google Scholar
Naing, K., Takahashi, M., Taniguchi, M. & Yamagishi, A. (1995). Inorg. Chem. 34, 350–356. CrossRef CAS Web of Science Google Scholar
Ni, S.-L., Zhou, F. & Qi, J.-L. (2011). Acta Cryst. E67, m779. Web of Science CSD CrossRef IUCr Journals Google Scholar
Patel, R. N., Patel, D. K., Shukla, K. K. & Singh, Y. (2013). J. Coord. Chem. 66, 4131–4143. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sokolov, M. N., Mihailov, M. A., Peresypkina, E. V., Brylev, K. A., Kitamura, N. & Fedin, V. P. (2011). Dalton Trans. 40, 6375–6377. Web of Science CSD CrossRef CAS PubMed Google Scholar
Wall, M., Linkletter, B., Williams, D., Hynes, R. C. & Chin, J. (1999). J. Am. Chem. Soc. 121, 4710–4711. Web of Science CSD CrossRef CAS Google Scholar
Yin, X. (2011). Acta Cryst. E67, m564–m565. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.